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Abstract

The blood beryllium lymphocyte proliferation test (BeLPT) is a modification of the stan-
dard lymphocyte proliferation test that is used to identify persons who may have chronic beryl-
lium disease. A major problem in the interpretation of BeLPT test results is outlying data
values among the replicate well counts (� 7%). A log-linear regression model is used to de-
scribe the expected well counts for each set of Be exposure conditions, and the variance of the
well counts is proportional to the square of the expected count. Two outlier resistant regression
methods are used to estimate stimulation indices (SIs) and the coefficient of variation. The first
approach uses least absolute values (LAV) on the log of the well counts as a method for esti-
mation; the second approach uses a resistant regression version of maximum quasi-likelihood
estimation.A major advantage of these resistant methods is that they make it unneces-
sary to identify and delete outliers. These two new methods for the statistical analysis of the
BeLPT data and the current outlier rejection method are applied to 173 BeLPT assays.We
strongly recommend the LAV method for routine analysis of the BeLPT.

Outliers are also important when trying to identify individuals with beryllium hypersen-
sitivity, since these individuals typically have large positive SF values. A new method for
identifying large SIs using combined data from the not exposed group and the beryllium work-
ers is proposed. The log(SI)s are described with a Gaussian distribution with location and
scale parameters estimated using resistant methods. This approach is applied to the test data
and results are compared with those obtained from the current method.
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Introduction

Chronic beryllium disease (CBD), a disorder that mainly affects the lung, occurs in a small per-

centage of persons exposed to beryllium dusts. Most investigators require evidence of beryllium

hypersensitivity as one of several criteria for diagnosis of the disease (1).In vitro proliferation of

bronchoalveolar lavage cells to beryllium is extremely sensitive to and specific for the diagnosis of

CBD but is not suitable for screening since it is an invasive procedure (1). A noninvasive procedure

based on the proliferative response of blood cells to beryllium has been developed and is referred

to as the blood beryllium specific lymphocyte proliferation test (BeLPT)(2). This modification

of the standard lymphocyte proliferation test is used to identify relatively rare individuals among

worker cohorts who display delayed hypersensitivity reactions when exposed to beryllium metal.

The BeLPT involvesin vitro challenge of peripheral blood lymphocytes with salts of beryllium

combined with assays for clonal proliferation of sensitized subsets of CD4 lymphocytes using

tritiated thymidine uptake as a quantitative measure of blastogenesis. The test is conducted us-

ing 96-well microtiter plates; the amounts of tritiated thymidine incorporated by replicate wells

containing lymphocytes challenged with beryllium is compared with uptake of radioactivity by

replicate wells of nonchallenged lymphocytes to establish “stimulation indices” (SIs) as a measure

of in vitro sensitivity to beryllium. A major problem in the interpretation of BeLPT test results is

outlying data values (� 7%) among the replicate well counts .

The increasing use of beryllium in several new economic sectors emphasizes the need for med-

ical surveillance in the workplace for CBD(3). In particular, beryllium has been used in the nuclear

industry for a number of years. Kreisset al (4) have examined the epidemiology of CBD in a strat-

ified sample of workers at a nuclear weapons plant and discuss the role of the BeLPT in beryllium

disease surveillance in the nuclear industry. The U.S. Department of Energy (DOE) is operating

a screening program for CBD that will eventually include approximately 15,000 current and for-

mer beryllium-exposed workers at 20 DOE sites. Each participating beryllium worker will have

a BeLPT at an approved laboratory using a standard protocol developed by the Committee to Ac-

credit Beryllium Sensitization Testing (CABST). The results of each assay will then be evaluated

and classified as normal, abnormal, or unsatisfactory.

A major concern that was not completely resolved by the CABST was how to deal with “out-
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liers” that occur in the BeLPT data. The main purpose of this report is to propose a new statistical

approach that can be used for analysis of a BeLPT assay that may contain multiple outlying well

counts. Given their undue influence on the estimates of the SIs, a method for handling outliers is

needed. The “current approach” (as described in the July 1993 version of the CABST protocol

- see Appendix) is based on an ad hoc outlier rejection method.As an alternative we propose

using resistant estimation methods that are not sensitive to outliers.The BeLPT assay is de-

scribed with a regression model that relates the expected well counts at each of the three beryllium

concentrations to the control well counts for cells that are harvested after 5 and 7 days. Resis-

tant fitting methods are used to estimate the SI for each of the six beryllium concentrations.The

main advantage of this approach is that estimates of the SIs are calculated without explicitly

identifying and deleting the outlying well counts.

A second question considered is the identification of beryllium exposed workers who exhibit

beryllium hypersensitivity. Most (over 90%) of the beryllium workers will have SIs similar to those

of a control group with no known exposure to beryllium. However, even after the use of resistant

estimation methods to minimize the effect of outlying well counts, the BeLPT for some beryllium

workers will yield large SIs.In this case we want to identify the “outliers” (i.e. individuals with

large SIs), since they represent beryllium workers who exhibit beryllium hypersensitivity.

Beryllium Lymphocyte Proliferation Test

A detailed description of lymphocyte culture methods, quality control measures, and examples

of plate maps and printouts of raw data are included in the Appendix. Following is a brief de-

scription (see Figure 1) of the protocol for the BeLPT culture assay as established by CABST and

implemented by the BeLPT laboratory at Oak Ridge Institute for Science and Education (ORISE)

as of July 1993. The details of this procedure and the equipment used vary at different laboratories

that are performing the BeLPT.

1. A 15 ml blood sample is obtained from each patient and mononuclear cells are separated

using density gradient centrifugation.

2. Lymphocytes are cultured using standard methods at a final concentration of 2:5�105 cells

per well in 96-well flat-bottom microtiter plates. For each BeLPT assay 12 replicate control
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wells, and four replicates for each experimental condition (i.e., 1, 10, and 100µM of BeSO4,

and mitogen-stimulated positive controls) are set up.

3. Cells are incubated at 37�C for five and seven days and a pulse of tritiated thymidine is

delivered prior to harvest. Cells are harvested on filter paper and counts are measured in

a Packard Matrix 96 gas ionization counter. Each filter is counted for 30 minutes and the

results organized as shown in Table 1 for statistical analysis.

ORISE LPT CULTURE ASSAY

I.  Culture Method
• Heparinized blood (~15ml)
•Ficoli-hypaque centrifugation

• Separated lymphocytes

II.  Beryllium Challenge
• 2.5 x 105 lymphocytes per well
• 96 well flat-bottomed microtiter

plates

III. Harvest Method (day 5 and day7)
• Add tritiated thymidine (-8:00 A.M.)

(1µCi/well sp. act. 5-7 mCi/mMol)

• Freeze plates at -20°C (-4:00 P.M.)

•Perform 30 min counts on Packard
Matrix 96 gas ionization counter

IV.  Data Reduction
• CONTROL WELLS
12 replicates - drop outliers

calculate mean and CV

• Be TREATMENTS
4 Replicates drop 1 outlier
calculate mean and CV

• STIMULATION INDEX = (SI)
        mean Be treated

mean control

RPMI 1640 Medium
10% pooled human serum

antibiotics

Beryllium
Sulfate(µM)

0
1
10
100

PHA(30µg/ml)
CON A(10 µM)

#Replicate
Wells

12
4
4
4
4
4

Day 
of Harvest

5, 7
5, 7
5, 7
5, 7

5
5

SI =

Figure 1: ORISE BeLPT Culture Assay

Statistical Methods

In this section we describe three methods of analyses for the BeLPT assay. The first method is

the outlier rejection procedure proposed by CABST. A regression model is proposed to describe
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Table 1: Well counts for LPT assay (AC153 data shown)
Culture

Conditions j Replicate Counts
Control 1 965 1173 828 862
Control 1 1474 7237 1021 976

Day Control 1 1500 1729 1672 1992
5 Be 1 2 1050 706 1434 687

Be 10 3 1551 1466 1661 2301
Be 100 4 3571 5780 4011 5229
Control 5 9202 5253 3786 5212
Control 5 2310 2844 1915 3102

Day Control 5 2458 3936 3087 6588
7 Be 1 6 714 1135 6084 1097

Be 10 7 786 846 2757 652
Be 100 8 6037 8349 6852 10449

Day Pha 9 82425 52954 52669 50487
5 Candida 10 35501 21623 21551 22087

the two new methods, which are least absolute value (LAV) regression on the log counts and

resistant maximum quasi-likelihood estimation. The regression model is motivated by the fact that

the SI describes the relative increases in the proliferative response of beryllium-stimulate cells to

control cells. This leads to the log-linear representation of treatment effects. It is also apparent (see

Results) that the variability in the well counts increases approximately in proportion to the square

of the expected count, so that the coefficient of variation is constant (i.e., the standard deviation

is proportional to the mean). This implies that taking logs of the well counts leads to constant

variance and additive effects, and the main parameters of interest are the log(SI)s. If there were no

problem with outliers, standard least squares methods could be used on the transformed data. This

approach was not considered since the occurrence of multiple outliers has been well established .

First Method Based on Outlier Rejection Procedure

At the time this work was initiated, CABST had proposed a method for calculating SIs that

used anad hocprocedure for deleting “outliers” based on the value of the coefficient of variation

(CV) for each set of culture conditions. If the CV is greater than 0.3 the most extreme count is

deleted. This procedure is continued until the CV is less than or equal to 0.3, provided no more
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than one third of the well counts have been deleted. A patient’s data are consideredacceptableif

the resulting CV is less than 0.3 for both day #5 and day #7 control data, and for at least four of the

six sets of beryllium-stimulate quadruplicates. If these conditions are not met the BeLPT is called

unsatisfactorydue to high variability in the data. A BeLPT is also consideredunsatisfactoryif the

positive control response is too low (indicating lack of cell viability), or if the control counts are

considered to be either too low (relative to background) or too high. We assume here that BeLPTs

that are unsatisfactory for either of the latter two reasons are identified before further analysis using

criteria that depend on laboratory experience.

Table 2: Results of the current outlier rejection method for Table 1
Culture

Conditions n Average CV SI log(SI)
Control 10 1220 0.28 . .

Day Be 1 3 814 0.25 0.67 -0.40
5 Be 10 4 1744 0.22 1.43 0.36

Be 100 4 4648 0.22 3.81 1.34
Control 8 2930 0.24 . .

Day Be 1 3 982 0.24 0.34 -1.09
7 Be 10 3 761 0.13 0.26 -1.35

Be 100 4 7921 0.25 2.70 1.00
Day Pha 4 59634 0.25 146.6 4.99

5 Candida 4 25190 0.27 61.9 4.13

The SIs for the stimulated cells are the ratios of the treatment means and the corresponding

control means (after the outliers have been deleted)+, i.e.

SI=
mean(treated)
mean(control)

:

The positive control wells are only counted for 10 minutes, so the SIs are multiplied by 3 to adjust

for the counting time-difference. The results of applying this procedure to the BeLPT data in

Table 1 are given in Table 2. This data is acceptable since both of the control CVs are less than 0.3,

and all six beryllium-stimulate CVs are less than 0.3. The procedure used to determine if a BeLPT

is abnormal is presented at the end of this section.
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Regression Model for the BeLPT Data

Let yjk denote the well count for thekth replicate of thejth set of culture conditions. The

expected count in each well is represented by a log-linear regression function:

E(yjk) = λ j = exp(Xjβ); (1)

where j = 1; : : : ;10 andk = 1; : : : ;12 for the controls andk= 1;2;3;4 for the beryllium-stimulate

cells and the positive controls. In Equation 1,Xj is a row vector of indicator variables andβ is

the vector of regression parameters (see below). We further assume that the variance of the well

counts is proportional to the square of the expected count:

Var(yjk) = (φλ j)
2: (2)

Equations 1 and 2 together are referred to as a generalized linear model with constant coefficient

of variation, as detailed by McCullagh and Nelder (5)chapter 8 for details. The distinct values of

the row vectors of covariatesX j , j = 1; : : : ;10 are shown in Table 3.

Table 3: Distinct rows in the model matrix
j x j1 x j2 x j3 x j4 x j5 x j6 x j7 x j8 x j9 x j10

1 0 0 0 0 0 0 1 0 0 0
2 1 0 0 0 0 0 1 0 0 0
3 0 1 0 0 0 0 1 0 0 0
4 0 0 1 0 0 0 1 0 0 0
5 0 0 0 0 0 0 0 1 0 0
6 0 0 0 1 0 0 0 1 0 0
7 0 0 0 0 1 0 0 1 0 0
8 0 0 0 0 0 1 0 1 0 0
9 0 0 0 0 0 0 1 0 1 0

10 0 0 0 0 0 0 1 0 0 1

With this parameterization, the first threeβs represent the log of the SIs for the three concen-

trations of BeSO4 on harvest day 5 and the next threeβs are the corresponding estimates on day

7. The last twoβs are the log(SI)s for the positive control wells, andβ7 andβ8 represent the log

of the control well counts on day 5 and 7, respectively. We have developed two outlier resistant
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approaches for estimating the SIs and the coefficient of variation,φ.

Second Method Based on LAV Regression on Log(y)

The first approach based on the regression model is to take the log of the counts since this is

the variance-stabilizing transformation and leads to a linear model inzjk = log(yjk), i.e.

E(zjk) = Xjβ�φ2=2 andVar(zjk)' φ2:

In the absence of outliers ordinary least squares on the transformed data would yield consistent

estimates for the log(SI) parameters (5). The effect of outliers is minimized by using least absolute

values (or some other robust method) on thezjk. LAV regression — also known as L1 norm, least

absolute deviations (LAD) and minimum sum of absolute errors (MSAE) — is well known to be

resistant to outliers and is an important particular case of a general class of robust methods known

as M-estimators (6, 7). In general, LAV regression requires special computational resources to

calculate parameter estimates (8). In this situation, however, it is only necessary to find the median

of the log of the well counts for each set of design conditions (say ˜zj ) and then subtract the control

median for each harvest day from the beryllium-stimulate medians. Fromeet. alpresent details in

Appendices A and C of report a for an Oak Ridge National Laboratory (9). A resistant estimate of

the coefficient of variation can then be obtained as

φ̃L =C�medianfjzjk� z̃j jg;

whereC = 1:48�
p

n=(n� p), n= 56, andp= 10 (when the assay is complete). The value ofC

is chosen to make the estimate consistent for the standard deviation for a Gaussian error model and

for consistency with the usual least squares results in which the estimated variance is multiplied

by the correction factorn=(n� p) (10) and S-PLUS functionmad (11) which computes the median

absolute deviation (MAD) estimate of the standard deviation. Alternative approaches to estimating

φ have been discussed in the context of LAV regression (12, 7) and there is no consensus as to the

best approach. In addition to the fact thatφ is of direct interest, it is also needed to obtain an
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estimate of the parameter covariance matrix

ω2(X0X)�1;

whereω2 = [2 f (0)]�2 is the asymptotic variance of the sample median (13). Following the ap-

proach of McGill it et. al (14) we assume that the underlying error distribution is Gaussian in

the center and usẽω =
p

π=2φ̃L to obtain an estimate of the standard deviation of the log of the

stimulation indices. The appropriate diagonal term from(X0X)�1 is 4=12, and consequently the

estimated standard deviation of log(SI) is 1:25φ̃L(0:58) = 0:72φ̃L. The results of applying this

approach to the data in Table 1 are shown in Table 4.

Table 4: Results of LAV estimation for log(y) of data in Table 1,φ̃L = 0:367
Experimental
Conditions zjk z̃j (zjk� z̃j )=φ̃L β̃ exp(β̃)

Controls 6.872 7.067 6.719 6.759 7.182 -0.8 -0.3 -1.3 -1.2
Controls 7.296 8.887 6.929 6.883 7.182 0.3 4.6 -0.7 -0.8

Day Controls 7.313 7.455 7.422 7.597 7.182 0.4 0.7 0.7 1.1
5 Be1 6.957 6.560 7.268 6.532 6.758 0.5 -0.5 1.4 -0.6 -0.423 0.655

Be10 7.347 7.290 7.415 7.741 7.381 -0.1 -0.2 0.1 1.0 0.199 1.221
Be100 8.181 8.662 8.297 8.562 8.429 -0.7 0.6 -0.4 0.4 1.248 3.483

Controls 9.127 8.567 8.239 8.559 8.139 2.7 1.2 0.3 1.1
Controls 7.745 7.953 7.557 8.040 8.139 -1.1 -0.5 -1.6 -0.3

Day Controls 7.807 8.278 8.035 8.793 8.139 -0.9 0.4 -0.3 1.8
7 Be1 6.571 7.034 8.713 7.000 7.017 -1.2 0.0 4.6 0.0 -1.122 0.326

Be10 6.667 6.741 7.922 6.480 6.704 -0.1 0.1 3.3 -0.6 -1.436 0.238
Be100 8.706 9.030 8.832 9.254 8.931 -0.6 0.3 -0.3 0.9 0.792 2.207

Day Pha 11.320 10.877 10.872 10.82910.874 1.2 0.0 0.0 -0.1 4.792 120.50
5 Candida 10.477 9.982 9.978 10.003 9.992 1.3 0.0 0.0 0.0 3.910 49.880

Third Method Based on Quasi-Likelihood Estimation

In the second regression model approach, the analysis is done on the original scale and es-

timation is based on an iterative weighted least squares (IWLS) algorithm. The use of IWLS

for generalized linear (15) and nonlinear (16) regression functions leads to maximum likelihood

estimates when the dependent variable is in the regular exponential family. McCullagh (17) ex-

tended this result to quasi-likelihood (QL) estimation, which requires specification of the mean

and variance function. Extension of IWLS to resistant/robust regression has been described by

Green (18) and Pregibon (19), and the computational approach described by Chambers and Hastie
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(20)chapter 6 is used here. Similar resistant regression methods have been applied to the analysis

of drug concentration-time data encountered in human bioavailability studies (21).

Consider the following weighted sum of squares,

∑
j
∑
k

wjk[yjk�λ j ]
2; (3)

whereλ j = exp(Xjβ) andwjk ∝ 1=var(yjk) = 1=λ2
j . The IWLS procedure starts with an initial

estimate, sayβ�, andλ j in Equation 3 is replaced with the first order Taylor series

exp(Xjβ�)+Pjδ�;

wherePj = Xjλ�

j , and the weights are evaluated atβ� to obtain

∑w�

jk[yjk� (λ�

j +Pjδ�)]2:

The unknown “correction vector”,δ�, is then calculated using weighted least squares, i.e. by

solving

(P�0W�P�)δ� = P�0W�[Y�λ�] (4)

for δ�. The estimate ofβ is then updatedβ1 = β� + δ�, and the procedure is repeated until

convergence—see Fromeet al Appendix D for details (9) The moment estimate ofφ2 is com-

puted after the final iteration

φ̂2 =
1

n� p∑∑
�

yjk� ŷjk

ŷjk

�2

:

To adjust for the effect of outliers we introduce a second weight for each observation,

w=

8<
:

1 juj � k

k=juj juj> k
(5)

whereu= (yjk� ŷjk)=φ̃ŷjk is the standardized residual using the current estimates ofβ andφ. This

is known as an M-estimator with Huber’s loss function. The “tuning constant”,k, must be specified
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and we usek= 1:345 which leads to estimates with approximately 95% efficiency (19). Therefore,

to obtain resistant quasi-likelihood estimates we multiply the elements of the diagonal matrixW in

Equation (4) by the Huber weights in Equation (5)—see (9)Appendix D for details. Following the

last iteration,an estimate of the coefficient of variation is obtained using a scaled MAD estimate of

the standardized residualsujk = (yjk� ŷjk)=ŷjk

φ̃ = 1:48�medianfjujkjg�
p

n=(n� p):

Identification of BeLPTs With Large SIs

The CABST method for identifying an “abnormal” BeLPT is based on the distribution of the

maximum SI for a group of individuals with no known exposure to beryllium. First calculate the

maximum of the estimated SIs (MSI) for each person in the not exposed group,

MSI(i) = max[(ŜIi; j); j = 1; : : : ;6]; i = 1; : : : ;Ne; (6)

whereNe is the number in the not exposed group. The mean and standard deviation of the MSIs

are then used to calculate SI� = mean + 2 (standard deviations). A BeLPT for a beryllium worker

is defined as abnormal if at least two SIs exceed SI�. Using the current value ( SI� = 5.65 ),

we conclude that the BeLPT in Table 2 is normal. The probability of obtaining a statistical false

positive for this procedure is unknown.

We proposed an alternative approach that establishes areference databaseof BeLPTs based

on BeLPTs from nonexposed workers and historical data from beryllium workers. The best way

to establish this reference database is laboratory dependent and will not be discussed here. For

illustrative purposes we will use the combined data from the beryllium workers and the nonexposed

(control) group. The method is based on the assumptions:

i) that the estimates of the log(SI)s are approximately normally distributed and

ii) that almost all of the beryllium workers are not sensitized.

Resistant methods are then used to counter the influence of “outliers” (i.e. the abnormal test re-

sults). Thefirst stepis to calculate an outlier-resistant estimate of location, ˜µj , and spread, ˜sj , for
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each of the six log(SI) distributions in the reference database. In the results that follow we use

µ̃j = median(β̃i j ; i = 1; : : : ;N);and

s̃j = mad(β̃i j ; i = 1; : : : ;N);

where N=173 , and j=1,: : : ;6: Thesecond stepis to convert the log(SI)s for each individual into

standardized deviates

ui j =
β̃L

i j � µ̃j

s̃j
; (7)

using the values of ˜µj and s̃j ; from the reference database. The six standardized deviates for a

BeLPT are compared to thezp quantile of the standard normal distribution. If at least two of these

values exceedzp, then the BeLPT is called abnormal. If the estimated log(SI)s are independent,

then the binomial distribution can be used to calculate an approximate probability of at leastk out

of six “large” SIs for a given value ofzp. The probability of at least one large SI is 1� p6 = 0:141

(for p = :975). The probability of at least two is 1� [p6 + 6(1� p)p5] = :009 (for p = :975).

In fact, the log(SI)s are positively correlated, so this probability should be a lower bound on the

chance of finding a false positive BeLPT.

Results

The regression model and the estimation methods were obtained through analytic reasoning

and limited experience with a few data sets. To evaluate the utility of our two new methods, we

applied them to all available BeLPT assay results obtained at the ORISE BeLPT laboratory as of

July 1993. The outlier rejection method in use at ORISE at that time was also applied to each

BeLPT assay.

As a preliminary step we provide an analysis of the 12 replicate control wells on days 5 and 7

for each of the 173 BeLPTs. Estimates of scale and location are computed to verify the assumed

form of the mean-variance relation. We then describe the distribution of estimates of the log(SI)s

for each beryllium concentration. Under the null assumption that if an individual is not sensitized

to beryllium his/her SIs should be one, and the estimates of the log(SI)s will be approximately

normally distributed with a zero mean and the covariance matrix indicated in the Methods Section.
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The true SI for an individual for any given beryllium concentration is, of course, unknown. In a

population of nonsensitized individuals, the true log(SI)s may differ from zero. Consequently, the

distribution of estimates of the log(SI)s presented in this section reflect:

i) sampling variation,

ii) possible differences in responsiveness among individuals who are not beryllium sensitized,

and

iii) the presence of beryllium sensitized workers.

As a matter of convenience, we may refer to the distribution of estimates of the log(SI)s in this

section as a distribution of log(SI)s.

Description of the Data

A total of 173 BeLPTs are used in this evaluation. There are 133 from a group of 120 workers

exposed to beryllium; the remaining 40 are from persons who have no known exposure to beryl-

lium. The discrepancy between the number of test results and the number of beryllium exposed

workers is accounted for by the fact that a second BeLPT was carried out on 13 workers. Ide-

ally, there should be 56 observations (well counts) for each assay, but in some cases, well counts

are missing due to technical errors (see Appendix). When an assay is incomplete, parameters are

estimated (if possible), based on the reduced data set.

Comparison of Moment and Resistant Estimates of the Coefficient of Variation for

Control Wells

An important assumption is that the standard deviation of the well counts is proportional to

the mean as implied by Equation (2). Each of the 173 assays contains 12 replicate control wells

on both day 5 and day 7. To verify this assumption, location and scale estimates for the control

wells for each assay on day 5 and day 7 were calculated. Figure 2 (top) shows the relationship

between the moment estimator of location (¯y, the sample mean) and the moment estimator of scale

(s, the sample standard deviation) for the day 5 control wells. The solid line is the least squares fit

s= 0:448ȳ, and the slope (0.448) is an estimate of the coefficient of variation for day 5. Figure 2

13



(bottom) is a similar plot using resistant estimates of location and scale. The sample median ( ˜y)

replaces the sample mean, the MAD estimate (σ̃) replacess, and LAV is used to regress̃σ on ỹ.

The fit isσ̃ = 0:34ỹ and the slope (0.34) is a resistant estimate of the coefficient of variation. The

decrease in scatter and slope in the bottom panel of Figure 2 reflects the use of resistant methods.

Figure 3 shows the relationship between the resistant estimates of location and scale for the

day 5 control wells (top) and the day 7 control wells (bottom) on a log-log scale. The solid line

for day 5 in Figure 3 (top) is log̃σ = log(0:34)+ log(ỹ), and the solid line for day 7 (bottom) is

logσ̃ = log(0:36)+ log(ỹ). Note that ifσ̃ is proportional to ˜y (i.e. constant coefficient of variation),

then the log-log plot should be linear with a slope of one. The slope of the least squares regression

of logσ̃ on log(ỹ) for day 5 is 1.04 (standard error = 0.04) and for day 7 the slope is 0.96 (standard

error = 0.03). Since neither estimate is significantly different from 1, this supports the regression

model assumption of constant coefficient of variation. The main difference in the day 5 and day 7

results is that the day 7 results are shifted to the right since the control well counts are generally

higher on day 7 than those on day 5. The median of the ˜ys on day 5 is 1247 compared with 1840

for day 7.These results are consistent with the laboratory observation that day 7 results are

generally higher and show greater variability than well counts on day 5.

Summary of Results for Three Methods

The three methods of analysis were applied to the data described at the beginning of this sec-

tion. For each method, two graphical displays were used to summarize the results. Only the results

for the LAV method are presented here since the plots for the other two methods were very similar

in appearance and are available elsewhere (9).

The first graphical display (see Figure 4) is a series of 12 boxplots—see (11, 14, 22)—placed

side by side for the log(SI)s; the vertical axis on the right shows the untransformed SIs. The ends

of the box correspond to the 25th and 75th percentile so that 50 percent of the log(SI)s are contained

in the box for each group. The vertical dotted lines are drawn to the nearest value not beyond a

standard span — 1:5�(Inter-Quartile Range) — from the quartiles. The outlying values are shown

individually for each group of data. There are two boxplots for each beryllium concentration on

days 5 and 7. The first one in each pair is labeled “BW” for beryllium workers, and the second one

is labeled “NE” for not exposed.Consequently, each pair of boxplots provides a comparison
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Figure 2: (top) Relationship between the mean, ¯y, and the standard deviation,s, for day 5 control
wells. The solid line is the least squares fit,s= 0:448ȳ. (bottom) Relationship between the Median,
ỹ, and the MAD,σ̃. The solid line is the LAV fit,σ̃ = 0:34ỹ. The dashed lines are the result of
applying scatterplot smoothers to the data.
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of the distribution of the SIs for the beryllium group and the nonexposed group for each of

the six culture conditions. Consider, for example, the first two boxplots in Figure 4 which are

for beryllium concentration 1 on day 5 (BW-D5be1 and NE-D5be1) for the LAV estimates. Both

log(SI) distributions are centered near zero, and the nonexposed group is a little more spread out in

the center. The beryllium workers group shows nine outlying values in the positive direction and

one in the negative direction. The notches (which represent confidence limits for the sample me-

dian) in the boxplots overlap, indicating that the difference in the location of the two distributions

is not significant at a rough 5% level. The broken horizontal line corresponds to log(SI) equal to

zero, and passes through both notches indicating that both distributions are centered near zero on

the log scale. Each of the boxplots in Figure 4 is centered near zero and is spread out evenly in

both directions. As the beryllium concentration increases on each day the variability (as indicated

by the length of the boxes) increases. On day 7 the SIs for the beryllium workers are generally

smaller that those for the not exposed group, and the median log(SI)s are less than zero except for

the NE-D7be100 group. Results on day 7 are more variable than those on day 5 for each of the

three beryllium concentrations. We have no definitive experimental data to explain the larger vari-

ability on day 7. However, considering that we are conducting short-term cultures of lymphocytes

without replenishing of medium, it is not surprising to observe greater variability among wells with

increasing time in culture since one would expect to see some depletion of nutrients, accumulation

of metabolic byproducts, and/or scenescence of lymphocyte over time. In beryllium-sensitive per-

sons, increasing divergence of counts between replicate wells would be anticipated to result from

clonal expansion of sensitized CD4 subsets which would be expected to become more pronounced

with increasing numbers of cell replications.

The second graphical display (Figure 5) shows a normal (Gaussian) probability plot for the

combined BW and NE SIs for each of the three beryllium concentrations on days 5 and 7 (23). In

each of the six plots, the data (ordered values of the log(SI)s) are shown on the vertical axis on the

left, and the quantiles of the standard normal distribution are shown on the horizontal scale. Statis-

tical theory indicates that estimates of the log(SI)s should be approximately normally distributed,

and the large sample standard deviation should be about 0.28 if the coefficient of variation is 0.4

(see Methods). If the relation between the empirical and theoretical quantiles is linear, this indi-

cates that the distribution is Gaussian. In each plot we have included the median (labeled M) and
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a resistant estimate of the standard deviation (labeled S) for the log (SI)s. The solid line in each

plot shows the relation that is expected if the log (SI) values are from a normal distribution with

mean M (which determines the intercept) and standard deviation S (which determines the slope).

(The values of M and S are also shown in Table 5). Resistant methods were used to estimate the

location and scale parameters for the combined data from the BW and NE groups. This reflects the

assumption that most of beryllium workers do not show an abnormal response, i.e. they look like

the not exposed group. For example, consider the plot for day 5 Be-1 in Figure 5. The log(SI)s

appear to be approximately normal in the center, but there are several values that are larger than ex-

pected (these are the points above the line). These “outliers” are SIs that indicate hypersensitivity

to beryllium.

The results in Figure 5 indicate that the log(SI)s are approximately normally distributed. The

center of each log(SI) distribution is greater that zero for each beryllium concentration on day 5 and

is less than zero for each beryllium concentration on day 7. The untransformed SI units are shown

on the vertical scale on the right side ofq each plot. The estimated standard deviations increase

with beryllium concentration on each day, and are larger on day 7 than on day 5. The estimates

of location (µ̃) and scale(s̃) for each method are summarized in Table 5. For each beryllium

concentration the estimates from the three methods are in very close agreement. The boxplots and

normal probability plots for the current method and the QL method are not shown here since they

are almost identical to Figures 4 and 5 and are available (9).

Table 5: Median estimates (˜µ) and resistant estimates ( ˜s) of the standard deviation (shown in paren-
thesis) of log(SI)s for LPT data

Method Day 5 Day 7
Be 1 Be 10 Be 100 Be 1 Be 10 Be 100

Current -µ̃j 0.069 0.104 0.280 -0.191 -0.330 -0.163
s̃j (0.300) (0.568) (0.802) (0.514) (0.857) (1.066)

LAV - µ̃j 0.066 0.152 0.284 -0.211 -0.388 -0.139
s̃j (0.317) (0.531) (0.770) (0.599) (0.883) (1.113)

QL - µ̃j 0.049 0.102 0.258 -0.211 -0.375 -0.226
s̃j (0.337) (0.561) (0.795) (0.665) (0.918) (1.155)
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Figure 4: Boxplots of LAV estimates of the log(SI)s for beryllium workers (BW) and not exposed
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Comparison of The Current Method and LAV Method

A direct comparison of estimates of the log(SI)s obtained using the current method and the

LAV method for each beryllium concentration is given in Figure 6. The slope of the line in Fig-

ure 6 indicates exact agreement between the two methods. To further compare the current method

and the LAV approach, we use the average difference of the log(SI)s. For each BeLPT the LAV

log(SI)s are subtracted from the corresponding log(SI)s based on the current method. The result is

multiplied by 100 and the average difference is calculated. i.e.

avedif12= mean[100� (̃βCM
i j � β̃L

i j ); j = 1; : : : ;6]:

For example, for AC147 (Table 6), the current method day 5 be100 SI is exp(1:41) = 4:10 and

exp(1:45) = 4:26 for the LAV procedure. The log percent difference is 100� log(4:10=4:26) =

100� (1:41�1:45) = �4L% where L% stands for the logarithmic percent (24). The SI for the

current method is 96 percent of the LAV SI, i.e. about 4% smaller. The average difference between

the current method and LAV method for AC147 is -1.7L% . Table 6 compares AC147’s log(SI)s

for all three methods.

Table 6: Comparison of log(SI)s for AC147—see (9)Appendix E for details
Method Day 5 Day 7

Be 1 Be 10 Be 100 Be 1 Be 10 Be 100
Current 0.33 1.83 1.41 -0.17 1.86 1.81

LAV 0.26 1.85 1.45 -0.01 1.81 1.81
QL 0.16 1.67 1.39 -0.03 1.72 1.67

100� (CM�LAV) 7 -2 -4 -16 5 0
100� (QL�LAV) -10 -18 -6 -2 -9 -14

Figure 7 (left panel) shows a boxplot of avedif12 (as defined above) for the 173 BeLPTs. The

average difference is between -3L% and 9L% 50 percent of the time and the mean of the average

difference is 3L%. A large, positive value of avedif12 indicates that the current method log(SI)s

for a BeLPT are greater than the LAV log(SI)s. The results in Figures 6 and 7 and Table 5 show

that the estimates of the log(SI)s qfor the LAV and current method are in very close agreement.
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Comparison of Resistant Quasi-Likelihood Method and LAV Method

The plot ( not shown ) of the QL and LAV log(SI)s was almost identical to Figure 6. The close

agreement between the two methods is further demonstrated by the average difference

avedif32= mean[100� (β̃QL
i j � β̃L

i j ); j = 1; : : : ;6];

where a large positive value indicates that the QL log(SI)s for a BeLPT are greater than the LAV

log(SI)s. Figure 7 (right panel) shows a boxplot of these values. The average difference is between

-6L% and 3L% fifty percent of the time, and the mean of the average difference is -0.6L% .

Figure 8 compares the distribution ofφ̃L (the LAV coefficient of variation) and̃φQ (the QL

coefficient of variation). For both methods, the estimated coefficient of variation is between 0.25

and 0.40 most of the time. The median value ofφ̃L is 0.321 and the median value ofφ̃Q is 0.329.

Identification of BeLPTs With Large SIs

The first step in the alternative method is to convert each log(SI) into a standardized deviate

(see Equation 7) using the values of ˜µj ands̃j given in Table 5. These standardized deviates are
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compared with the quantiles of the standard normal distribution, i.e. Pr[u< zp] = p. If at least two

of theseui j s exceedzp that BeLPT is called abnormal. The results (i.e. theui j s for the abnormal

BeLPTs ) of applying this procedure to the 173 assays usingz
:975= 1:96 are shown in Table 7. In

particular, the standardized deviates for the LAV log(SI)s for AC147 (see Table 6) are given in row

2.

An alternative to calculating standardized deviates for each log(SI) is to calculate critical value

for each SI

SI�j = exp(µ̃j +zps̃j); j = 1; : : : ;6; :

The critical values obtained using ˜µj ands̃j for the LAV method in Table 5 are shown in Table 8.

If a patient’s SI exceeds the corresponding critical SI, that SI is considered large. Thus, if any 2

SIs exceed the corresponding critical SI, that patient’s data is considered abnormal. For example,

the LAV SIs from Table 6 (patient AC147) are 1.27, 6.36, 4.26, 0.99, 6.11, and 6.11. Since the

day 5 Be10 SI (6.36) and the day 7 Be10 SI (6.11) exceed their respective critical SIs, these data

are deemed abnormal. Regardless of the formulation used (calculating the standardized deviates

or comparing the SIs to critical SIs) the conclusion is identical.

The CABST procedure currently (July 1993) used at ORISE to identify workers with large SIs
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Table 7: Values of the standardized deviates (ui j s) for BeLPTs with at least two> z
:975

a

Day 5 Day 7
Be 1 Be 10 Be 100 Be 1 Be 10 Be 100

ID u1 u2 u3 u4 u5 u6 φ̃L

AC128 2.10 0.65 2.11 -1.23 -0.63 0.49 0.30
AC147+ 0.61 3.21 1.52 0.33 2.48 1.75 0.26
AC161u 9.61 6.81 5.95 8.33 5.91 4.74 0.42
AC171u 2.47 2.53 2.22 1.90 2.45 2.21 0.18
AC174u -0.13 3.22 2.40 -0.50 1.42 1.07 0.27
AC182 0.87 1.20 1.73 3.45 2.17 0.70 0.33
AC187 3.74 1.96 -0.61 1.62 0.07 -0.98 0.71
AC196u 9.08 5.25 2.07 6.50 3.16 2.08 0.38
AC208u 5.76 2.15 0.91 4.38 1.04 0.72 0.42
AC209 3.79 0.96 1.99 2.55 1.82 1.63 0.43
AC218 5.28 -0.07 -0.72 2.75 -1.16 -1.07 0.40
AC225u 4.81 4.75 1.47 4.32 1.73 1.03 0.82
AC235+ 5.17 2.23 2.62 2.71 -0.27 1.59 0.39
AC236+ 10.04 6.34 3.70 3.15 1.46 0.73 0.21

aIDs marked with+ were identified as abnormal by the CABST method (see Section 3.5)
and those marked withu were unsatisfactory. There was one BeLPT (AC149) that was
called abnormal by the CABST method that is not in this table.

Table 8: Critical SI values
Day 5 Day 7

Be 1 Be 10 Be 100 Be 1 Be 10 Be 100
2.00 3.30 6.00 2.62 3.83 7.72
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is based on the distribution of the maximum SI for each individual in the not exposed group (see

Equation 6). A BeLPT for a beryllium worker is defined as abnormal if at least two SIs exceed SI�

(currently equal to 5.65). This leads to the identification of AC147, AC149, AC235, and AC236 as

abnormal. Using the outlier rejection method, six BeLPTs that had 2 or more SIs greater than 5.65

were found to be unsatisfactory based on the values of the within-group CVs. They are AC161,

AC171, AC174, AC196, AC208, and AC225. Three of the abnormal BeLPTs are listed in Table 7

(only AC149 is missing). Table 7 also lists five BeLPTs as abnormal that were not identified by

the current method as either abnormal or unsatisfactory.

In situations where there may be excess variability , the CV can be used to evaluate the quality

of the BeLPT. For the LAV approach̃φL is a resistant estimate of the “within-group” standard

deviation of the log well counts. SincẽφL is not inflated by a few outliers (that could be caused

by measurement error) it may be reflecting some intrinsic biological variability associated with the

lymphocyte proliferation response in certain cell donors. Figure 9 shows a normal probability plot

for log(φ̃L). The resistant estimates of the mean and standard deviation of log(φ̃L) are -1.136 and

0.285. From this we compute the 99th percentileφ� = 0:623. The five BeLPTs in our database that

have values of̃φL > 0:623 are AC242, AC223, AC187, AC211, and AC225.
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Conclusions

Three approaches to the analysis of the BeLPT have been described. The first method is the

outlier rejection procedure (in use at ORISE in July 1993), and two new methods (LAV and QL) are

based on resistant regression techniques. Each method was applied to a database of 173 BeLPTs

(133 from beryllium workers and 40 from individuals with no beryllium exposure). Graphical and

numerical summaries show that the three methods are generally in very close agreement. Both of

the new methods are highly resistant to outliers (in the well counts), have well known statistical

properties, and provide a “pooled” estimate of the coefficient of variation(φ) for each BeLPT. The

QL method requires an iterative algorithm and does not appear to offer any practical advantage

over LAV. The LAV method is also easy to understand and compute and is recommended for

routine analysis of the BeLPT.

Estimates of the log(SI)s are approximately normally distributed. The log(SI) distributions

are centered near zero for each of the three concentrations of BeSO4 on harvest day 5 and 7.

The variability is greater on day 7 than on day 5, and increases with concentration on each day.

Resistant estimates of the location and scale parameters for each of the six log(SI) distributions

are used to define “large” SIs, which are used to identify “abnormal” BeLPTs. Results of this

preliminary approach to identify abnormal BeLPTs were compared with results obtained using

the current method, and the discrepancies between the two methods suggest that a more detailed

evaluation of the procedure is needed.

In a subsequent report further consideration will be given to the use of the LAV approach to

address the following questions:

i) How should “abnormal” BeLPTs be identified ?

ii) Should a BeLPT be considered “unsatisfactory” as the result of high variability?

iii) How should the resistant estimate of the coefficient of variation (φ̃L) be used in the BeLPT

analysis ?

The methods developed will be applied to a much larger database of BeLPTs obtained from the

ORISE BeLPT laboratory and at least one additional laboratory that is currently using this assay
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to identify persons who may have CBD. The data set used in this report and an electronic version of

ORNL-6818 (9) are available on the world wide web at URLhttp://www.epm.ornl.gov/~frome/.
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Appendix: Detailed Protocol For BeLPT

The ORISE protocol for performing Lymphocyte Proliferation assays essentially adheres to the

recommendations of the expert panel (i.e., CABST) convened jointly by the U.S. DOE Office of
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Health and the Beryllium Industry Scientific Advisory Committee (BISAC) at a meeting held in

Washington, DC, on February 3–4, 1992. We collect approximately 30 ml of venous whole blood

in sterile vacutainers containing sodium heparin for each assay (Figure 1). Tubes are inverted to

mix blood with the anticoagulant and transported to the laboratory for processing. Cells are main-

tained at room temperature overnight. Within 24 hours after blood collection, mononuclear cells

are separated using Ficoll-hypaque density gradient centrifugation, carried through three sequen-

tial washes, and counted in triplicate on an automated cell counter. Lymphocytes are cultured in

RPMI 1640 culture medium (GIBCO) buffered with Hepes salts, and supplemented with 2mM/1-

glutamine, 100 units per ml penicillin, and 100µg per ml streptomycin. Pooled human serum is

added at a final concentration of 10 percent. We are using 96 well 1flat- bottom microtiter plates

and a final cell concentration of 2:5�105 cells per well contained in 0.2 ml volume of medium.

Beryllium sulfate (BeSO4, Aldrich Chemicals, 99.9% purity) in concentrations of 1, 10, and

100µM is used to evaluate donor lymphocyte hypersensitivity to Be metals. As positive controls

we use concanavalin-A (10µg/ml) and phytohemagglutinin (30µg/ml). For each set of expo-

sures, quadruplicate wells are evaluated to obtain estimates of lymphocyte proliferation response.

Unstimulated control wells are run in replicates of 12 because other laboratories have observed

considerable variability in rates of tritiated thymidine incorporated in the control series, and extra

replicates are needed to achieve the required levels of statistical confidence. All cells are incubated

at 37�0:5�C in an atmosphere of 5% C02 in air. Cells assayed for response to Be are harvested at

five and seven days with a terminal six-eight hour pulse of 1.0µCi of tritiated thymidine (sp. act.

6.7 mCi/mM). We are using a Packard 96 well cell harvester which deposits lymphocytes from

each individual well on a standard glass filter paper which can be counted intact on the Packard

Matrix 96 gas ionization counter, or punched for assay using a liquid scintillation counter. The

Matrix 96 unit is less efficient in detecting beta decays than scintillation counters, but has the

great advantage of simultaneously detecting beta radiation emissions from all 96 wells. Statistical

accuracy can be achieved quite readily by increasing counting time using this instrument.

Quality Control

Excess variability in counts between replicate wells within a treatment, i.e., “outliers” could

result from technical errors in initiating the tests, or possibly from intrinsic biological variables
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associated with the characteristics of lymphocyte proliferation response in certain cell donors.

Sources of technical error might include mistakes in pipetting, such as failures to add appropriate

numbers of cells to individual wells, lack of addition or double addition of tritiated thymidine

to specific wells, or improper washing of filters resulting in residual counts of unincorporated

thymidine, or smearing of radiolabel across the filter paper.

Stringent methods for quality control are used routinely to guard against inadvertent technical

errors. To minimize the risk of pipetting errors, all media and other test reagents are delivered

to complete rows or columns of the test plate using electronic micropipetters that deliver up to

8 or 12 aliquots simultaneously. Thus, it is not likely that the operator could “loose her place”

in adding reagents. Cells are harvested onto the surface of filter paper using a Packard 96 Well

Harvester that simultaneously aspirates the cellular contents from each well. To ensure complete

washings of culture plates, a wash volume of approximately 10 times that recommended by the

manufacturer is used. For all tests, we routinely leave all wells in rows A and H empty as a quality

control measure to allow evaluation of background counts on both the top and bottom of the filter

paper. Erratic or high counts in these empty wells would signal incomplete washing of plates or

“smearing” or radioactivity from one well to another.

Filter papers are counted intact on the Matrix 96 gas ionization counter, which simultaneously

records counts and counts-per-minute with attendant errors for each well. Because the Matrix

Counter is a gas ionization unit, only those beta decays that are emitted at right angles to the

surface filter pad are detected and recorded. Thus, the sensitivity of the instrument in detecting

counts is considerably less than that of a liquid scintillation counter (about 20% of emissions are

detected using the gas ionization unit). For this reason, all plates are counted for longer periods of

time to accumulate enough counts for statistical accuracy. Routinely, all plates containing control

wells and wells challenged by beryllium salts are counted for 30 min, whereas mitogen-stimulated

positive controls are counted for 10 min each.

To allow direct comparisons of lymphocyte proliferation response between different blood

donors, we routinely initiate 5-day and 7-day tests on lymphocytes from three separate donors

on a single test plate. The plate map that is routinely used at ORISE is shown in Figure 10. Cells

from three persons are cultured on the same microtiter plate. Cells from patient 1 are pipetted into

columns 1 to 4; cells from patient 2, into columns 5 to 8; and cells from patient 3, into columns 9
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Patient #1 Patient #2 Patient #3
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Figure 10: ORISE Plate Maps for BeLPT Assay.
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to 12. Rows A and H are left blank to monitor background counts in the culture system. Rows B,

C, and D are replicate sets of control wells, whereas rows E, F, and G contain beryllium concen-

trations of 1, 10, and 100µ M respectively. The lower half of the figure demonstrates the platemap

for initiating cultures with phytohemagglutinin or ConA.

An example of a typical printout of data from three different individuals is shown in Figure 11.

The test is a 5-day plate, counted for 30 min. Data are shown as total counts. Patient 1 displays a

pronounced response to all three levels for beryllium challenged wells, whereas patient 3 demon-

strates higher levels of counts in control wells, but also demonstrates no response to beryllium.

Direct comparisons of data among the three persons can be readily made from a single printout

sheet. This approach allows comparisons of counts within replicate treatments for lymphocytes

from the same donor, as well as comparisons of inter-individual variability in counts between dif-

ferent subjects.

PROTOCOL #: 1 NAME: Ac.coh  10-JUN-93 12:01
TIME 30:00 ELAPSED TIME 30:00

1 2 3 4 5 6 7 8 9 10 11 12
1-A: 57 47 48 52 126 68 99 69 27 37 36

1-B: 515 881 489 303 191 260 673 382 1300 1451 3353 127
1-C: 535 742 1602 676 310 420 251 669 2850 1368 634 1478
1-D: 923 570 510 568 253 550 333 439 540 1654 1487 1330

1-E: 17700 10749 19080 18855 696 372 270 434 1236 1991 1173 1743
1-F: 19197 27501 27280 31033 286 383 758 1369 1175 1591 1617 1877
1-G: 21083 38090 45938 29685 454 428 366 654 1772 2415 2766 3737

1-H: 41 63 52 75 66 83 91 43 49 44 31 24

Figure 11: Typical Printout Sheets of Data from Three Different Individuals.


