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ABSTRACT

Models are considered in which a rate or probability can be represented by a regression func-
tion that describes the relation between the predictor variables and the unknown parameters. Esti-
mates of the parameters can be obtained by means of iteratively reweighted least square (IRLS).
When the dependent variable is a count that follows either the Poisson or binomial distribution,
the IRLS algorithm is equivalent to using the method of scoring to obtain maximum likelihood
(ML) estimates. This general least squares regression approach includes linear, generalized linear,
and intrinsically nonlinear regression functions. Standard statistical packages that support IRLS
can be used to obtain ML estimates, their asymptotic covariance matrix, and diagnostic measures
that can be used to aid the analyst in detecting outlying responses and extreme points in the
model space. The results of fitting several different models to the same data set can be summar-
ized in an ANOVA-like table using the deviance as a measure of residual variation. Five exam-
ples using data from both designed experiments and observational studies are presented to illus-
trate the utility of Poisson and binomial regression analysis.

1. INTRODUCTION

1.1 Notation and Terminology

In this paper we assume that data have been obtained on each of

N (observational or experimental) units . The data for the ith unit consist of the follow-
ing:

Yi - the observed value of the dependent variable,

¢; -~ the "sample size", and

.X,- = (Xi1, X;2, ..., Xim) -~ a row vector of covariates, )
where x;; is value of the first covariate, etc. If the values of X; and ¢; are determined in advance
by the investigator (and randomization is used) then the results are from a designed experiment.
In many situations, primarily in human populations, the investigator is restricted to observing the
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values of the covariates, and we refer to such situation as observational studies (see Cochran,
1983). In both situations one or more of the covariates may correspond to "causal factors® (i.c.
treatments, procedures, or programs) that are of primary interest, while other x variables may"
affect the variation in the dependent variable and are included so that their influence can be
"adjusted for” in the statistical analysis. We assume that the y; are counts, and use either the
Poisson or binomial distribution as a model for the variation in the dependent variable. The term
covariate (or x-variable) will be used as a generic term for what are sometimes called independent
variables, predictor variables, explanatory variables, or stimulus variables. Covariates may be
cither quantitative or qualitative in nature, and we use the term factor to refer to qualitative
covariates. A factor can take a limited number of values called levels. For example, if 4 is a
factor with k levels, then these can be coded using the integers 1,2,....k. The actual levels of the
factor may be cither qualitative or quantitative. The levels of a factor arc used to generate
"dummy variables” (indicator variables) in the covariate vector, i.e. : :

X = [

This implies that there wxll be a parameter associated with each level of the factor

1 if level 1 of factor A is 'presejntron unit i,
0 otherwise

In situations that involve a linear structure (see below) a useful potation has bcen developed
(Wilkinson and Rogers, 1973) and adapted for use in computer programs (see e.g. GLIM-3,
Baker and Nelder, 1978). In agriculturial experiments, for examples, blocks and varieties are
examples of factors. In observational studies factors might include sex, sociceconomic status, geo-
graphic region, etc. Table 1 contains further examples of covariates, as well as a description of
the dependent variable y and sample size for each example that we will consider in Section 2 and
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Table 1. List of Examples of Data Used To Illustrate
Poisson and Binomial Regression

Example Dependent Sample Distribution  Covariates
Variable Size '
y c x
land2  number of total Poisson radiation
chromosome  lymphocytes dose,
aberrations scored exposure
" (unit=100) rate
3 number of man-years Poisson smoking,
lung cancer  (units=10%) age
deaths i
4 nhm_bcr of total binomial streptonigrin
damaged lymphoblasts dose
lymphoblasts  examined
5 number of total " binomial  2-AAF
mice with mice exposure,
liver examined time

neoplasms




(V8]

Assuming that we have data y; ¢; X; i=1,..,N on each of N units, the problem of
interest is to determine if there is any systematic relation between the dependent variable and the
- covariates. We assume that the expected value of y; is given by

# = ¢ MX.,80),

where M(X,8) is a known function, and 8 = (B),..., B,) is a p-dimensional vector of unknown

parameters. The regression function will in general be nonlinear in the unknown parameters, and
hopefully p (the number of parameters) is much less than N. A special case of interst occurs
when the rcgresswn function can be expressed as a linear combmatxon ‘of the covariates and the

parameters, 1 e.
x(x,.ﬁ) = X8 = Tl By

This is referred to as a (multiple) linear regr&ssion (function), and is most often encountered in
the context of the "classical linear model”. There is an extensive literature on the classical linear
model (see Draper and Smith, 1981), and these methods are most appropriate when the y; are
continuous and follow the Normal distribution with constant variance. When the dependent vari-
able is a count that may follow the Poisson or binomial distribution the assumptions of constant
variance is clearly inappi'opriate, and the linear regression function is of limital value. A more
general class of regression functions that involves a linear structure has developed for count data.
A generahzed linear function (GLF) is defined by

AX,8) = G(X8),

where G( ) is a monotonic differentiable function. A widely used GLF for Poisson data
is the product model M(X;,8) = exp(X;8) , which is also called a log-linear model. A useful

GLF for binomial data is A(X,,6) = exp(X;ﬂ)/[l + exp(x,a)]. The use of GLFs for Pois-

son and binomial data has been discussed by Nelder and Wedderburn (1972), and the statistical”
program GLIM (1977) has been developed to facilitate data analysis using GLFs. Nelder and
Wedderburn use the term “link function® for the inverse of the function G, i.e. for the product
model the link function is log (A) which explains why this is also called a log-lincar model.

In summary, we use the term Poxsson { binomial) regression model to refer to a sitnation

where
i) the y;are mdependent and follow the Poisson (binomial) d:stnbutxon, and

ii) the regression function A(X;,8) is known.
Then given the data we want to obtain estimates of the §;, their standard deviations, and evaluate
the "goodness of fit” of the regression model. In what follows we show that estimates of the g,
can be obtained using a general regression model (1.1), from which certain generalized least
squares equations (1.3) arc derived. A root of the system of equations can be obtained using an
itertively reweighted least squares procedure which is equivalent to maximum likelihood estima-
tion under the Poisson or binomial assumption. ‘

1.2 Genreral Regression Madef

Consnder the general regression model -
E(y) = u(X.8) = ciA(Xbﬂ)
Var(p) = & V() , i=1.,N, (L1

where y; is the response for the ith unit, ¢; denotes the "sample size”, and V( ) is a known
function that may depend on x;. We assume that the y; are uncorrelated, that A(X,8) is a known
function of the m dimensional row vector of covariates X; = (x;, .., Xi»), and the p
- upknown parameters 8 = (By, .., B,). The regression function M(X,8) will in general be
nonlinear (with respect to the parameters) and we assume that it is a differentiable function of £.
The regression function rclates the expected value of thc dcpendcnt variable y to the covariates
and the parameters, and given the data {y,¢,X; , i = 1, ..., n } we want to estimate
the unknown parameters. ' ‘



The most widely used methods of estimation have been developed using either the maximum
. likelihcod (ML) or the least squares (LS) principle. - The assumptions underlying these principles -
of estimation and the properties of the estimators are well known (see e. g. Kendall and Stuart,
1946 or Rao, 1965). Following the least squares principle we define the weighted sum of squares

SB) = I, wi Ui — MXB)T, (1.2)
where j; = yifc;, and w; is a positive weight that is inversely proportional to the variance of
7i- The least squares estimates are obtained by solving the p dimensional system of equations

PWIF— MO =0, L3
where W = diag{w;], P is an N by p matrix of partial derivatives with elements
Pij = ax(X}:ﬂ)/aﬁj’ -y_ = ()_".l, eeep }71\!)', and A(ﬂ) (A(Xhﬂ)’ woey A(XNﬂ))'- A

solution of the generalized least squares equations (1.3) can be obtained using an iterative
reweighted least squares (IRLS) procedure (see the Appendix).

1t is well known that when the y; follow the Normal distribution, the IRLS procedure will
yield ML estimates for the general regression mode (1.1). Moore and Seigler (1967) showed the
equivalence of ML and LS for the binomial distribution, and the equivalence of the ML and LS
estimation procedure for Poission distributed data was demonstrated by Frome and Beauchamp
(1968), Frome (1972), and Frome, Kutner, and Beauchamp (1973). The equivalence of IRLS
and ML for certain generalized linear functions for y in the exponential family (this includes
Normal, gamma, Poisson, and binomial) was established by Nelder and Wedderburn (1972).
Charnes, Frome, and Yu (1976) extended this result to show that ML and IRLS are equivalent
for general nonlinear regression functions when the dependent variable is in the exponential fam-
ily. _
Regression methods. based on the classical linear model assume that the y; are continuous
variables, that the  regression function is linear in the g - ie
AX.8) = X8 = 2; Bjxy, and that the y; have equal variances and are uncorrclated.
The assumption of Normahty of the distribution of y leads to an exact small-sample theory. The
theory of least squares in large samples can, however, be developed using only the first- and
second-moment assumptions. The classical linear model is most appropriate when the dependent
variable is a continuous quantity that can take on values on the entire real line. . In practice it is
often used to model data that are continuous and nonncgative (c.g. weights, concentrations, etc.),
provided the mean values are far from zero. In some situations the use of log y instead of y
may justify the assumption of constant variance or Normality.

1.3 Poisson and Binomial Regression Models

There are many situations in which the dependent variable is a count and the investigator is
interssting in evaluating the effect of one or more covariates on the response. The two most
widely used probability models for discrete data are the Poisson and the binomial dnstnbutxon, and
we shall limit our discussion to these two distributions.

The Poission distribution has been widely used as a model for certain types of discretc data,
Haight (1967) states that the Poisson is second in importance to the Normal distribution, both in
terms of abstract theory and breadth of application. The Poisson distribution has only recently
been considered in the context of regression analysis (sce Frome, 1972, Frome, Kutner and Beau-
champ, 1973, Kock, Athinson, and Stokes, 1984). The dependent variable y is typically a count
that is made with respect to some reference quantity ¢ that is a measure of the size of the sample.
Examples are bacteria per unit volume of suspension, number of accidents per unit time, and
number of abnormal chromosome per lymphocyte. Cochran (1940) was the first to propose the
use of Poisson regression in the context of the analysis of variance for designed experiments.
Cochran used a linear regression function A(X;,8) = EJ B;x; to study the effect of scveral
factors on the yield of wireworms (per acre). He found that the exact solution to the likelihood
equations was too complicated for frequent use, and proposed A(X,8) = (XB)* as a morc
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practical alternative. This "square-root-linear" model results in some simplification (an iterative
procedure is still required) of the likelihood equations. Cochran [1940] also proposed the product
(log-linear) model i.e. AM(X,8) = exp(X;8), for Poisson distributed data.

Another important area where Poisson regression models are used is in the analysis of data
on rates and survivorship in medical and epidemiologic studies. For the ith subgroup the depend-
ent variable y; is a count (e.g. lung cancer deaths), ¢; is the total follow-up time, and X; is a
vector of covariates that describes the xth subgroup — see Holford (1980), Frome (1983), and

Breslow et al (1983).

For a general Poisson regression model y; denotes the observed count for the ith set of
covariate vector X;, ¢; is the "size” of the ith unit and j; = y,;/c; denotes the observed rate (i.c.
‘bacteria per liter, failures per hour, etc.). The expected number of event is 4, = ¢ AMXp8),
and the regression function A(X,8) can be interpreted in a general sense as the expected rate.
Under the Poisson assumption the Var(y;) = ¢);, and consequently the "Poisson weights” in
(1.1) are defined by w; = ¢;/\. Examples that illustrate the use of linear, log-linear, and int-

rinsically nonlinear models are given in Section 2.

The binomial distribution—which is one of the aldest to have been studied (see Johason and
Kotz, (1970) Chap. 3, — has two parameters, say A (the probability of success on a given trial)
and ¢ (the number of trials). The dependent variable y is the number of positive responses that
are abserved in the ¢ trials. In a regression context we assume that ¢; individuals are observed for
the ith set of experimental conditions X; and y; show a positive response with expected value
aMX;,8), where MX;,8) is the probability of response for each individual. For example, in a
bioassay ¢; would be the number of animals and y; would be the number that respond to the ith
set of experimental conditions that are defined by the covariate vector X;. In this situation the
regression function A(X;,8) represents the probability of observing the response for each animal in
the ith group, and 7 = y/c; denotes the proportion that respond. The response must lie in
the range O < y; € ¢;, and the regression function must satisfy 0 < AMX;,8) < L.
Under the - binomial assumption the variance (see eq. 1.1) is given by
Var(y;) = ¢ N (1—X);), ard consequently the "binomial weights” in (1.2) are defined to be
w; = ¢;/IA(1—X\))]. The best known binomial regression function is encounted in probit anal-
ysis (Bliss, 1935). The probit regression function is often defined by MX;8) = P(a+pd;)
where @ is the .Normal cumulative distribution function, X; = (1,d;), and 8 = (a,8).
Typically, d; is the dose (or logarithm of the dose) of a stimulant or toxin, y; is the number of
positive responses in the ith exposure group, and ¢; is the number of trials. The role of the logis-
tic function in the analysis of "binary” or "quantal” response data has been considered by Cox
(1970). Note that if ¢ = 1 for all values of i then the possible values of y; are 0 and 1. In
this case

E(Yx) = prob (Y;=1) = AMX;,6) = exp(X;8)[1+exp(X;B))

The more general case with all ¢ greater than one is sometimes referred to as grouped" binary
data,

Further results and an cxtensive bibliography concerning the use of GLFs in the analySis of
discrete data are given by McCullagh and Nelder (1983). This includes topics such as log-linear
models for contingency tables (sce also Bishop et al, and Huberman, 1974 ) and the connection
between log-linear and multinomial response models (see also Palmgren, 1981).

2. POISSON REGRESSION

In this section three examples will be presented to illustrate various aspects of Poisson regres-
sion analysis. Example 1 will be used to illustrate simple linear regression analysis, multiple lin-
ear regression, and the analysis of variance for Poisson distributed data. In Example 1 there are
parallel counts (i.e. replication) for each set of experimental conditions, and consequently we can
test for "lack of fit” of the regression function and for heterogenity of variance. Example 2 will be



used to further illustrate linear regression, and to introduce nonlinear regression and regression
diagnostics for Poisson data. In'Example 3 we will consider a log-linear regression function and a
nonlinear regression function for data obtained from an observational study. '

2.1 Simple Linear Regression with Parallel Counts

.Example 1: Ir-192 Dose-Response Curve. In cytogenetic dosimetry in vitro dose response
curves are used to describe the relation between the yield of dicentric chromosome aberrations and
- radiation dose. Let y; denote the observed dicentric yield for the kth parallel count of human
lymphocytes exposed to d; grays — see DuFrain et al (1980), Frome and DuFrain (1983). The
data in Table 2a provide a numeric example of an in vitro dose response curve for Ir 192 and are
shown graphically in Figure 1a. As a matter of convenience we define c;; as the total cells scored
in units of 100 cells so that the regression function A(d,8) represents the dicentric yield per 100
cells. ’ . -

_ The dicentric yields follow the Poisson distribution and we first assume that Md.f) = pd
, i.c. the dicentric yield can be represented by a straight linc that passes through the origin. In
this case the ML estimate is .

Xy Zeye |\ Zya Y
2 2k 4 2 a9 |
where ¢; = 3, cp. This is identical to the least squares estimate with wy==c;/d; . The
ML estimate is §* = 21.4 , and the deviance is 79.26 with 19 df (sce Table 2c). Standard-
ized residuals for this model : .
W = (.ij - Ci g dj)/(cjk g dj)v‘

.arﬂc listed in Table 2b and are shown graphically in Figure 1b. The residuals suggest that a dose-
squared term should be included in the model, i.c. Md) = Bid + B.d*(see Section 2.2.1)

' 2.2 Generalized Linear Regression _
" There are iwo general forms of the regression function that are of practical interest for Pois~
~ son distributed data. They are the "multiple linear®
’ ' MXB) = 2 Bxips
and the "'log-linear’
' NXB) = exp(Z; Bixy)
regression functions. A third regression function of historical interest is
' . CMXB) = (T Bpy)s
a;ld this might be called "square-root-linear®. All of these GLFs can be viewed as a_'special case
o ‘ : : .
CGXB) = (I, Bxy) » q#0

GXB) = exp(3; Bxy) » =0 N ¢ 1))

. Nelder and Wedderburn (1972) use the term "link function” to describe the inverse of the
_regression function for GLFs, ie. they call the exponential regression function
" G(XB) = exp(XB) a log-lincar model because log G(XB) is linear in the parameters. In
Section 2.2.1 we will consider scveral multiple linear regression functions for the Ir-192 data from
Example 1. Then, in Example 2, we will consider an experiment in which two independent
variables, radiation dose and exposure rate, for Cs-137 gamma rays are of interest. Linear regres-
sion models will be used to investigate the effect of dose and dose rate on the frequency of
chromosome abnormalities. In Section 2.3 we will consider a theoretical model derived from the
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theory of dual radiation action (DRA) that is nonlinear in the parameters. The Cs-137 data from
Example 2 is used to illustrate Poisson regression analysis for the intrinsically nonlinear DRA

model.

In Section 2.2.2 an example of Poisson regression analysis for data from an observational
study will be considered. The dependent variable is the number of lung cancer deaths and the
covariates are age and exposure rate for individuals who were regular cigarette smokers. A log-
linear model is used to obtain age adjusted estimates of "smoking effects”. In Section 2.3 we will
- consider a_nonlinear model (derived from the multi-stage theory of carcinogenesis) to further
‘illustrate Poisson regression analysis for an intrinsically nonlinear regression function..

2.2.1 Multiple-Linear Regression 4

Example 1 - continued. In Section 2.1 we found that a simple one parameter model was
inadequate, and suggested that a dose-squared term should be added to the regression function,
ie. ¢

NXB) = X8 = Conoxa) [g;]

where x;;=d and x;;=d% The deviance for this model is 12.76 with 18 degrees of freedom (df)
— sce line 6 in Table 2c. Table 2¢ contains the value of the deviance for all possible multlple lin-
ear regression models of the form

Md) = B + Bd + Brd*

The next to the last line in Table 2c labelled "Dose Groups® corresponds to the "pnre error sum of
squares” in an ANOVA table for the standard linecar models. The rows in the model matrix are

based on indicator variables, ie. for j=1,...,.4

: ley,lsmdosegroupj,
*y = Oothermse.

The ML estimates are of course

g >n
1Ty

wherc the summation is over units in the jth dose group (ie. T2, y; if the double subscnpt
notation of Section 2.1 is used). The deviance for this model is important since it provides a test
of the assumption of Poisson variation. In this example the value of the deviance is 11.29 and is
compared with the chi-square distribution with 16 df, indicating that the assumption of Poisson
variation should not be rejected. Another measure of residual variation that can be used for this -

" purpose is Fxsher’s index of' dispersion
E]—l p 7 (Vﬂc - y,) y, .

The value of this pooled : within dose group index of dispersion is 9. 51 with
> (n,—l) = 16 df. Both of these lack of fit statistics can be viewed as a sum of squares
. of standardxzed residuals within experimental units.

If the Poisson assumption is not rejected then test statistics obtamed from the Paisson
ANOVA table can be compared with the appropriate chi-square distribution. For example, in
Table 2¢ this would lead us to reject the first two models. The Poisson ANOVA in Table 2¢ has
been given for illustrative purposes, and might be appropriate in situations of an exploratory
nature where little was known about the dosc-response relation. A more appropriate Poisson
ANOVA table from a biologic point of view is given in Table 2d. This tablc indicates that the
linear-quadratic model Md) = B8,d + B,d> provides a better representation of these data
than the linear model since the likelihood ratio statistic for Hy:fy = 0 is 66.6 with 1 df. This
of course agrees with the "lack-of-fit" test on line 1 of Table 2d. The "lack-of-fit" test on line 4 (
which is not significant) implies that the linear-quadric regression function not only provides a




significant improvement over the linear function, but that it cannot be rejected as a reasonable
model for these data (see Table A.2 in the Appendix). Note that this is a true test for lack of fit
of the regression function in the sense discussed by Draper and Smith (1966, Chap. 2).

The ML estimates of the parameters and their estimated standard deviations (in pafenthesis) ‘
are B; = 3.59 (1.68) and B2 = 6.22 (0.67). In summary, the IR-192 dose response
data are best represented by the L-Q model, and the Poisson distribution provides an acceptable

model for the variation in the dicentric counts.

Table 2 Poisson Regression Example

a) In-Vitro Dose-Response Data for Human
Lymphocytes Exposed to 192 Ir Gamma Radiation

Dose Dicentric Chromosomes Total
(Grays) Per 50 Cells Scores n; Dicentrics Cells Scored
5 o 1 0 2 1 3 2 17 9 350
1.0 5 6 5 4 8 5 28 250
20 16 17 18 3 51 150
5

4.0 49 59 54 56 63 281 250

Notes: 1) See DeF;ain et al (1980) for further discussions.
2)E (.ij) = MXp,8) = Cik 8 djk

3) ML Estimate” = Z; Zx yu | Ty D en dp

" b) Residuals for Simple Linear Regression for Dicentric Data in Table 2.1a

Dosc ' Standardized Residual-
d . up - (Vi - Y/ (yp)®

" 0.5 23 -19 23 -14 -19 -0 -15
1.0 17 -l4 -17 20 -08

2.0 12 09 -0.7 ~

4.0 10 25 1.7 20 31
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c) Poisson ANOVA For Data in Table 2.1(a) All Possible Models

Number of Unexplained
) -M_odel . Parameters Variation+ . df

comst 1 5142 19
d , 1 79.26 19
d* 1 18.05 19 -
const+d 2 2313 18
const +d? 2 " 14.58 18
" d + d? 2 1267 18
_const+d+d? 3 11.34 17
Dose Groups 4 11.29 16
Complete - 20 0.0 0

d) Poisson ANOVA For Models of Cytogenetic Interest

Likelihood Ratio

B Number of Unexplained ~ Statistic For
Model Parameters  Variation+  df Lack-of-Fit df
d | 79.26 19 :
: _ : 66.59 1
*d+d? 2 12.67 18 .
1.38 2
Within Dose Groups 4 - 11.29 16
Complete - 20

Md) = 3.6d + 6242 -
+ The deviance D{ 8 ) is used as a measure of unexplained (i.c. residual) variation (see
Appendix) ' ~ .

Example -2: Caesium Dose-Response Curves. . The data in Table 3 (Purrott and Reeder,
1976) were obtained from an experiment (using gamma radiation from a caesium-137 source)
that was designed to investigate the effect of dose rate on dicentric yield. The observed rate
( # = y/c) of dicentric induction (per 100 cells scored) is shown graphically in Figure 2 for
each of the nine exposure rate groups. According to theoretical predictions from microdosimetry,
a quadratic dose-response relation is predicted for low LET radiation, i.c. dicentric frequency is
equal to ad + Pd* where d is radiation dose. From a biological point of view the two
cocfficients are thought of as corresponding to two different physical cvents. The linear term
describes the induction of dicentrics by a single jonization or track, and the dose squared term
which describes the induction of dicentrics by two different ionizations or tracks. Thus, the two
break asymmetic exchange (dicentric) frequency is belicved to be the result of these two
phenomena, and is described by a second degree polynomial in dose. The validity of the quadratic
model is predicated on the assumption that the absorbed dose is delivered to a “critical site” in a
short period of time, i.c. at a high dose rate.

The purpose of the study by Purrott and Reeder was to test the hypothesis that the effect of
decreasing the dosc-rate would be to decrease the contribution of the dose-squared term, without



1

DICENTRIC CA YIELDS FOR CONTINUOUS EXPOSURE EXPERIMENT

" 150
’ z
140
-]
130
1 . ‘
120
uov
¢ 100
A
S 90 g
P
E 80 x
R
1 70
0
0
60
C
E
L s +
S 4
40 *
]
°
‘30 g
20
+
{0
o v
R N ARAARRSARS aa s st s A e s e n ey RAAMEESLAS RARARARALEY
1.0 i.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
) . DOSE {BRAYS}
LEGEND: DR + 4+ + 0.1 - %xxx0.25 ooog 0.5
o oo 1 A AA S # R 2
e e e 2.5 * %k * 3 zZZzZ 4

Figure 2. CYTOGENETIC DOSE RESPONSE DATA.
(See Section 2.2 and Table 3)



12

changing the linear term. Model 4 (see Table 4) corresponds to the most general case in which
both the linear and quadratic coefficients are allowed to vary with dose rate, i.e.
Ap = oydp + ﬂjd,f, where j identifies the dose rate group. For cach of the models in
Table 4 the regression function A(X,8) is linear in the parameters, and the procedure described in
. the Appendix was used to obtain the Poisson ANOVA. A test statistic for the hypothesis - -
By = B = =--- = B,  is obtained using the difference of the deviance
Dlys"(2)] — Dly.s’(3)] = 206.48. This test statistic has an asymptotic chi-squared dis-
‘tribution with 8 df, if the more restrictive hypothesis is true. Consequently, we reject the hypoth- -
esis that the coefficient of the quadratic term is independent of dose rate. An alternative
approach is to test for "lack of fit" of model 3. The deviance for this model is 21.52 with 17 df
indicating that model 3 cannot be rejected. ~ o SR .

It the ML estimates of the quadratic coefficients obtained from model 3 are plotted against
the log of the dose rate it appears that the ﬁ} increase linearly with log dosc rate, and this can be
described by the following regression model ' ' _ )

. Ajk = adk + [(01 + 92 : logm(rj)]d}.- i (2‘2)
_The ith row of the model matrix for this ad hoc model is X; = (d;,d?dflogipr)). The ML
estimates and estimated standard errors for this model are given in Table 5. The value of the
deviance for the model is 29.95 with 24 df, indicating that this ad hoc model cannot be rejected
_ for these data. This model provides a good description of effect of dose rate on dicentric yield,
i.c., the quadratic component increase with the log of dose rate, and the linear component is inde-
pendent of dose rate. ' o ' ‘ : o

The results of this initial analysis (using linear regression functions to describe the effect of
dose and dose-rate on dicentric yicld) represents a straightforward extension of results from the
standard linear model to Poisson distributed data. Although this analysis is technically correct we
decided to reject this approach as being both inappropriate and misleading on biologic grounds
(sce Frome and DuFrain, 1983). A more appropriate analysis that utilizes a nonlinear model that
was derived from the theory of dual radiation action (Kellerer and Rossi, 1972) is given in Sec-
tion 2.3 of this-paper.

Table 3. Cytogenctic Dose-Response Curve
Data for Continuous Exposure Experiment

' Dose (Grays)
o 1.0 2.5 50
Dose Rate :

G/br € y c y c y
1 478 25 328 52 210 100
25 1907 102 185 51 138 113
.5 2258 149 342 100 160 144
1.0 2329 160 310 100 1.20 106
15 1238 75 278 107 90 111
20 1491 100 259 107 1.00 132
2.5 1518 99 249 102 3.13 419
3.0 764 50 298 110 182 225
40 1367 100 243 107 144 206

NOTE: y = number of dicentrics, ¢ = cells scored (100s)

Source: Purrott and Reeder (1976)
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Table 4. Poisson ANOVA for Cytogenetic Data in Table 3

Regression Model ~ Number of Deviance* df
Parameters :

1 a4 1 107530 26
2 ad+Bd} 2 22800 25
3 od+Bd? '- 10 s 17
4 od+Bd? 0 18 1o 9
5 Complete 27 0.0 0.

* See Footnote to Table 1d

Table 5. Maximum Likelihood Estimates for Ad Hoc Model
for Dose-Response Curve Data in Table 3

Parameter ~  Estimate - Standard Deviation
« 2.86 . 305
0, 3.80 141
8, 2.26 144
2 2.2 Log-Linear Regre.s'sion

Incidence or mortality data obtained from epidemiologic follow-up studies are oftcn expressed
as covariate stratum-specific rates, where the covariate may be age or some other presumed con-
founding factor. Poisson regression provides a general approach to the study of the effect of one
or more covariates on disease rates — see Frome (1983), Frome and Checkoway {1984). the
attractive features of the Poisson regression approach are that summary estimates of relative risk
can be obtained, an evaluation of the prescnce and nature of interaction is part of the analysis,
and the modeling of discase rates is facilitated. Poisson regression methods are especially appro-
priate in follow-up studies wherc time-based denominators (person-years) are used to obtain dis-
ease rates in a life table type of format (Frome, 1983), or when the outcome of interest is rare so
that the Poisson approximation to the binomial distribution can be used (Gart, 1978).

Example 3: Lung Cancer Mortality The data in Table 6 were obtained by Kahn (1966) in
a study of lung cancer mortality in relation to cigarette smoking. The dependent variable y,, is
the number of lung cancer deaths for the jth level of the potential confounding variable (age) and
the kth level of the "risk factor”, cigarctte consumption. The ¢y are the person-years (pys) at
risk (in units of 10° pys) and consequently the 7 arc lung cancer death rates per 10° pys. The
¥ are assumed to follow the Poisson distribution with expectation py = cji Ap, where Ay
denotes the underlying regression function. If the covariate stratum-specific RRs are constant
within each risk group, then Ay = \; ¢; where:
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A; denotes the rate for the jth stratum level, and

&1 is the summary risk ratio for risk group k (k>1) and ¢,=1.
This is referred to as the product model, and for estimation purposes it can be expresed as a GLF
(whcrc_] 1,...J and k=1,.K)

| M = explay + &) = exp(Xif). @
where a; = log\; (j=1,..,J) and & =log(dxX(k=2,...K) .

We have assumed that risk group 1 is the reference, or non-exposed group Oonsequcntly, the
ay correspond to the natural logarithms of the stratum specific rates in the reference group, while
the 3, are the logarithms of the summary RR for group k (with group 1 as the reference group).
In (2.3) X; is a p = J+K—1 dimensional row vector of indicator variables for the ith ccll in
the table, and 8 = (ay,....,0s,82,...,0x) is the p-dimensional column vector of unknown parame-
ters. If the ith cell of the table corresponds to row j and colurmin k, then the components of
X;, (i=1,...,JK) can be defined as follows: ‘

Xpow = VL if m=jixi = 1 if k>1 amd m = J+k—1;
for m=1,..,,J+K—1, and Xp = 0 otherwise.

When ¢ > 0 for all j and k, this situation is equivalent to a full rank parametenzatmn
of the design matrix for a two factor fixed effects ANOVA model. - In practice it is not necessary
to generate this matrix because its structure is implied by the levels of the factors. The ML esti-
mates of the parameters for the product model (2.3) for the data in Table 6 are given in Table 7.
The deviance is 12.5 with 10 df indicating that the product model provides a good description of
these data. The ML estimates of the A;s and ¢;s are given in the last row and column of Table

6b, respectively. —— o
If the risk factor (smoking) is not important, ie. & = O(fork=2,..K), then '
Az = A and the ML estimates are A} = 3; yu/Zy cx- The deviance for this model
(sce line 3 Table 8) is 1037 with 25 df, and the likelihood ratio statistic (obtained by subtracting
line 4 from lide 3 in Table 8) for the hypothesis 8; = .. = & = 0 is 1024.5 with § df
indicating that the risk ratios are highly significant. Frome and Checkoway (1984) have shown

that when the product model provides a good fit (as it does in this example) the ¢ can be inter-

preted as estimates of standardized risk ratios (SRR). The SRR for risk group k (with k=1 for
the reference group) is defined by Miettien (1974) as follows:

SRRy = (Z; w; ¥pIZ; wy M)
where the w; are standard population wexghts If the product model provides a good f'xt (as indi-
cating by the deviance), the 7j; in the above definition can be replaced by their ML stxmates
Aﬂ‘ = Aj ¢ktoobtam .
The ¢y are dstimatcs_ of the SRRs with the non-exposed group as the referent grbup, and the
choice of the standard population weights is unimportant.



Table 6. Lung Cancer Mortality According to Cigarette Consumption and Age

' a) Number of Deaths and Person-Years (pys)

Current Cigarette Smokers (cigarettes/day)

15

. . Age' . .
Group Smokers Occasional 19 1020 21-39 40+
35-44  deaths 0 0 0 2 4 0

pys 35164 3657 8063 59965 40643 3992
45-54  deaths ] 0 0 2 10 2

pys 15134 1283 3129 16392 12839 1928
55-64 deaths 25 6 31 183 245 63 .

pys 213858 14624 45217 151664 103020 19649
65-74  deaths 49 10 44 239 194 50

pys 171211 10053 37130 101731 50045 8937
. 85-  deaths 4 1 5 15 7 3

pys 8489 512 1923 3867 1273 232

Source: Kahn (1966)
b) Lung Cancer Deaths Rates (per 10° pys)
Agc Group Cigarettes/day :
(midpoint) 0 5 5 15 30 45 Age Fit

40 o 0 0 3 10 0 0.4

50 0 o o0 12 78 104 3.2 -

60 12 4 69 121 .238 321 140

70 29 99 118 235 388 559 255

80 47 195 260 389 S50 1293 439

Smoking Effcct 10 35 48 89 162 226

*Age fit = exp(a;) and smoking effect = exp(&,"),Awherc the bz; and &; are the ML estimates
.given in Table 7. The cstimated lung cancer death rates per 100,000 man-ycars in Row j and
Column k are : :

A = Age Fit * Smoking Effect = explaj + &%)
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Table 7. ML Estimates of The Parameters for The Product
Model (2.3) for the Lung Cancer Data in Table 6

j a; St. Dev. k 5 St. Dev.
1 08 .42 2 124 27
2 18 29 3 156 16
3 264 a2 4 218 12
4 324 12 s 2719 12
5 318 . .20 6 312 . 15

Table 8. Poisson ANOVA Table for Lung Cancer Mortality Data in Table 6

o ‘ No. of o '

Model = Log (A) . - Parameters Deviance’f df.
1. Minimal e 1 14380 29
2. Smox'dng effect = atd 6 589.7 24
3. Age cfféct ‘ a; ‘ 5 | 1037.0 25
4. Age and smoking ;,+a,‘ 10 125 20
5. Complete 3 .0 0

* See footnote to Table 1d

2.3 Nonlinear Regression

ExampIeZ Caesium Dose-Response Curve {continued). The ad hoc mode (2.2) described in
the previous section can be used as an empirical description of the cytogentic dose response rela-
tion for the experimental data in Table 3. The parameters in the ad hoc model do not have a
clear interpretation in terms of the quantitative effects of ionizing radiation (see Frome and
DuFrain, 1983). The dual radiation action (DRA) theory described by Kellerer and Rossi (1972)
utilizes concepts from microdosimetry to provide a quantitative characterization of the effect of
" various temporal distributions of absorbed dose on the production of chromosome aberrations
(CAs). It is postulated that elementary lesions are produced at a rate that is proportional to the
square of the local energy concentration produced by charged particles in certain “critical sites”.
The form of the dose-effect model that is appropriate here (see Kellerer and Rossi, 1972, Section
54)is

Mdy) = dfyd+gt.)d?, (24)

where d denotes dose, ¢ is time, and A(d,t) is the yicld of clementary lesions. The parameter « is
a biophysical proportionality constant that reflects the target sensitivity for the biologic system

(lymphocyte). The parameter «y depends on the radiation quality and can be related to the spe-
cific energy produced in a critical site by a single jonization. The lincar term in (2.4) represents
the effect due to intratrack interactions and the quadratic term represents the effect of intertrack
interaction. The coefficient of the d? term is referred to as the "reduction factor®, and assuming
an exponential Tecovery process for continuous irradiation of duration ¢ one obtains (see Lea,

1955)



ger) = 2 = 2 (1—h) @s5)
Using (2.5) in (2.4) leads to |
MX.8) = '5{ vd; + 2,—" [t —+lt—exp—2rie] d}], B O

where d is the absorbed dose and t is the duration of exposure at a constant dosc rate.

_The ML estimates of the parameters in (2.6) for the data in Table 3 were obtained using the
IRLS procedure described in the Appendix. Since the DRA model is nonlinear in the parameters,
the partial derivatives of (2.6) with respect to the parameters must be supplied. The ML esti-
mates and their standard deviations are given in Table 9. The deviance for this model is 28.58
with 24 df (p = .236) indicating that the DRA model cannot be rejected. The standardized resi-
duals in Table 10a are used to identify outlying observations, and in this example there is one
large negative residual: The diagonal terms from the H matrix (sce the Appendix) are given in
Table 10b. There are several large h values (greater than 2p/n==0.22) in columa 3, and two of
these are in the first two rows, i.c. the highest dose and the lowest exposure rates. The diagnostic
quantities in Table 10 are shown graphically in Figure 3. Note that we have used scaled & values

-in this (h* =ph/n) diagnostic plot so that two can be used as a cutpoint for large A* values.

Table 9. ML Estimates for the DRA Model for the Cytogenetic Data in Table 3 -

Parameter - Estimate Standard Deviation |
x 5.44 _ | _ _ 208
o ' 269 - 0671

T 7.40 l 857

Table 10. Regression Diagnostics for Data
in Table 3 Using the Noalinear DRA Model (2.6)

(a) Standardized Residuals #; = (y;—pi)/m®

0.127 -0.929 135
123 0.315 1.19
0.291 0.627 -1.05
0.383 -0.563 -2.92
0927 0914 -0.140
0111 1.48 0.247
-0.423 1.26 0.315
-0.293 0.144 -1.17

0.670 1.88 0.732



STANDARDIZED RESIDUALS VS SCALED
u _ ‘ .

18

H VALUES

2.0 -
1.5 * \\ . | ° |
* AN .
\“\
i 0-:1 ‘\\
B B
b LY
o + ° \
T '
0.5 4
3 % ++ ‘l.
C < H
0.0 i
° + i
4 + ;
E + [
1 * b
] ;o
'l .
] + * J
—1-0 » .S /'
. p + < /’
s Vs
o y
—lc 5 ": /‘l'
-200 ‘E —
: °
S04 N e S .
1] 1 2 3 -4

~ SCALED H VALUE

DOSE(GRAYS) 1.0 + 2.5

Figure 3. DIAGNOSTIC PLOT FOR DRA MODEL FOR CYTOGENETIC.

(See Section 2.3 and Table 10)



(b) Diagonal terms from the H matrix (p/n=0.111)

0.056 0.164 0.406
0.143 0.038 0.239
0.155 0.036 0.157
0.161 0.035 0.080
0086  0.037 0062
0.105 0.038 - 0.075
0.107 0.039 0251
0.054 0.049 0154

0097 0.043 0.132

Note: Rows are dose rate and columns are dose groups (see Table 3)

Example 3: Lung Cancer Mortality (continued).

The product model (2.2) was used to obtain a convenient description of the association
between lung cancer death rates and cigarette smoking. When the product model is adequate (i.c.
the deviance is not large when compared to the appropriate chi-square distribution) than the
*age-adjusted smoking effects” are equivalent to standardized risk ratios (with non-smokers as the
referrent group). In some situations an additive model Ay = A, + ¢ (¢ = 0) may
bé more appropriate. Note that the N by p “model matrix” X with rows X; is identical to that
for the product model and Poisson regression can be used to fit cither of these GLFs. Both the
product model and the additive model can be viewed as special cases of the GLF defined by equa-
tion-(2.1). GLFs play an important role especially in exploratory statistical data analysis. In-
some situations, however, models have been proposed that cannot be conveniently expressed as a
GLF. One such nonlinear function that has been proposed (sec Whitemore and Keller, 1978) to
describe the effect of dose rate (cigarettes/day) on age-specific lung cancer death rates is-

MNed) = (v + od) of , : Q@7n

where ¢ is duration of smoking and d is exposure rate. Frome (1983) has provided a detailed dis~
cussion of this model which is intrinsically nonlinear in the parameters.

, For the lung cancer data in Table 6 we define f; = (age—20)/42.5 where age is the mid-
point of the jth age interval, and d; is the midpoint of the kth cxposurc (and we usc dg=45 for
the last exposure group). The parameter v represents the Jung cancer death rate (per 10° man-
years) in non-smokers (d=0) at age = 62.5 ¢t=1), and 4t# corresponds to the age specific death
‘rate in non-smokers at age 2. A plot of the age specific death rates on a log-log scale will result
* in a straight line with a slope of 8 and intercept 7. _

Equation (2.7) is a Weibull hazard function with one paramcter 8 independent of 4 and ¢
and the other parameter a function of dose rate: ¥ + ad’. Doll (1971) suggested that the
hazard rate is approximately proportional to d and to the fourth power of duration of smoking
(ie. 8=1and 8 = 4 ). Note that if § * 1, then the exposurc-cffect relation will be con-
cave (9<1) or convex §>>1) toward the exposure axis. For estimation purposcs we use

MX;.8) = [cxp(ﬁz + B3 xn) + GXP(&)] exp(B1x11),

where X; = (logt;Jogd;) and 8 = (B, logaf, logyy . The IRLS procedure {sce Appen-
dix) is used to obtaine ML estimates for Kahn’s data (in Table 6) and the results are summarized
in Table 11. In another study (of cigarette smoking in British physicians) Doll and Hill obtained
data similar to Xahn’s data in Table 6 — sce Frome (1983, Table 1). The ML estimates for both
of these data sets are given Table 11. The deviance for Doll and Hill’s data in 59.6 with 59 df

(2.8)
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indicating a good fit, while the deviance for Kahn's data, 43.5 with 26 df suggests a considerably
poor fit. Of particular concern with the data from Kahn is the estimate of § which is less than
one, indicating a concave dose-effect rclatxon .

Table 11. Maxiinnm Likelihood Estimates for Parameters Specified by a
- Nonlinear Model* for Lung Cancer and Cigarette Smoking Data

| Data source
. Parameter - Kahn ' Doll and Hill
g ©3.38(0.18)% 4.46(0.33)
log a 2.62(0.21) ' 1.82(0.66)
0 0.83(0.06) 1.29(0.20)
log v 2.61(0.13) 2.94(0.58)
Deviance a5 | 596
df. 26 59

* Death rate = Ay, = (y+adf)tf, ,
- where t = (age -20)/42.5, d = cigarettes per day

. Data from Kahn (14) and Doll and Hill (15,16)

i Standard deviation in parentheses

3. BINOMIAL REGRESSION

In this section two cxamples will be presented to illustrate various aspects of binomial regres-
sion analysis. Example 4 provides an example of a linear regression function with replication at
* each set of experimental conditions. In this example the ANOVA-like table for binomial data
will be used to test for "lack-of-fit" of the regression function and the assumption binomial varia-
tion. Example 5 will be used to illustrate the use of nonlinear functions (probit, logistic, and

Weibull), and regression diagnestics for binomial data.

3.1 Linear Regression with Parallel Counts

Example 4: Streptonigrin Dose-Response Curve The data in Table 12 were obtained by
DuFrain et al (1982) as part of a study that was undertaken to investigate the potential toxicity
of a chemical clastogcn (streptonigrin) on somatic cells and germ cells from female rabbits. The
dependent variable yj; is the number of damaged cells (lymphoblasts) for the jzk animal exposed
to streptonigrin dose d;,. One hundred cells were examined for cach animal and we let
¢ = 1 (i.c. unit = 100 cells) for cach obscrvational unit, so that y is in per cent. The data
are shown graphically in Figure 4. We assume that the y;s are independent and follow the bino-

mial distribution with expectation pp = cu A(X;,8) where

MXB) = By + Bd; - _ Gy

This is a special case of the GLF )
MXi8) = Xi = Z; Bixys (3.2)
with x;; = 1 and x;; = d; if the animal is in dosc group j. Equation (3.1) is a lLinear

regression function with intercept §; and slope B, and is used to describe these data for
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d < 100 pg/kg. The ML estimates are obtained using IRLS (see the Appendix) and are
B = 2.67 percent and §; = 0.478 per cent per ug/kg, and their estimated standard devia-
tions are 0.58 and 0.0189, respectively. The goodness-of-fit of this binomial regression model can
be evaluated using the binomial ANOVA for thesc data (sec Table 13a). Following the proce- '
dure described in the Appendix (sec Table A.2) we first observe that deviance for the linear
regression function (see Table 13a line 2) is 28.67 with 21 df (p = .12). This implics that neither
the linear regression nor the assumption of binomial variation should be rejected. The assumption
of binomial variation is further confirmed by the "within dose groups® deviance valuc of 22.64

with 18 df. The likelihood ratio statistic for "Tack-of-fit" of the regression function is 6.03 with 3

df (p = .11) which again indicates that the linear regression function provides a reasonable model
for these data. A test of the hypothesis A2 = 0 can be based on the likelihood ratio statistic

obtained as D(fg) — D(By + id) = 336.6 with 1 df (p < 1074).

) Téble 12. Streptonigrin Dose-Response Data®

Doseof - Number Number of Lymphoblasts With
Streptonigrin @~ of Aberrations For Each Rabbit }
(rg/kg) Rabbits

4 n ' ik

0 6 5 2 1 1 2 4
30 5 20 16 26 18 16 .
60 6 27 32 32 33 30 33
75 3 41 23 36

90 3 43 46 56

* Data obtained from R. J. DuFrain, Medical and Health Science
- Division, Oak Ridge Associated Universities (see DuFrain et al,
1982, Table 1) ’

# 100 Lymphoblasts were scored for cach animal

For illustrative purpose consider the "linear logistic” regression function, iec.

, ‘ C Md) = exp(8, + Bd)I1 + exp(B + Bd)] G3.3)
"This can be viewed as a special case of the GLF ' |
- MXLB) = exp(X;8)11 + exp(Xif)), : - GY

where X; = (1,d;). The binomial ANOVA using logistic GLF for the streptonigrin data is
given in Table 13b. The values of the deviance on lines 1 and 3 are, of course, the same in both
tables. The deviance for the linear logistic function (3.3) is 56.46 with 21 df (p<107%) indicating
"ack-of-fit" of the binomial regression model. This could be due to heterogeneity of variance (i.c.
overdispersion relative to the assumed binomial distribution within dosc groups) or "lack-of-fit” of
the regression function (3.3). As we noted carlier the assumption of binomial variation cannot be
rejected. Consequently we can further assess the lack of fit of (3.3) by comparing the likelihood
ratio statistic D; — D, = 33.82 with the chi square distribution with 3 df. Clearly this
provides strong evidence against the linear logistic dose-response function for these data.
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In summary, the streptonigrin dose-response data provides a simple example of bmomxal
regression. A binomial regression model is based on two assumptions: :

- i) the yp are independent and follow the binomial distribution with cxpected. value
ex = cpMX;.B8) -
ii) the regression function is specified. .

If repeated observations are obtained at each set of experimental conditions then the appropriate-
ness of the assumption of binomial variation can be tested. In this example we could have based
our analysis on the totals at cach dose — see Table 14. The values of deviance in Table 14b differ
from those in Table 13a by a constant amount, and in studies that involve a large number of
‘experimental conditions this result can be used to simplify the analysis. In situations where
heterogenity of variance is detected a detailed analysis (using standardized residuals within dose
groups) should be cansidered. This could lead to the identification: of spurious data values or the
“identifjcation of additional factors that influence the dependent variable. When unexplained over-
dispersion occurs the analysis can be modified by introducing a heterogeneity factor (see the

Appendm) o
~ Table 13. Binomial ANOVA for Streptonigrin Data in Table 12

a) Linear Regression
‘Regression | ‘ Likelihood Ratio
Function } df  Deviance Statistic df
8, . 2 3653
2. B+Bd 21 28.67
| - | 6.03 3
3. Dose Groups 18 22.64
' 22.64 18
4. Complete 0 0.0
b) Linear Logistic Regression
Regression , Likelihood Ratio
. Function df Deviance Statistic df
1. 6 22 365.3
2. p+pAd 21 56.46
| 3382 3
3. Dose Groups 18 22.64
' 22.64 18

4. Complete 0 0.0

* The deviance D(8") is used as a measure of residual
(unexplained) variation (see Appendix eq. A.15).

1 See explanation in text
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Table 14. Streptonigrin Dose-Response Data

a) Totals from Table 12

Dose Number = Number with. 371
-of Cells  Aberrations  (per cent) - A(d)*

d; < Vi '

o 60 15 25 27
30 500 96 192 ° 170
6 - 600 187 312 31.3
75 300 100 333 - 385
90 300 145 483 45.7

*\*(d) = 2.67 + 0478d

b) Binomial ANOVA For Totals in Table 14a

Regression : Likelihood Ratio
Function df Deviance Statistic df
B 5 3426
336.6 1
B +pAd 4 603
' 6.03 3
complete 0 0.0

3.2 Nonliﬁear Regression Functions

Example 5: Chronic Bioassay of 2-AAF The data in Table 15 are from a study at the .
National Center for Toxicological Research that was undertaken to investigate the effect of a
chemical compound 2-Acetylaminofluorene (2-AAF) on carcinogenesis (see Farmer, et al, 1979).
Mice were continuously fed 2-AAF ad libitum in the diet at various concentrations from weanl-
ings until they were cither sacrificed, became moribund or died. Let y; denote the number of
mice with liver neoplasms, and ¢y the number of animals at risk in the kzh dose (exposure rate)
group and the jth time interval group. Then yj; is the proportion of mice with liver ncoplasm
and the regression function A(X;,8) will represent the probability of observing a liver neoplasm in
the ith group (where i=8(j—1)+k). For illustrative purposes we will begin our analysis using
a linear-logistic regression function (3.4), and the factors DG ("dose" group with 8 levels) and TI
(time interval with 9 levels) will be used to define the covariate vector X; (sec Example 3). This
example will also illustratc how the computer program GLIM (Baker and Nelder, 1978) can be
used to carry out the necessary data manipulations and computations. Figure 5 shows a listing of
a GLIM-3 program that was used to (i) define the levels of the factors TI and DG; (ii) define the
covariate vectors D,T, XD, and XT (that will be discussed later); and (iii) read the y; and ci
into the vectors Y and N, respectively. In GLIM terminology the assumptions of binomial varia-
tion and a logistic regression function (3.4) are specified as follows:

SERR B N SLINK G.
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The values of deviance in the binomial-ANOVA table (see Table 16) were obtained using the FIT |
directive

$FIT : DG : TI : TI + DG.

The diagonal terms from the H matrix (A.16) are obtamed for the lmcar lOngtlc functxon as fol-
lows:

SEXTR %VL $CA H=%VL * %FV * (N—%FV)/N.

The signed deviance residuals (see Appendix) are computed using the macro DVR (see Figure 5),
and Figure 6 is a diagnostic plot of these standardized residuals and the scaled 4; for the linear
logistic model TI + DG. The binomial ANOVA in Table 16 shows that most of the variation
(96%) in these data can be explained by the linear logistic function (thh “TI and DG as factors),
but the biologic interpretation of this model is not apparent.

Ariother approach that can be used to describe the data in Table 15 is to use (in GLIM ter-
minology) a "probit link function®. That is, we assume that A(X,8) = &(X;8), where & is the
standard pormal integral. The ANOVA table for the probit model is shown in table 17.
- Comparing the deviance values for the two factor models (TI + DG) suggests that the logit link
provides a better representation that the probit link. We have not, however, used the values of the
dose and time variables associated with the levels of the factors. Consider for example the regres-

- sion function . o _
A = 5 + Blog(z)] ' _ (3.5)
where ¢; = time on study (in years). This corresponds to a log-normal response time distribution-
for each dose group, with constant standard deviation (8~!) and mean pu; = —&/8 . The

deviance for (3.5) is 133.1 with 63 df (see DG + XT in Table 17). Farmer et al (1979) used the
probit model in their analysis of these data and went further by assuming that

- A = ®[a-t+blogd, +plogt;] . : (3.6)

They limited their analysis using (3.6) to the last three time points (18, 24, and 33 months) and
climinated the control (d,=0) group. Farmer et al (1979) concluded from their limited analysis

. that (3.6) provided a "good fit" but indicated that the meaning of the slopes in (3.6) was not clear.

Clearly, the-model (3.6) cannot be considered as a reasonable representation of these data since it
implies a zero response probability for unexposed animals and 45 of the mice in the zero dose
group developed liver neoplasms. It would, of course, be possible to define other covariates for the
probit (or the logit) function.

Another approach is to note that in both situations we have selected a cumulative distribution

function (CDF) for the function G ( ), which insures that 0 < MX;,8) < 1. Another dis-
tribution function that has some appeal in this situation is the Weibull distribution, i.e.

Ap =1 — exp[-- &2 1. 3.7

Tlus model mehes that "time to tumor” follows a Weibull distribution w1th scale parameter &
and shape parameter 8 that is independent of dose. The tumor incidence rate for each dose group
is B8;25~1 , i.e. the exposure to 2-AAP (at constant rate) has a multiplicative effect on the tumor

incidence rate. This relation is predicted, for example, by the multistage theory of carcinogenesis
(see Whittemore and Xeller, 1978). For estimation purposes the Weibull regression function
(3.7) can be written as

M =1 — cxp[—e"‘+M")] . 3.83)
or more generally as

MXB8) =1 — cxp[—ex" ] : (3.9)
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Table 15. Liver Neoplasms in> Dead, Moribund and
Sacrificed Mice Fed 2-AFF Continuously

Months . _ DOSE

on - _ : - (ppm) : -

Study 0 30 35 45 6 15 100 150
9 0'/199* . 1141 176  0fs2  0/345 - 0/i86 .  1/168 1/169
12 0/164 1/51 2/27 1/14 _2/283 0/153 3149 2152
14 1/133 1/42 0/25 2/14 /243 o/124 1/127 1127
15 . o/us 1/75 1/35 0/20 3/203 . /109 . 5/99 1/100
16 1205 2/66 . 2/61 3/304 6/287 7/193 2/100  7/ii0 -
17 0/153 4/69 5/443 6/302 8/230 . 9/166 3/85 1/82
18 . 6/555 34/2014 20/1102 15/550 13/411 17/382 19/213 24/211

@ ~ 20/762 164/2100  128/1361 98/888 118/758 18/587  76/297 126/314
3 17/100 135/445 72/200 42/103 . 30/67 37/7s 2/31 9/11

! Number of Bladder Neoplasms
2 Number of mice examined in this group
Source: Farmer et al (1979)

Table 16. Binomial ANOVA for 2-AAF D.ata in Table 15
Using a Linear-Logistic Regression Function

Linear Terms Unexplained Variation* - df
minimal 2203.6 il
T 595.1 63

‘DG 1965.6 64

TI+DG 85.7 . 56

Table 17. Bihomial ANOVA FOR 2-AAF Data in Table 15
Using a Linear-Probit Regression function

Linear Terms Unexplained Variation df
minimal 22036 71
I 595.1 63

DG 1965.6 64
DG+XT 133.1 63

TI+DG o 1091 56
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$SUBFILE DATA ! 10 FEB 83
~ $M TITLE PBEX5: J.ENV.P&T(1979,P. 57) ED-01 STUDY$E
$M VLIST 1 LIST OF VARIABLES

Y= NUMBER OF LIVER NEOPLASMS 1

N- NUMBER OF MICE!

D= DOSE OF 2-AAF (PPM) CONTINUOUS E FEEDING 1

T- MONTHS ON STUDY ¢ - - . |

XD= LOG( D ) I | -

- XT= LOG( T/12 ) — LOG TIME IN YEARS! |

TI= TIME INTERVAL FACTOR ( ROWS OF TABLE )!

DG= DOSE GROUP FACTOR ( COLUMNS OF TABLE )$E
$UNITS 72 $FAC TI 9 DG 8 ! |
$CA TI=%GL(9,8) : DG=%GL(8,1) : %R=9 I
$DATA 8 DOSE $READ 0.0 30 35 45 60 75 100 150
$CA D=DOSE(DG) : XD=%LOG(D) t I
$DATA 9 TIME $READ 9 12 14 15 16 17 18 24 33
$CA T=TIME(TI) : XT-%LOG(T/12) !
$DATA Y $READ |

0 1100011
012120
1021011

10
23
56
3% 20 15 13 17 19 24
20 “164 128 98 118 118 76 126
17135 72423037229
$DATA N $READ |
199 - 147 76 52 345 186 168 169 - -
164 51 27 14 283 153 149 152 |
133 42 25 14 243 124 127 127
115 75 35 20 203 109 99 100
205 66.61 304 287 193 100 110
153 69 443 302 230 166 85 82
555 2014 1102 550 411 382 213 211
762 2109 1361 888 758 587 297 314
100 445 200 103 67 75 31 11 |
!~ NOTE N(33,35) CHANGED TO 200
! ~ N(12,30) CHANGED TO 51
$PR TITLE :: VLIST $ERR B N $YVAR Y $DISP M I -
$M DVR $CA DV= —2%( Y®ILOG(ZFV/Y) +1
(N-Y)#3LOG( (N-3FV)/(N-Y) ) ) |
$CA DV=%SQRT(DV) :DV=3IF( %LT(Y,%FV),-DV,DV)$E
$RETURN

N
N
W
n

2N -
[e e No N UY]
O =] -2
wnwom
b ] b

1
0
1
0
6

Figure 5. GLIM-3 PROGRAM FOR 2-AAF DOSE-~TIME-RESPONSE DATA.
(See Section 3.2 and Table 15)
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(See Section 2.3 and Figure 5) '
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In GLIM terminology (3.9) can be used by specifying a complementary log-log link function, i.c.
SLINK C. The ML estimates of the parameters for the Weibull model (3.8) are given in Table
18. The results of fitting various Weibull regression functions using GLIM are given in Table 19,
where for example (3.8) is written as XT + DG, where DG is the factor dose group and XT =
log (¢;) - see Figure 5. :

The deviance can be used as a measure of unexplained variation (similar to the residual sum
of squares for normal linear models) for binomial data (but see Efron, 1976 for other possibili-
ties). The primary purpose of Table 18 is to provide a summary measure for each model that is
‘considered. In some circumstance the deviance is asymptotically distributed as a chi-square, but
with small expected values this result is of limited value. As a rule of thumb, it is reasonable to
assume that a model provides a "good fit® if the deviance is about equal to its df. The difference
of the deviance for nested models provides a likelihood ratio statistic. For example in Table 18
the linear predictor on line 7 can be written as (in subscnpt notation).

a + Blogt; + 0,4, + 647 (3.10)

and line 6 corfespond to (3.10) with 8, = 0. The difference of the deviance for these two lines
129.1-98.1 = 31 with 1 df provides a test statistic for the Hyf; = 0. The difference of the
- deviance values on lines 7 and 8 (98.1 - 96.7 = 1.4 with 5 df) is a test statistic for the constraint

o = «a + Gldk + 02 dk,
and indicated that the oy can be represented by a second degree polynomial in dose.

In simmary, the 2-AAF dose-time-response data in Table 15 provides an example of a com-
plex situations in which binomial regression analysis can be used. The analyst is confronted with
the task of selecting a reasonable regression function A(X;,8) to describe the effect of the adminis-
tered compound (2-AAF) on a specific carcinogenic endpoint (liver neoplasms).  This example
clearly demonstrates that many different regression functions can be used to describe these data.
Even with the additional constraint that our objective is to produce a parsimonious models, we
still are unable to establish a "best” model on statistical grounds. This exploratory analysis does
however strongly suggest that the "linear-probit” regression function is not appropriate for these
data. Both the logistic and the Weibull CDF provide feasible GLFs for this example, and further
analysis should include an attempt to establish some biologic grounds for either of these "time to
tumor” distributions for this situation. Further, we should not lose site of the practical goals of
this study, i.e. to investigate the relationship between length and level of dosing on the develop-

ment of carcinoﬁenic endpoints, and how this would affect regulatory decisions.

Table 18. ML Estimate For the Weibull Model (3.8)
for the Data in Table 15

a) ay a;z ay as as a; ag B

Parameter ,
Estimate -6.75 -5.84 -565 -547 -5.18 -493 453 <401 4.78

St. Deyv. A7 A1 11 12 11 A1 A2 11 12
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Table 19. Binomial ANOVA for 2-AAF Data in Table 15 4
Using Linear-Weibull Regression Function -

Linear Term p  Unexplained Variation* df

!  minimal 1 2203.6 M
2 TI _ .9 E 595.1 - 63
3 DG 8 1965.6 64
4 TI+DG 6 86 56
5 XT 2 615.2 .70
6 XT+D 3 12_9.1 . 69
j 7 XT+D+D2 4 981 . 68
8§ XT -i_-DG 9 : 96.7 63
9 XT+D+D2TI 12 v 77.31 60
10 TI4+D+D2TI 19 . 68.67 53

* Deviance is used as a measure of unexplained variation
(sce Appendix). ' '

4. SUMMARY

In this paper we have shown how the LS principle can be used as a conceptual basis for fit-
ting regression functions to discrete data that follow the Poisson or binomial distribution. The
generalized LS estimates are obtained by solving a p dimensional system of equations (1.3) using
an IRLS procedures. When the weights in the IRLS procedure are based on the Poisson or bino-~
mial assumption, the IRLS algorithm will yield a root of the likelihood equations, i.c. the general-
ized LS estimates are also ML cstimates (see the Appendix). Consequently, Poisson regression
and binomial regression (i.e. ML estimation under the Poisson or binomial assumption) can be
viewed as part of the regression analysis paradigm. This considerably broadens the scope of
regression analysis as a "methodologic paradigm”, i.c. a scientific achievement which attracts
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adherents from other disciplines (see Dolby, 1982). The analyst is therefore challenged to appeal
to his general knowledge to develop "conjecture-based” models with data available for possible ref-
utation. For example, the test for "lack of fit" of a regression function provides a probabilistic
basis for evaluating the falsifiability of a proposed model. Dolby (1982) (in discussing the views
“of Karl Popper and ‘Thomas Kuhn on the methodology of science) emphasizes the importance of
"global conjectures”, that are the province of the researcher in a particular field, as a basis for
establishing specific (local) statistical hypothesis for attempted falsification. The alternative is the
*exploratory investigation” of a specific data set that leads to an analysis that is descriptive rather
than inferential. Finch (1979) points out that in some circumstances the extrapolation of a good
description of the data that we have is the best we can do. The role of exploratory analysis is one
of hypothesis generation, i.e. the preliminary investigation of data to uncover "good” descriptions
that are relevant to the context. Attempts to test the goodness of fit of a model that is obtained
in this way is misleading, and should only be used to provide guidance in an analysis. The five
examples presented in this paper were selected to illustrate how regression analysis can be used
for both types of data analysis, i.c. those based on global conjectures and exploratory techniques.
In both situations the application of statistics to the life sciences is bound to be most fruitful when
the analysis is based-on a collaborative effort. '

4 The general Poisson regression models include linear, log-linear, and intrinsically nonlinear
- regression functions. A numerical example from cytogenetic dosimetry was used to illustrate mul-
tiple linear regression for Poisson data. A more general dose-response model derived from the
theory of dual radiation action was (DRA) also considered. The DRA regression function is int-
rinsically nonlinear in the parameters. Another important area where Poisson regression models
are used is in the analysis of rates from observational studies. An example from an epidemiologic
follow up study with the data organized into a life-table type of format was presented, and prelim-
inary analysis was based on log-linear models. A nonlinear model, derived from the multistage
theory of carcinogenesis, was then used to analyze lung cancer death rates among mdmduals who

were regular cxgarette smokers. '

~ Binomial regression models are used for the analysxs of bmary (or quantal) response data, ic
for situations where the outcome is one of two possible values (c.g. success or failure). Two
numerical examples were presented that illustrate various aspects of binomial regression analysis.
In the first example a linear dose response curve was uscd to describe the effect of streptonigrin
on rabbit lymphoblasts. A linear regression function was used to describe the dose-response curve,
and procedures for testing the assumption of binomial variation and lack-of-fit of the regression
function were illustrated. In the sccond example mice were continuously fed a carcinogen
(2-Acetylaminofluorene) for an extended period of time. Groups of mice were examined at vari-
ous time points for cach of several exposure levels and the number of mice with liver neoplasms
was determined. These data were used to illustrate the application of several well-known regres-
sion functions (logistic and probit) to binomial data.

These examples of Poisson and binomial regression analysis are presented to illustrate situa-
tions in the biomedical sciences where discrete data that may follow cither the Poisson or binomial
distribution are encountered. The important problem in any specific situation is to determine an
-appropriate regression function that describes the effect of onc or more covariates on the response.
Historically, regression functions have been of the generalized lincar type, a choice that appears to
be based primarily or computational convenience. The computational requircments for the more
general regression models are sufﬁcicntly complex that, in most situations, a computer based anal-
ysis is required. High quality, inexpensive portable programs (such as GLIM-3) are now widely
available and can be used for all of the analyses described in this paper. The IRLS procedure
(described in the Appendix) can be casily coded in any of the higher level languages (e.g. FOR-
“TRAN, Pascal) that are widely available on micro (personal) computers. Consequently, computa-
tional complexities should no longer limit the usefulness of Poisson and binomial regression

models in routine data analysis.



~ APPENDIX

Equivalence of ML and IRLS for Poisson and Binomial Regression

The purpose of this Appendix is to show the equivalence of ML and IRLS for Poisson and
binomial data. Charnes, Frome, and Yu (1976) have demonstrated the equivalence of ML and
IRLS for situations where the dependent variable is from a member of the regular cxponential
family, and the regression function is in general nonlinear in the parameters. In the discussion
that follows we will limit our discussion to the Poisson and binomial distribution.

Poisson and Binomial Regression Models

* Let y1¥2...yn denote the observed values of a random sample of size N from a populatian
with density h(ysp) , where p; = #(X;,8) denotes the expected value of ¥;. For the Poisson
distribution . :

h(y;p) = e * ZPH!, y=0,1,...

and for the binomial di;tribuﬁon .
wos) = [Juey G-wer,  y = Olee.
, The expected valueof Y; is expressed as
’ w = w(X.B) = MX..B),

where ¢; is a2 known constant ("sample size") and A(X,0) is a known function, that we refer to as
the regression function. The regression function describes the relation between the covariate vec- -
tor X; = (XiisXim), 2and the unknown parameters B = (B1,-.-By).  Given the data
W X;, i=1,...,N} the problem is to obtain estimates of the parameters Bi,....5, - ‘

Maximm Likelihood Estimation
The logarithm of the likelihood function of 8 is
LB) = 3; log h(yim).
Since Y is a random variable with a densiy function of the regular exponential family
h(yn) = exp { yb(u) — q(w) + 2») }, (A1)
where E(Y) = p, and b( ) and g( ) are given in Table A-1 for the Poisson and binomial
distribution. Following the approach of Charnes, Frome, and Yu (1976) differentiation (with
respect to u ) on both sides of f h(y;p)dy = 1 yields :
E(Y) = q'u)fb'(p) = & o - )
where 5'(z) and g‘(z) denote derivatives with respect to . A second differentiation of the inte-
* gral, along with evaluation of the derivative of (A.2) results in

v(r) = b o (A3)
These results are summarized in Table A-1.
The kernel of the log-likelihood function can be written
L®) = Tbux — abxd] a4
The ML equations are |
aL/ap; = 3.b'1u(X.B8))ou(X,.8)/38;)
= 3 ¢ WGOIOHXBY6) = 0, j=l..p.
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By using (A.2) and (A.3) we obtain 7
aLfag; = 2l V(Yi) l[}’i—#(&,ﬂ)](an(&,ﬂ)/aﬁj)] (A.5)

J = lr P

The likelihood equations are nonlinear with respect to the unknown parameters- and an iterative =

'procedure can be used to obtain a root of (A.5). A convenient computational approach to this
problem is obtamed by using IRLS (see below)

~Iteratzve Rewezghted Least Squares

-Lety = y,/c, and w; denote a positive wexght that is proportlonal to the recxprocal of the
variance of 7. For the binomial distribution ¢, is the sample size and ; is a proportion, ie. the
proportion of successes in ¢ trials. For the Poisson distribution y; is a "rate”, (c.g. number of

failures per unit time, number of events per unit area, etc.) and ¢; is this "size" of the sample (c.g.
number of time units, number of unit areas, etc.). Consider the following weighted sum of

squares .
S(ﬂ) = E; wi i — X(X:,ﬁ) | ' (A6)

The least squares principle can be used to obtain an estimate of 8 by solving the system of
equatxons

2w [ 7 — MXuB)aNX.8)/08p), o (A7)

J = l..p

Since A(X;,8) is in general nonlinear in the parameters an iterative procedure is réquired to
obtain an estimate of 8. On iteration-k+1 we replace A(X},08) with the linear terms in a Taylor
series expansion about the current &stxmate g*

A-(X:.B),é MX,8Y) + PF o, (A%)

where P¥ denotes the ith row of the N X p matrix of partial derivatives
Py = ON(X,,8)/36; cvaluated at §*, and & = (8f....8}) is the "correction vector”. 3

" Using (A.8) in (A.7) and the appropriate weights

__G g , (A9)
w; ) JPoisson weights,
or
il binomial weights
w, = LDinomi eights,
T XA MXH)] s
evaluate at 8% we obtain
% w5 — M0 — B llacnses), (a-10)
Equation (A.10) can be written as _ ‘ |
A = G(gY), (A1)
where A=P WP,G =P WZ,W = diag(w), and
Z =5y — )\(X,-,ﬁ)), where all expressions that involve B arc evaluated at the current esti-

mate

The linear system of equations is solved for 8 and the revised estimate
gt = g% 4 % is obtained. This IRLS procedurc continucs until some convergence cri-

teria are satisfied.
The matrix A is the “information matrix” with clements

s = 2iPyPswi) » Jos = Le.p.
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The system of equations (A.10) obtained using the least squares approach is identical to that
obtained using the ML principle (A.5) — to 'sce this note that w, = ¢/(Y;) and
au(X;.8)/08; = ¢;0N(X;,8)/0B;. Consequently, if the IRLS procedure converges to a stable .
solution ( convergence is not guaranteed) it will yield a critical point of the likelihood equations.
The IRLS procedure just described is equivalent to using the method of scoring to find a root of
the likelihood equations (A.5). Further conditions (see Charnes,Frome, and Yu, 1976) to assure
that 8° is a global maximum of L(8) are (i) L(8) be pseudoconcave over the parameter space,
and (ii) that 8° satisfies (A.5). This will occur if L(8) is defined over a convex parameter space
and both b[u(X,8)] and g{u(X,8)] are concave in 8 over the parameter space. It will be the
unique global solution of at least one of the yb[u(X.,8)], — q[u(X.8)] , i=1,.N is
strictly concave over the parameter space. - , :

Table A-1
Characteristics -of Poisson and Binomial Regression Modeis ;
' Poisson - Binomial

b(n) - logs log[u/(c—p)]
q(x) ’ ' n - —log(1—p/c)
E(Y) B | I
vy)y o p(1—pfc)
Regression Function AMX B AXB)

(Interpretation) - (rate) (probability)
Regression Weight (W) 555 NRAN-NXA)]
vy = y/ observed rate  observed proportion

Note: c is the sample size for a given observational unit with covariate vector X. The regression
function is the expected value of 7 and is used as the dependent variable in the IRLS pro-
cedure (see text). S

Covariance Matrix for the ML Estimates

: The large sample covariance matrix of the ML estimators is the inverse of the information
matrix A(8).— equation (A.11). If 8° is a stable solution of the likelihood equations (A.S) then
estimates of the elements of this matrix are obtained by replacing 8 by the ML estimate 8°. For
GLFs MX;,8) = G(q;) wheren; = X8 = 2,;%yB; and A can be written as o

A(B) = X VX,
where V is diagonal with v = wy(3G;/an,)> G;™!. It can be shown (sce McCullagh; 1983)
that if N™!' A (8) has a positive definite limit as N—oo , then
EB — B =onN"Y (A12)

and
N% (8" — B) " N(ONGAB)™) + 0,(N %) (A13)

The notation N, denotes the p-variate Normal distribution and the remainder terms in
{A.12) and (A.13) refers to the difference between the cumulative distributions of the statistic
and the Normal. The dispersion parameter o is equal to 1 if the dependent variable follows the
Poisson or binomial distribution.
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~ Evaluating Goodness of Fit

The results of fitting a model to data can be viewed as replacing the y; with a set of "expla-
nations”® the g that are derived from the regression function A(X;,8" ). A measure of the dis-
crepancy between the y; and the u; that is convenient for both Poisson and binomial data is the
deviance (see Nelder and Wedderburn, 1972). The deviance component for the ith observation
for the Poisson distribution is :

d} = 2[ yilog ()'I/Hi‘)“"’ '(y,—,,,,‘)]; . _ (A.14)
and for the binomial distribution . o
= 2[ yi log /) + (c,—y,)lo'g[(c,—yi)/(q_“;)]] (A.15)

where g = ¢MX;,8"). The deviance is then obtained by summing the individual components,
ie.
D(Lu') =34 .
When the y; are assumed to follow the Normal distribution the deviance is

ie. the "residual sum of squares®. Consequently the deviance can be used to construct a table
similar to that used in standard linear model theory and referred to as an ANOVA (analysis of
variance) table. The simplest model of interest (minimal model) has one parameter B At the
other extreme is the full model which has one parameter for each observation—ie. gy = y;,
and the deviance is zero. The minimal model is usually too simple and one is interested in this
model for reference purposes, since it provides the maximum value of the deviance for a given set
of data.

If MX;,8) is a specific regression function of interest with g = (ﬁl - ﬁp) thcn the
deviance for this model is obtained from the ML estimate §°. - The "goodness of fit" of the regres-
sion function is evaluated by comparing the observed value of the deviance with the x2 dlstnbu-
tion. For Poisson or binomial data the deviance is distributed approximately as a x? with
N—p df when the assumed regression function is appropriate.

The analysis of variance has been most widely used for Normally distributed data when two
or more factors and their interactions are of interest. Extension of these methods to GLFs for
dependent variables in the regular exponential family have been developed by Nelder and
Wedderburn (1972). An ANOVA like table is constructed by fitting a sequence of models and -
recording the df and deviance for each model that is considéred. For cach model that is fitted to
the data the difference of the deviance for that model and the previous model represents the vari-
ation accounted for by the new factor having eliminated those terms of above it in the table (see
the examples in Section 2 and 3). Note that the relative importance of a specific factor depends
on when it is entered into the model-this is the same problem that occurs. for the classical lincar
model when non-orthogonality occurs. For GLFs we may fit an increasing sequence of models, say

e H, Hy ¢ Hy ¢ .. cHy .., and the difference of the deviance has an asymptotic
xz dzstributlon if the more restrictive hypothesis is true.

A special form of the ANOVA table is of interest in experimental studies that are used to
investigate a specific dose response curve is shown in Table A2. We assume that the y;; arc inde-
pendent and follow the Poisson or binomial distribution with

E(p) = cp MXpB) , j=L..N, k=1,., n;,
ie. yp is the response for the kth "parallel count® (replication) for dose group j. The dose
response curve is given by MJX; ) , and the deviance on line 2 of Table A.2 will be distributed

approximately as a chi-square with 2 n; — p df if the regression model (ie. both the

regression function and the Poisson or bmomxal assumption) is appropriate. If this test statistic is
large it may be due to "lack of fit" of the regression function or heterogenity of variance (under



36
the Poisson or binomial assumption). In this situation D3 may be compared with the chi-square
distribution with Ei ng — N df. If this statistic is significantly large (indicating hetero-
genity of variance) then the ratio

(Dy—D3)(N—p)
| DS, —N) |

may be comparcd with the F distribution (approximate test).. A significant value of this F statis-
tic indicates lack of fit of the regression function X(X;.8 ). We have partitioned the unexplained
variation D, into two components since D, = (D,—D;) + Dj;, where Dj is equivalent to
the "pure error” sum of squares in Normal regression analaysis (see Draper and Smith, 1966,
chap. 2). : :

The values of the deviance ‘can also be used to construct an ﬂz—type measure of variance
explained, i.e. '

R? = 100 (D,—D,)/D,

is the percent of the total variation (as measured by the deviance) that is explained by the regres-
sion function A(X,8 ).

Table A.2

ANOVA Table for Lack of Fit Test for Poisson or Binomial Data

Regression ~ Number of

Function Parameters Deviance df
1 minimal , 1 D; = D(y, s°1) ? n—1
2 MX.8) P D, = Dly, u(X;,8")] ? m— p
3 Dose Groups N D3 = D[y, u( X*)*] ? m— N
4 Complete >N, B; 0.0

-+ u( A) denotes a vector of fitted values based on the model E(yjk) ¢k Aj. The ML
estimates )\j Ek”f"lzk cjk are used to compute the deviance, ie. p},‘ = ¢ X; on

line 3.

Regression Diagnostics

An important area of regression analysxs that has received considerable attention (for the
standard linear model) in recent years is regression diagnostic — scc c.g. Belsey et al (198 ).
Dlagnostnc procedures are used to check for outlying y-values and extreme points in the *model
space”. [Extension of these techniques to binomial (logistic) regression models and Poisson
regression models have also been proposed - see Prcgibon (19810, Frome (1983), and €
). The basic "building blocks" that are required for various diagnostic measures are standardxzed
residuals of some type and the diagonal terms, k;, from the matrix

=W P (PPWP)! P W (A.16)
where all quantities that depend on g8 arc evaluated at the ML estimate 8" (sce equation A.11).

The diagonal terms from this matrix are useful in detecting extreme points in the model space
that may have a substantial influence on the fitted model. Recall that for the standard linear



model H = X (X’ X)™! X, I — H is the projection matrix, and large valu;s of Ii,
1dcnt1fy extreme points in the model (design) space. For GLFs A(X.8) = G(ﬂi), where
EI Bjxy, and H can be wntten as

H=VWVWXYXXVX)l!x V”’,

where V is diagonal with v, = {w(3G;/an;)} . Note that 3,h; = p and that large values
of k; (say, greater than 2p/n) indicate extreme points in the model space. If u,; denotes a stand-
‘ardized residual the variance of u; is approximately 1—#; and “adjusted resxduals" are given by
u/1 —h,) Two possible definition of standardized residual are '

= Gi—ppar()”,

o Yy = S'ig"(?l_l‘l)di-
where d7 is deviance component (see A.14 and A.15).

Heterogeneity of Variance

- In practxcal data analysis the assnmptlon of binomial or Poisson variation may be unrealistic,
Usually the variance will be greater than that predicted, a phenomenon referred to as overdisper~
sion or hetecrogeneity of variance. In some situations it is reasonable to assume that
#i = ¢MX;,8) and that the variance of y is proportional to that predxcted under the Poisson
or binomial assumptions. In this situation the estimated parameter covariance matrix is mulu-, .
plied by the dispersion parameter o> An estimate of aJ is obtained as :

.2 Vs ,
N —p 4 var (}’1) !

where var(y) = u° for the Poisson distribution, and var(y) = cA°(1—\" ) for the bino-
mial distribution. Estimates of the regression parameters can be obtained using maximum quasi-
likelihood (MQL) estimation-see Wederburn (1974), McCullagh (1983). Apart from the multi-
plier o* the quasi-likelihoods can be treated for the most part just like ordinary likelihoods. In
particular the quasi-likelilood equations are given by (A.S) so that IRLS procedure can be used
to obtain the MQL wtxmat&s for overdispersed data.

P =
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