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Abstract

The lymphocyte proliferation test (LPT) is a noninvasive screening pro-
cedure used to identify persons who may have chronic beryllium disease.
A practical problem in the analysis of LPT well counts is the occurrence of
outlying data values (approximately 7% of the time). A log-linear regres-
sion model is used to describe the expected well counts for each set of test
conditions. The variance of the well counts is proportional to the square
of the expected counts, and two resistant regression methods are used to
estimate the parameters of interest. The first approach uses least absolute
values (LAV) on the log of the well counts to estimate beryllium stimula-
tion indices (Sls) and the coefficient of variation. The second approach uses
a resistant regression version of maximum quasi-likelihood estimation. A
major advantage of the resistant regression methods is that it is
not necessary to identify and delete outliers. These two new meth-
ods for the statistical analysis of the LPT data and the outlier rejection
method that is currently being used are applied to 173 LPT assays. We
strongly recommend the LAV method for routine analysis of the
LPT.

Outliers are also important when trying to identify individuals with
beryllium hypersensitivity, since these individuals have large positive val-
ues for their SIs. A new method for identifying large Sls using combined
data from the not exposed group and the beryllium workers is proposed.
The log(Sls) are described with a Gaussian distribution with location and
scale parameters estimated using resistant methods. This approach is ap-
plied to the test data and results are compared with those obtained from
the current method.

~IX -



1. Introduction

Chronic beryllium disease (CBD), a disorder mainly affecting the lung, occurs in
a small percentage of persons exposed to beryllium dusts. In their discussion of
CBD, Stokes and Rossman [24] note that most investigators require evidence of
beryllium hypersensitivity as one of several criteria for diagnosis of the disease.
They also point out that in vitro proliferation of bronchoalveolar lavage cells to
beryllium is extremely sensitive to and specific for the diagnosis of CBD but is
not suitable for screening since it is an invasive procedure. A non-invasive pro-
cedure based on the proliferative response of blood cells to beryllium has been
developed and is referred to as the beryllium specific lymphocyte proliferation
test (LPT)[10]. Kreiss et al [12] state that the increasing use of beryllium in
several new economic sectors emphasizes the need for medical surveillance in the
workplace for CBD. In particular, beryllium has been used in the nuclear industry
for a number of years. Kreiss et al [13] have examined the epidemiology of CBD
in a stratified sample of workers at a nuclear weapons plant, and discuss the role
of the LPT in beryllium disease surveillance in the nuclear industry. The U.S.
Department of Energy (DOE) is currently conducting a study of all beryllium
exposed workers (approximately 15,000 workers at 20 DOE sites). Each partic-
ipating beryllium worker will have an LPT at an approved laboratory using a
standard protocol developed by the Committee to Accredit Beryllium Sensitiza-
tion Testing (CABST). The results of each assay are then evaluated and classified
as normal, abnormal, or unsatisfactory (see Appendix B).

In this report, statistical methods that can be used to help in the evaluation
of each LPT assay are described. The problems considered are the occurrence of
“outliers” in the raw data (well counts), procedures for evaluating the quality of
the assay results, and identification of “abnormal” LPT results (i.e. beryllium
sensitive workers). When the LPT results are analyzed, the concept of outliers is
important in two different ways. First, the results of a single LPT assay (usually
56 well counts) can contain multiple outlying counts. Given their undue influence

on the parameters of interest(the logSls), a method for handling outliers is needed.
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The “current approach” (as described in the July 1993 version of the CABST
protocol, see Appendix B) is to identify and remove the outliers before calculating
parameter estimates. As an alternative to deleting outlying points, we
propose using estimation methods that are not sensitive to outliers.
To explain these approaches, we describe the LPT assay using a regression model
that relates the expected well counts at each of the three beryllium concentrations
to the control well counts. We then show how resistant fitting methods are used
to estimate the stimulation index (SI) for each concentration of beryllium. A
resistant fit is one that is not sensitive to large changes in a few observations.
The main advantage of this approach is that parameter estimates are
calculated without having to explicitly identify and delete the outlying
well counts.

Outliers are also important when attempting to identify beryllium exposed
workers who exhibit beryllium hypersensitivity. It is anticipated that most (over
90%) of the beryllium workers will have test results similar to those in the group
having no known exposure to beryllium. However, even after the use of resis-
tant methods to minimize the effect of outlying well counts, the LPT for some
beryllium workers will yield large Sls. In this case, we want to identify the
“outliers” (large SlIs) as they represent beryllium workers who exhibit

beryllium hypersensitivity.

2. Statistical Methods

A detailed description of lymphocyte culture methods, quality control measures,
and examples of plate maps and print-outs of raw data are included in Ap-
pendix F. Following is a brief description of the protocol for the LPT culture
assay as established by CABST and implemented by the cytogenetics laboratory
at Oak Ridge Institute for Science and Education (ORISE).

1. A 30 ml blood sample is obtained from each patient and mononucleated
cells are separated using density gradient centrifugation.
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2. Lymphocytes are cultured using standard methods at a final concentration
of 2.5 x 10° cells per well in 96 well flat bottom microtiter plates. For each
LPT assay 12 replicate control wells, and four replicates for each experi-
mental condition (i.e., 1, 10, and 100 gM of BeSOy, and mitogen stimulated
positive controls) are set up.

3. Cells are incubated at 37°C' for five and seven days and a pulse of tritiated
thymidine is delivered prior to harvest. Cells are harvested on filter paper
and counts are measured in a Packard Matrix 96 gas ionization counter.
Each filter is counted for thirty minutes and the results organized as shown
in Table 1 for statistical analysis.

Table 1: Well Counts for LPT Assay (AC153 data shown)

Culture
Conditions ] Replicate Counts
Control | 1 965 1173 828 862
Control | 1 | 1474 7237 1021 976
Day | Control | 1 | 1500 1729 1672 1992
5 Bel | 2 | 1050 706 1434 687
Be 10 | 3 | 1551 1466 1661 2301
Be 100 | 4 | 3571 5780 4011 5229
Control | 5 | 9202 5253 3786 5212
Control | 5 | 2310 2844 1915 3102
Day | Control | 5 | 2458 3936 3087 6588
7 Bel| 6 | 714 1135 6084 1097
Bel0 | 7 | 786 846 2757 652
Be 100 | 8 | 6037 8349 6852 10449
Day Pha | 9 | 82425 52954 52669 50487
5 | Candida | 10 | 35501 21623 21551 22087

2.1. Regression Model for the LPT Data

Let y;;. denote the well count for the k™ replicate of the j set of culture con-
ditions. The expected count in each well can be represented by a log-linear

regression function:

E(yr) = Aj = exp(X;B), (1)



4

where 7 = 1,...,10 and £ = 1,...,12 for the controls and £ = 1,2,3,4 for the
beryllium stimulated cells and the positive controls. In (1), X; is a row vector of
indicator variables and 3 is the vector of regression parameters (see below). We
further assume that the variance of the well counts is proportional to the square

of the expected count:
Var(ye) = (6A;)". (2)

Equations 1 and 2 together are referred to as a generalized linear model with
constant coefficient of variation (see [16, chapter 8] for details). The distinct

values of the row vectors of covariates X;, 7 = 1,...,10 that we use are shown

in Table 2.

Table 2: Distinct Rows in the Model Matrix

j X1 Xj2 Xj3 0 X4 X5 Xj6 X7 X580 X590 X510
1 0 0 0 0 0 0 1 0 0 0
2 1 0 0 0 0 0 1 0 0 0
3 0 1 0 0 0 0 1 0 0 0
4 0 0 1 0 0 0 1 0 0 0
5 0 0 0 0 0 0 0 1 0 0
6 0 0 0 1 0 0 0 1 0 0
7 0 0 0 0 1 0 0 1 0 0
8 0 0 0 0 0 1 0 1 0 0
9 0 0 0 0 0 0 1 0 1 0
10 0 0 0 0 0 0 1 0 0 1

With this parameterization, the first three 3s represent the log of the Sls for
the three concentrations of BeSO4 on harvest day 5 and the next three (s are
the corresponding estimates on day 7. The last two (s are the log(Sls) for the
positive control wells, and (3; and (g represent the log of the control well counts
on day 5 and 7 respectively. We have developed two outlier resistant approaches

for estimating the Sls and the coefficient of variation, ¢.
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2.2. Least Absolute Value Regression on Log(y)

The first approach is to take the log of the counts since this is the variance-

stabilizing transformation and leads to a linear model in say z;;, = log(y; ), i.e.
E(zix) = X;8 — ¢*/2 and Var(z;) ~ ¢°.

If outliers were not present, applying ordinary least squares to the transformed
data would yield consistent estimates for the log(SI) parameters [16]. The ef-
fect of outliers is minimized by using least absolute values (or some other robust
method) on the z;;,. Least absolute value (LAV) regression — also known as
Ly norm, least absolute deviations (LAD) and minimum sum of absolute errors
(MSAE) — is well known to be resistant to outliers and is an important partic-
ular case of a general class of robust methods known as M-estimators [21, 18].
In general, LAV regression requires special computational resources to calculate
parameter estimates [1]. In this situation, however, it is only necessary to find
the median of the log of the well counts for each set of design conditions (say Z;)
and then subtract the control median for each harvest day from the beryllium
stimulated medians (see Appendices A and C for details). A resistant estimate

of the coeflicient of variation can then be obtained as
b1, = C x median{|zj — %]},

where C'= 1.48 x y/n/(n — p), n = 56, and p = 10 (when the assay is complete).
The value of C' is chosen to make the estimate consistent for the standard devia-
tion for a Gaussian error model and for consistency with the usual least squares
results in which the estimated variance is multiplied by the correction factor
n/(n — p) — see [14] and S-PLUS function mad in [23]. Alternative approaches
to estimating ¢ have been discussed in the context of LAV regression (see e.g.,
[22, 18]) and there is no consensus as to the best approach. In addition to the

fact that this parameter is of direct interest in this situation, it is also needed to
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obtain an estimate of the parameter covariance matrix
wi (X' X)™!

where w? = [2f(0)]7? is the asymptotic variance of the sample median [2]. Fol-
lowing the approach of [17] we assume that the underlying error distribution is
Gaussian in the center and use w = \/7%95,; to obtain an estimate of the stan-
dard deviation of the log of the stimulation indices. The appropriate diagonal
term from (X’X)~! is 4/12, and consequently the estimated standard deviation
of log(SI) is 1.259%,;(0.58) — 0.72¢r,. The results of applying this approach to the
data in Table 1 are shown in Table 3.

Table 3: Results of LAV Estimation for log(y) of data in Table 1, b1, = 0.367

Experimental
Conditions Zjk Z; (zjr — %)/ ¢L 8 exp(3)
Controls 6.872 7.067 6.719 6.759 7.182 -0.8 -03 -13 -1.2
Controls 7.296 8.887 6.929 6.883 7.182 0.3 46 -0.7 -0.8
Day | Controls 7.313 7.455 7.422 7.597 7.182 0.4 0.7 0.7 1.1
5 Bel 6.957 6.560 7.268 6.532 6.758 0.5 -0.5 1.4 -0.6 | -0.423 0.655
Bel0 7.347 7.290 7.415 7.741 7.381 -0.1  -0.2 0.1 1.0 0.199 1.221
Be100 8.181 8.662 8.297 8.562 8.429 | -0.7 06 -04 0.4 1.248 3.483
Controls 9.127 8.567 8.239 8.559 8.139 2.7 1.2 0.3 1.1
Controls 7.745 7.953 7.557 8.040 8139 | -1.1 -0.5 -1.6 -0.3
Day | Controls 7.807 8.278 8.035 8.793 8.139 | -0.9 04 -0.3 1.8
7 Bel 6.571 7.034 8.713 7.000 7.017 | -1.2 0.0 4.6 0.0 | -1.122 0.326
Bel0 6.667 6.741 7.922 6.480 6.704 | -0.1 0.1 3.3 -0.6| -1.436 0.238
Be100 8.706 9.030 8.832 9.254 8.931 -0.6 0.3 -0.3 0.9 0.792 2.207
Day Pha | 11.320 10.877 10.872 10.829 | 10.874 1.2 0.0 0.0 -01 4.792 | 120.50
5 Candida | 10.477 9.982 9.978 10.003 9.992 1.3 0.0 0.0 0.0 3.910 | 49.880

2.3. Quasi-Likelihood Estimation

In the second approach that we consider, the analysis is done on the original scale
and estimation is based on the iterative weighted least squares (IWLS) algorithm.
The use of IWLS for generalized linear [19] and nonlinear regression functions [7]
leads to maximum likelihood estimates when the dependent variable is in the reg-
ular exponential family. McCullagh [15] extended this result to quasi-likelihood
estimation which requires specification of the mean and variance function. Ex-

tension of the IWLS method to resistant/robust regression has been described by
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[9] and [20], and the computational approach described in [6] (see chapter 6) is
used here. Similar resistant regression methods have been applied to the analysis
of drug concentration-time data encountered in human bioavailability studies [8].

To describe this approach, consider the following weighted sum of squares,

Z Z wik Yk — /\j]27 (3)

J
where \; = exp(X;3) and wj o< 1/var(y;z) = 1/A%. In the IWLS procedure, we
start with an initial estimate, say 8°, of the unknown parameters (see below),

replace A; in (3) with the first order Taylor series
exp(X;3°) + P;6°,
where P; = X;A%, and evaluate the weights at 3° to obtain
> wiilyin — (A + P;°)]%.

The unknown “correction vector”, §°, is then calculated using weighted least

squares, i.e. by solving
(PW°P°)§° = P"W°[Y — A°] (4)

for 8°. The estimate of @ is then updated B' = B° + §°, and the procedure
is repeated until convergence (see Appendix D for more details). Following the

final iteration, compute the moment estimate of ¢? namely

=

Yik

R L

The IWLS algorithm described above needs to be modified to adjust for the

effect of outliers. This is done by introducing a second weight for each observation
1 lu| <k

w = (5)
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where u = (yjk—;gjk)/{bgjk is the standardized residual using the current estimates
of @ and ¢. This is known as an M-estimator with Huber’s loss function. The
“tuning constant”, k, must be specified and we use k = 1.345 which leads to
estimates with approximately 95% efficiency [20]. Therefore, we obtain resistant
quasi-likelihood estimates by adjusting the weights in the diagonal matrix W
in Equation (4) by multiplying in the Huber weight in (5) (see Appendix D for
details). Following the last iteration, the coefficient of variation is estimated using

a scaled MAD estimate of the standardized residuals w;r = (y;x — Ujx)/ Uik

& = 1.48 x median{|u;|} x \/n/(n — p).
3. Results

The regression model and the estimation methods discussed in Section 2.1 were
obtained through analytic reasoning and limited experience with a few data sets.
To evaluate the utility of our proposed methods, we have applied them to all
available LPT assay results obtained at the ORISE cytogenetics laboratory as
of July 1993. The method in use at ORISE (see Appendix B) at that time was
also applied to each LPT assay, and is referred to in this report as the current

method.

3.1. Description of the Data

Of the 173 test results used in the analysis, 133 are from a group of 120 workers
exposed to beryllium and the remaining 40 are from persons having no known
exposure to beryllium. The discrepancy between the number of test results and
the number of beryllium exposed workers is accounted for by the fact that a
second LPT was carried out on 13 workers.

Ideally, there should be 56 observations (well counts) for each assay, but in
some cases, well counts are missing due to lack of sufficient cells to set up a
complete test series or technical errors (see Appendix F.1). When an assay is

incomplete, parameters are estimated (if possible) based on the reduced data set.
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3.2. Comparison of Moment and Resistant Estimates of the Coefficient
of Variation for Control Wells

An important assumption that we are making is that the standard deviation of
the well counts is proportional to the mean as implied by Equation (2). Since
each of the 173 assays contains 12 replicate control wells on both day 5 and day
7 we can evaluate this assumption by computing location and scale estimates for
each assay on day 5 and day 7.

Figure 1 (top) shows the relationship between the moment estimator of lo-
cation (y, the sample mean) and the moment estimator of scale (s, the sample
standard deviation) for the day 5 control wells. This plot also shows the result-
ing line when the standard deviation is regressed on the mean. The least squares
equation for this line is & = 0.448y, and the slope (0.448) is an estimate of the
coefficient of variation for day 5. Figure 1 (bottom) is a similar plot but resistant
estimates are used in place of moment estimates. Specifically, the sample median
(7) replaces the sample mean, the MAD estimate (&) replaces s, and LAV is used
to regress & on y. The solution to this resistant fit is & = 0.34y and the slope
(0.34) is a resistant estimate of the coefficient of variation. Given the presence of
outliers in the LPT data, we prefer the resistant coefficient of variation.

Figure 2 shows the relationship between the resistant estimates of location
and scale for the day 5 control wells (top) and the day 7 control wells (bottom)
on a log-log scale. Note that if the standard deviation is proportional to the mean
(i.e. constant coefficient of variation), the log-log plot should be linear with a
slope of 1. The LAV fit is ¢ = 0.3617y for the day 7 control wells and the solid
line in Figure 2 (bottom) is log(&) = log(0.361) + log(g). Comparing this fit to
the resistant fit for the day 5 control wells (6 = 0.347) reveals that the results on
both days are quite similar. The main difference in the day 5 and day 7 results
is that the day 7 results are shifted to the right since the control well counts are
generally higher on day 7 than those on day 5. The median of the ys on day
5 is 1247 compared with 1840 for day 7. These results are consistent with
the laboratory observation that day 7 results are generally higher and
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show greater variability than well counts on day 5. They also support
the regression model assumption discussed in Section 2.1 that the variance of the

well counts is proportional to the square of the expected counts.

3.3. Summary of Results for Three Methods

The two methods of analysis described in Section 2 and the method currently
being used (see Appendix B) were applied to the data described in Section 3.1.
The results are summarized in six graphical displays (two for each method) in
Figures 3 - 8. We will describe the two plots for the LAV method in detail.

The first graphical display (see Figure 3) is a series of 12 boxplots (see [26,
17, 23]) placed side by side for the log(SIs) — the vertical axis on the right shows
the untransformed Sls. The ends of the box correspond to the 25" and 75
percentile so that 50 percent of the log(Sls) are contained in the box for each
group. The vertical dotted lines are drawn to the nearest value not beyond a
standard span — 1.5x (Inter-Quartile Range) — from the quartiles. The outlying
values are shown individually for each group of data. There are two boxplots for
each beryllium concentration on day 5 and day 7. The first one in each pair is
labeled “BW?” for beryllium workers, and the second one is labeled “NE” for not
exposed. Consequently, each pair of boxplots provides a comparison of
the distribution of the SIs for the beryllium group and the not exposed
group for each of the six culture conditions. Consider, for example, the
first two boxplots in Figure 3 which are for beryllium concentration 1 on day
5 (BW-d5bel and NE-d5bel) for the LAV estimates. Both distributions are
centered near zero (for log(SI)), and the not exposed group is a little more spread
out in the center. The beryllium workers group shows nine outlying values in the
positive direction and one in the negative direction. The notches (which represent
confidence limits for the sample median) in the boxplots overlap, indicating that
the difference in the location of the two distributions is not significant at a rough
5% level. The dashed horizontal line corresponds to log(SI) equal to zero, and

passes through both notches indicating that both distributions are centered near
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Figure 1: (top) Relationship between the mean, y, and the standard deviation , &,
for day 5 control wells. The solid line is the ordinary least squares fit, & = 0.448y.
(bottom) Relationship between the Median, g, and the MAD, &. The L solution,
the solid line, is & = 0.34y. The dashed lines are the result of applying scatterplot
smoothers to the data.
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Figure 2: Relationship between the Median, g, and the MAD, &, (6 = 0.34y) for
the day 5 (top) and day 7 (bottom) control wells (6 = 0.361%) shown on a log
scale. Note that since the results are shown on a log scale, the slope of the line
is 1.
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zero on the log scale.

Each of the boxplots in Figure 3 is centered near zero and is spread out
evenly in both directions. As the beryllium concentration increases on each day
the variability (as indicated by the length of the boxes) increases. Results on
day 7 are more variable than those on day 5 for each of the three beryllium
concentrations. Also note that on day 7 the Sls for the beryllium workers are
generally smaller that those for the not exposed group, and that the median
log(SIs) are less than zero except for the ne-d7bel00 group.

The second graphical display (Figure 4) shows a normal (Gaussian) prob-
ability plot for the combined BW and NE SIs for each of the three beryllium
concentrations on day 5 and day 7. In each of the six plots, the data (ordered
values of the log(SIs)) are shown on the vertical scale on the left, and the quantiles
of the standard normal distribution are shown on the horizontal scale. A detailed
account of the construction and interpretation of normal probability plots is pro-
vided by [5]. In our situation statistical theory indicates that the log(SIs) should
be approximately normally distributed, and the large sample standard deviation
should be about 0.28 if the coefficient of variation is 0.4. If the relation between
the empirical and theoretical quantiles is linear, this indicates that the distribu-
tion is Gaussian. In each plot we have included the median (labeled M) and a
resistant estimate of the standard deviation (labeled S) for the log SIs. The solid
line in each plot shows the relation that is expected if the log SI values are from a
normal distribution with mean M (which determines the intercept) and standard
deviation S (which determines the slope). (The values of M and S are also shown
in Table 4). Note that we have used resistant methods to estimate the mean and
standard deviation for the combined data from the BE and NE groups. This
reflects our assumption that most of beryllium workers do not show an abnormal
response, i.e. they look like the not exposed group. For example, consider the
plot for day 5 Be-1 in Figure 4. The log(SIs) appear to be approximately normal
in the center, but there are several values that are larger than expected (these are

the points above the line). These “outliers” are Sls that indicate hypersensitivity
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to beryllium.

The results in Figures 3 and 4 indicate that the log(SIs) are approximately
normally distributed. The center of each log(SI) distribution is greater that zero
for each beryllium concentration on day 5 and is less than zero for each beryllium
concentration on day 7. Note that the untransformed SI units are shown on the
vertical scale on the right side of each plot. The estimated standard deviations
increase with beryllium concentration on each day, and are larger on day 7 than

on day 5. The median and § values for each method are summarized in Table 4

Table 4: Median Estimates (fi) and Resistant Estimates (§) of the standard
deviation (shown in parenthesis) of log(SI) for LPT Data.

Method Day 5 Day 7

Bel Be 10 | Be 100 Bel Be 10 | Be 100

Current - fi; 0.069 0.104 0.280 || -0.191 | -0.330 | -0.163

55 [ (0.300) | (0.568) | (0.802) || (0.514) | (0.857) | (1.066)

LAV - j; 0.066 0.152 0.284 || -0.211 | -0.388 | -0.139

5 [ (0.317) | (0.531) | (0.770) || (0.599) | (0.883) | (1.113)

QL - i 0.049 0.102 0.258 | -0.211 | -0.375 | -0.226

5 [ (0.337) | (0.561) | (0.795) || (0.665) | (0.918) | (1.155)

3.4. Comparison of Current Method and LAV Method

To compare the current method and the LAV approach, we subtract the six LAV
log(S1s) for each of the 173 LPTs from the corresponding log(Sls) calculated using
the current method, multiply by 100, and take the average of the differences, i.e.

avedif12 = mean[100 + (B;, — L),/ =1,...,6].

]

For example, for AC147 (see Table 5 and Appendix E, the current method day
5 bel00 SI is exp(1.41) = 4.10 and exp(1.45) = 4.26 for the LAV procedure, and
100 x log(4.10/4.26) = 100 x (1.41 — 1.45) = —4L% where L% stands for the
logarithmic percent (see [25]). The SI for the current method is 96 percent of
the LAV SI, i.e. about 4% smaller. The average difference between the current
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method and LAV method for AC147 is -1.7L% . Table 5 compares AC147’s
log(S1Is) for all three methods.

Table 5: Comparison of Log(SIs) for AC147
Method Day 5 Day 7
Bel | Be 10 | Be 100 || Be 1 | Be 10 | Be 100
Current || 0.33 | 1.83 1.41 -0.17 | 1.86 1.81
LAV || 0.26 | 1.85 1.45 -0.01 | 1.81 1.81
QL || 0.16 | 1.67 1.39 -0.03 | 1.72 1.67
100 % (CM — LAV) 7 -2 -4 -16 5 0
100 % (QL — LAV) || -10 -18 -6 -2 -9 -14

Figure 9 shows a boxplot of avedifl2 (as defined above) for the 173 LPTs —
note that the average difference is between -3L.% and 9L% fifty percent of the
time and the mean of the average difference is 31.%. A large, positive value of
avedif12 indicates that the current method log(SIs) for an LPT are greater than
the LAV log(SIs).

mean(100*{log(Current Sls) - log(LAV Sls)])

60

20 40

L%
(o]
o F|}{ com

-20

-40

-60

Figure 9: Average Difference of the Current Method and LAV log(SIs)
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3.5. Comparison of Resistant Quasi-Likelihood Method and LAV Method

The average difference is also used to compare the quasi-likelihood and LAV

methods. This quantity is defined as

avedif32 = mean[100 x* (BEL - NL),]' =1,...,6],

i

and a large positive value here indicates that the QI log(SlIs) for an LPT are
greater than the LAV log(SIs). Figure 10 shows a boxplot of these values. The
average difference is between -61.% and 3L.% fifty percent of the time, and the
mean of the average difference is -0.6L% .

Figure 11 compares the distribution of ér, (the LAV coefficient of variation,
see Section 2.2) and gNéQ (the QL coefficient of variation, see Section 2.3). For both
methods, the estimated coefficient of variation is between 0.25 and 0.40 most of

the time. The median value of ¢y, is 0.321 and the median value of <}5Q 1s 0.329

mean(100*{log(QL SIs) - log(LAV SIs)])
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Figure 10: Average Difference between QL and LAV log(SIs)
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Figure 11: Comparison of QL and LAV Coefficients of Variation (qgs)

3.6. Identification of LPT Results With Large SIs

The method that we suggest for identifying an abnormal LPT result is based
on the assumption that the log(SIs) are approximately normally distributed (see
Figure 4). The first step is to convert each log(SI) into a standardized deviate

T
P Ty

Uiy = — ~——
5

using the values of fi; and s; given in Table 4. Results of this computation for the
LAV log(Sls) for AC147 (see Table 5) are given in Table 6. These standardized
deviates can be compared with the quantiles of the standard normal distribution,
i.e. Prlu < z,] = p. For example, with z 975 = 1.96, two of the SIs for AC147(day
5 Bel0 and day 7 Bel0) would be considered large (at the .025 significance level).
If we assume that the log(SIs) are independent then the binomial distribution can
be used to calculate an approximate probability of at least & out of six “large”
SIs for a given value of z,. The probability of at least one large ST is 1 — p® = .141
(for p = .975). The probability of at least two is 1 — [p® + 6(1 — p)p°] = .009
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(for p = .975). In fact, the log(Sls) are positively correlated, so this probability
should be a lower bound on the chance of finding a false positive LPT.

Table 6: Values of Standardized Deviates for AC147 using LAV Method
Day 5 Day 7

Bel Bel0 Bel00 | Bel BelO Be 100

0.61  3.21 1.52 0.33 2.48 1.75

The results of applying this procedure to the 173 LPT assays using z 975 = 1.96

are shown in Table 7.The last row in Table 7 gives the values of
ST = exp(i + 298,),5 = 1,6

that must be exceeded for that SI to be considered large. These were obtained
using the values of ji; and §; for the LAV method in Table 4.

The method that is currently being used at ORISE to identify workers with
large Sls is based on the distribution of the maximum SI for each individual in

the not exposed group, i.e.
MSI(z) = max[exp(ﬁij),j =1,...,6],0=1,..., Ne,

where Ne = number in the not exposed group. The boxplots in Figure 12 shows
this distribution for the not exposed group and the beryllium workers. The mean
and standard deviation of the MSI for the not exposed group are used to calculate
the value of SI* = mean+2(standard deviations). An LPT for a beryllium worker
is define to be “abnormal” if at least two SIs exceed SI* (currently equal to 5.65).
Using this approach leads to the identification of AC147, AC149, AC235, and
AC236 as abnormal. (Six LPTs that had 2 or more Sls greater than 5.65 were
found to be unacceptable based on the values of the within group CVs as described
in Appendix B. They are AC161, AC171, AC174, AC196, AC208, and AC225.)
In some situations the quality of the LPT results may be questionable. This
could be indicated in the LAV approach by the value of the coefficient of variation,



- 95 -

Table 7: Values of the standardized deviates(u;;s) for LPTs with at Least Two
> 2975

Day 5 Day 7
Bel | Bel0 | Be100 || Bel | Be 10 | Be 100
ID Ui Uz us Ug Us Ue ¢L

AC128 2.10 0.65 2.11 -1.23 | -0.63 0.49 0.30
AC147 0.61 3.21 1.52 0.33 | 2.48 1.75 0.26
AC161 9.61 6.81 5.95 8.33 | 5.91 4.74 0.42
ACIT1 2.47 2.53 2.22 1.90 | 2.45 2.21 0.18
AC174 || -0.13 3.22 2.40 -0.50 1.42 1.07 0.27
AC182 0.87 1.20 1.73 3.45 | 2.17 0.70 0.33
ACI187 3.74 1.96 | -0.61 1.62 | 0.07 | -0.98 0.71
AC196 9.08 5.25 2.07 6.50 | 3.16 2.08 0.38
AC208 5.76 2.15 0.91 4.38 1.04 0.72 0.42
AC209 3.79 0.96 1.99 2.55 1.82 1.63 0.43
AC218 5.28 | -0.07 | -0.72 2.75 | -1.16 | -1.07 0.40
AC225 4.81 4.75 1.47 4.32 1.73 1.03 0.82
AC235 5.17 2.23 2.62 2.71 | -0.27 1.59 0.39
AC236 || 10.04 | 6.34 3.70 3.15 1.46 0.73 0.21
ST 2.00 3.30 6.00 2.62 | 3.83 7.72

Note: SI; = exp(fij + z,3;) is the ST value that must be exceeded (see text)
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Figure 12: Distribution of Maximum SI from Current Method

61, that is computed for each LPT. Note that ¢z, is a resistant estimate of the
“within group” standard deviation of the log well counts. This means that it is
not inflated by “outliers” in the well counts (that could be caused by measurement
error) and suggests that &1, may be reflecting some intrinsic biological variables
associated with the lymphocyte proliferation response in certain cell donors.
Figure 13 shows a normal probability plot for log(qNéL). The resistant estimates
of the mean and standard deviation of log(qu) are -1.136 and 0.285. From this
we compute the 99 percentile ¢* = 0.623. Five of the LPTs in our database
have values of QBL > 0.623. They are AC242, AC223, AC187, AC211, and AC225.

4. Conclusions

The three methods that were considered are the “current” method (in use at
ORISE in July, 1993), and two new methods (LAV and QL) that are based on
resistant regression techniques. Both of the new methods are highly resistant to

outliers (in the well counts), have well known statistical properties, and provide
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a “pooled” estimate of the coefficient of variation (¢) for each LPT. The LAV
method is also very easy to compute and is recommended for routine
analysis of the LPT.

FEach of the three methods was applied to a data base of 173 LPTs (133
from beryllium workers and 40 from individuals with no beryllium exposure).
Graphical and numerical summaries show that the three methods are generally
in close agreement. Estimates of the log(SIs) are found to be approximately
normally distributed. The log(SI) distributions are centered near zero for each
of the three concentrations of BeSO4 on harvest day 5 and 7. The variability is
greater on day 7 than on day 5, and increases with concentration on each day.
Resistant estimates of the location and scale parameters for each of the six log(SI)
distributions are used to define “large” Sls, which are used to identify “abnormal”
test results. Results of this preliminary approach to identify abnormal LPTs were

compared with results obtained using the current method.
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In a subsequent report further consideration will be given to the use of the
LAV approach to address the following questions:

i) how should “abnormal” LLPTs be identified; and

ii) how to determine if an LPT result should be considered “uninterpretable”
using the resistant estimate of the coefficient of variation (QBL)

The approaches(s) that are developed will be applied to a much larger data
base of LPTs obtained from ORISE and at least one additional laboratory that
is currently using the LPT assay to identify persons who may have CBD.
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A. Calculating Resistant Statistics

Here, the resistant statistics used to calculate the Stimulation Indices and other

information are defined.

A.1. The Median

The median of a data set has the property that half the points have a value larger
than it and half the points have a value less than it. One way to calculate the
median is to sort the data and find the middle term. In general, if there are an
odd number of values in a data set, the median is the (n + 1)/2 term when the
data set is sorted. When there are an even number of values in a data set, the
median is the average of the (n 4+ 1)/2 and ((n 4 1)/2) + 1 terms when the data
are sorted. As an example, consider the log of the day 7 bel0 data for patient
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AC234: (8.75, 8.06, 8.84, 8.86). When the values are sorted, the data set
is (8.06, 8.75, 8.84, 8.86) and the median is (8.75 4 8.84)/2 = 8.80.

A.2. The Median Absolute Deviation (MAD)

The Median Absolute Deviation (MAD) for a data set zq,...,z, is defined as
MAD = median(|z; — 2|),1 = 1,...,n,

where Z is the median of the z;s. To calculate a resistant scale estimate, follow

these steps:

1. Calculate the median (2) of the data set

2. Calculate the deviations z; — Z by subtracting the median from each data
value

3. Find the median of the absolute values of the deviations calculated in Step
2 to obtain the MAD estimate

4. Finally, multiply the MAD estimate by C' = 1.48 x y/n/(n — p) to obtain a
resistant estimate of the standard deviation (§). See Section 2.2.

Continuing with our sample data set shown in Section A.1, the resistant scale

estimate is calculated as shown in Table 8.

Table 8: Calculating a Resistant Scale Parameter for a Sample Data Set

yi_g |yi_g| MAD s=CxMAD
8.06 —8.80 = —0.74 | 0.74
8.75 —8.80 = —0.05 | 0.05
8.84 — 8.80 = 0.04 0.04 | 0.055 | 1.71 x 0.055 = 0.094
8.86 — 8.80 = 0.06 0.06
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B. Current Method of Analysis

Currently, Stimulation Indices are calculated based on means and the “reliability”
of the data is gauged by the coefficient of variation. Outliers are dealt with by
deleting points (no more than one third for each set of culture conditions) until the
coefficient of variation is less than or equal to .30. A patient’s data is acceptable
if the coefficient of variation is less than or equal to .30 for both day 5 and day 7
control data and 4 of the 6 sets of treatment data. A patient is deemed beryllium
sensitive if 2 or more stimulation indices exceed the mean peak SI + 26 for people
known to have never been exposed to beryllium. The stimulation indices for this
procedure are ratios of the treatment means and the corresponding control data,
ie.

mean(treated)

ST =

mean(control)
As positive control wells are counted for only 10 minutes, their stimulation indices
are defined as

mean(positivecontrol)

ST =3x

mean(control)
The well counts for AC234 are shown in Table 9 and Table 10 shows the

results of the current analysis using this data.

C. Least Absolute Values Method

The steps necessary to calculate the LAV Sls are outlined below. The procedure

is as follows:

o Take natural logs of the well counts

e Calculate medians for the following data subsets (culture conditions): day
5 Controls, day 5 bel, day 5 bel0, day 5 bel00, day 7 Controls, day 7 bel,
day 7 bel0, day 7 bel00, and positive control data

e Calculate the log of the Stimulation Index defined as:

log(ST) = Median(treated) — Median(controls)
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Data Subset Raw Data

day5 controls 2247 1257 2397 2302

day5 controls 2639 1753 3225 2432

day5 controls 3412 2006 1814 1489

day5 bel 3162 2358 1878 2546

day5 bel0 3416 4684 4040 4571

day5 bel00 7990 | 10050 7351 | 11334

day7 controls 1774 2043 2239 4929

day7 controls 1491 5155 1601 3254

day7 controls 1666 2864 1935 2716

day7 bel 1888 1899 1079 2253

day7 bel0 6340 3181 6919 7074

day7 bel00 13397 | 13242 | 10397 | 13476

pha 185261 | 99187 | 127343 | 147382

candida 10584 | 16998 | 23131 | 11299

Table 10: Current Analysis for AC234

Data Subset | Reps | Time Avg CV SI logSI
dayb controls || 12.00 | 30.00 | 2247.75 | 0.29
dayb bel 4.00 | 30.00 | 2486.00 |0.21 | 1.11 | 0.10
dayb bell 4.00 | 30.00 | 4177.75 |0.14| 1.86 | 0.62
dayb bel00 4.00 | 30.00 | 9181.25 |0.20 | 4.08 | 1.41
day7 controls || 10.00 | 30.00 | 2158.30 | 0.28
day7 bel 4.00 | 30.00 | 1779.75 |0.28 | 0.82 |-0.19
day7 bel0 3.00 | 30.00 | 6777.67 [0.06 | 3.14 | 1.14
day7 bel00 4.00 | 30.00 | 12628.00 | 0.12 | 5.85 | 1.77
pha 4.00 | 10.00 | 139793.25 | 0.26 | 186.57 | 5.23
candida 3.00 | 10.00 | 12960.33 | 0.27 | 17.31 | 2.85
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for the treatment data and
log(ST) = Median(pos.controls) — Median(controls) + log(3)

for the positive control data.

e Calculate a resistant coefficient of variation (this is %L) defined in Sec-
tion 2.2.

Table 11 illustrates calculating the Stimulation Indices using the LAV method
for patient AC234.

The calculations were carried out with the following S-PLUS function, named

m2:

function(patient, db, looping = F)
{
#m2
#Example m2("AC153")
#
#patient is a patient id, his/her corresponding well counts are used
#in analysis looping is a logical set to true by the function m2.for.
#The variable patient in this case is a patients data. m2.for
#takes care of attributes, etc.
if(!'looping) {

y <- db[patient, ]

attributes(y) <- NULL

y <- unlist(y)

}
else y <- patient
z <- log(y) #

#

#first calculate the medians
m5c <- median(z[1:12], na.rm = T)
m51 <- median(z[13:16], na.rm = T)
m510 <- median(z[17:20], na.rm = T)
m5100 <- median(z[21:24], na.rm = T)
m7c <- median(z[25:36], na.rm = T)
m71 <- median(z[37:40], na.rm = T)
m710 <- median(z[41:44], na.rm = T)
m7100 <- median(z[45:48], na.rm = T)
mpha <- median(z[49:52], na.rm = T)
mcand <- median(z[53:56], na.rm = T) #
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#now calculate the log(SIs)

#sample

it
# scale
it

#

d51 <- mb1 - mbc

d510 <- m510 - mbc

d5100 <- m5100 - mbc

d71 <- m71 - m7c

d710 <- m710 - m7c

d7100 <- m7100 - m7c

pha <- mpha - mbc + log(3)

cand <- mcand - m5c + log(3) #

size and number of parameters

N <- length(z['is.na(z)])

tmp <- c(d51, 4510, 45100, d71, d710, d7100, mbc, m7c, pha
, cand)

npar <- length(tmp[!is.na(tmp)]) #

estimators

meds <- rep(c(mbc, mb61, m510, m5100, m7c, m71, m710, m7100,
mpha, mcand), c(12, 4, 4, 4, 12, 4, 4, 4, 4, 4))

residuals <- z - meds

phitil <- median(abs(residuals - median(residuals, na.rm =T)),
na.rm = T)/0.6745

phitil <- sqrt(N/(N - npar)) * phitil

sclres <- residuals/phitil

absres <- abs(sclres)

weights <- ifelse(absres > 1.345, 1.345/absres, 1)

phihat <- sqrt((sum(weights * (residuals)"2, na.rm = T))
/(N - npar)) #

#calculate separate phitiles for day 5 and 7 control & treatments

#

resbc <- residuals[1:12]
N5c <- length(resbc[!is.na(res5¢c)])

phitilbec <- median(abs(resbc - median(resbc, na.rm = T))
, na.rm = T)/0.6745

phitilBe <- phitilbc * sqrt(N5c/(N5c - 1))

parbt <- c(m51, m510, m5100)

Npar5t <- length(par5t[!is.na(parbt)])

resbt <- residuals[13:24]

N5t <- length(resbt[!is.na(res5t)])

phitilbt <- median(abs(resbt - median(resbt, na.rm = T))

, na.rm = T)/0.6745
phitilbt <- phitilbt * sqrt(N5t/(N5t - Nparbt))
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res7c <- residuals[25:36]
N7c <- length(res7c[!is.na(res7¢)])

phitil7c <- median(abs(res7c - median(res7c, na.rm = T))
, na.rm = T)/0.6745

phitil7c <- phitil7c * sqrt(N7c/(N7c - 1))

par7t <- c(m71, m710, m7100)

Npar7t <- length(par7t[!is.na(par7t)])

res7t <- residuals[37:48]

N7t <- length(res7t[!is.na(res7t)])

phitil7t <- median(abs(res7t - median(res7t, na.rm = T))

, na.rm = T)/0.6745
phitil7t <- phitil7t * sqrt(N7t/(N7t - Npar7t)) #

#
#0ther things of interest #
#
Nprime <- sum(weights, na.rm = T)
tmp <- absres[!is.na(absres)]
00.005 <- length(tmp[tmp > gqnorm(0.995)])
00.0005 <- length(tmp[tmp > gqnorm(0.9995)]1) #
#output results #
#
output <- c(d51, 4510, 45100, d71, 4710, d7100, m5c, m7c, pha,
cand, phihat, phitil, N, Nprime, 00.005, 00.0005, phitilbc,
phitilSt, phitil7c, phitil7t)
if('looping)
names (output) <- c("d5belsi", "d5bel0si", "d5bel00si',
"d7belsi", "d7bel0Osi", "d7bel00si", '"day5",
"day7", "pc.pha", "pc.cand", "phihat",
"phitild", "N", "Nprime", "00.995", "00.9995",
"phitil5c", "phitilSt", "phitil7c", "phitil7t")
output
}

Additional information included in the summary report (see Appendix E)
for the LAV method are standardized residuals (which can be used to identify
outliers) and the MAD estimates of the standard deviation for each set of culture

conditions.
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Table 11: Calculation of LAV SIs for Patient AC234

Data Subset

Sorted Data

Median

log(ST)

Day 5 Controls

7.14 7.31 7.47 7.50
7.60 7.72 7.74 7.78
7.80 7.88 8.08 8.14

(7.72 + 7.74) /2 = 7.73

Day 5 bel 7.54 7.77 7.84 8.06 (777 +7.84)/2 =779 7.79 —7.73 = 0.06 1.06
Day 5 bel0 8.14 8.30 8.43 8.45 (8.30 4+ 8.43)/2 = 8.37 8.37 — 7.73 = 0.64 1.90
Day 5 bel00 8.90 8.99 9.22 9.34 (8.99 +9.22)/2 =9.11 9.11 — 7.73 = 1.38 3.97
7.31 7.38 7.42 7.48
Day 7 Controls 7.57 7.62 7.71 7.91 (7624 7.71)/2 = 7.67
7.96 8.09 8.50 8.55
Day 7 bel 6.98 7.54 7.55 7.72 (7.564 4 7.55)/2 = 7.55 7.55 —7.67 = —0.12 0.87
Day 7 bel0 8.06 8.75 8.84 8.86 (8.75 + 8.84)/2 = 8.80 8.80 —7.67 = 1.13 3.10
Day 7 bel00 9.25 9.49 9.50 9.51 (9.49 + 9.50)/2 = 9.50 9.50 — 7.67 = 1.83 6.23
pha 11.50 11.75 11.90 12.13 (11.75 4+ 11.90)/2 = 11.83 11.83 —7.73 + log(3) = 5.20 181.02
candida 9.27 9.33 9.74 10.05 (9.33 4+ 9.74)/2 = 9.54 9.54 — 7.73 4+ log(3) = 2.91 18.33

D. Quasi Likelihood Detalils

The quasi likelihood analysis uses the Gamma distribution to describe the error
component of the model and a log link function. Calculations for the quasi anal-
ysis were carried out with the following functions. The first function, m3, carries
out preliminary calculations and then makes a call to the glm function where
the IWLS algorithm is implemented. On each iteration, the glm function calls
the ROBGAMMA function (the second function shown). This function establishes

the variance and link function and calculates the deviance and a set of robust

weights on each iteration.

function(y)

{

#m3 - quasi likelihood analysis

#

#y is a vector of well counts from an LPT assay

#
#

#Transform data
z <- log(y) #

#

#first calculate the medians

mSc <- median(z[1:12], na.rm = T)
m51 <- median(z[13:16], na.rm = T)
m510 <- median(z[17:20], na.rm = T)
m5100 <- median(z[21:24], na.rm = T)
m7c <- median(z[25:36], na.rm =

T)
m71 <- median(z[37:40], na.rm = T)
m710 <- median(z[41:44], na.rm = T

)
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m7100 <- median(z[45:48], na.rm = T)
mpha <- median(z[49:52], na.rm = T)
mcand <- median(z[53:56], na.rm = T) #
#
#figure out number of parameters & sample size
tmp <- c(mbc, m51, m510, m5100, m7c, m71, m710, m7100, mpha, mcand)
npar <- length(tmp[!is.na(tmp)])
N <- length(y[!is.na(y)]) #

#
#initial phitilde
#
j <- rep(1:10, c(12, 4, 4, 4, 12, 4, 4, 4, 4, 4))
yhat <- rep(tapply(y, j, median, na.rm = T), c(12, 4, 4, 4, 12, 4,
4, 4, 4, 4))
gamres <- (y - yhat)/yhat
phitilde.init <- sqrt(N/(N - npar)) * mad(gamres, na.rm = T) #
#

#let the ROBGAMMA function have access to the scale parameter
#

assign("robscale", phitilde.init, fr = 1) #
#
#fit model - XX is model matrix of indicator variables see Table 2
# OFFSET is to account for differences in counting times
#

OFFSET <- rep(c(0, 1og(10/30)), c(48, 8))
logfit <- glm(y~ XX - 1 + offset(0OFFSET), na.action =
na.omit,
start= rep(tmp, c(12, 4, 4, 4, 12, 4, 4, 4, 4, 4)), family =
ROBGAMMA) #
#
#set up for output and do other calculations
#
logySI <- logfit$coef
phihat <- sqrt((sum(resid(logfit, type = "pearson")"2))
/logfit$ df .residual)
newres <- (y['is.na(y)] - fitted(logfit))/fitted(logfit)
phitilde.f <- sqrt(N/(N - npar)) * mad(newres)
iters <- logfit$§iter
npr <- NPRIME
c(logySI, phihat, phitilde.init, phitilde.f, N, npr, iters)}

$family:
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name link variance
"Robust Gamma" "Log: log(mu)" "Square: mu~2"

$names:
[1] "Log: log(mu)"

$1link:
function(mu)
log(mu)

$inverse:
function(eta)
care.exp(eta)

$deriv:
function(mu)
1/mu

$initialize:
expression({
if(1is.null(dimy <- dim(y))) {
if(dimy[2] > 1)
stop("multiple responses not allowed")
else y <- drop(y)
}
else y <- as.numeric(y)
mu <- y + 0.167 * (y == 0)
}
, maxit <- 20)

$variance:
function(mu)
mu~2

$deviance:
function(mu, y, w, residuals = F, robust = T)
{
old.deviance <- function(mu, y, w, residuals = F)
{
nz <-y >0
devi <- (y - mu)/mu
devi[nz] <- devi[nz] - log(y[nz]/mul[nz])
if (residuals)
sign(y - mu) * sqrt(2 * abs(devi) * w)
else 2 * sum(w * devi)
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}
if ('robust)
return(old.deviance(mu, y, w, residuals))
a <- attr(w, "robust")
if(is.null(a))
return(old.deviance(mu, y, w, residuals))
else {
robust.scale <- al1]
k <- a[2] * robust.scale
dev <- old.deviance(mu, y, w, T) #
# remember if there are prior weights they are included here
devtest <- abs(dev) <= k
devsq <- dev™2 #* devtest + (!devtest) * (2 * k * abs(dev)
- k"2)
if (residuals)
sign(dev) * sqrt(devsq)
else sum(devsq)

$weight:
expression({

robust.scale <- robscale

attr(w, "robust") <- c(robust.scale, 1.345)

robweight <- (1.345 * robust.scale)/abs(family$deviance(mu, vy,

w, T, F))

robweight <- ifelse(robweight > 1, 1, robweight)#
#
#assigning this way allows other functions to pick up this variable
#without having to make it a component to be passed all the way back
#to the top expression

#
assign("NPRIME", sum(robweight), fr = 1) #
W * robweight

}

)

E. Description of Summary Report

The S-PLUS output shown on the following pages is a concise summary of the
three methods for analyzing the LPT data. Relevant statistics for each method
are reported and a table of the SIs from each method is also shown. We have

included three examples of the detailed output - AC153, AC147, and AC234 - at
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the end of this section.

The first section of the report, labeled Method 1 - Current Method (ORISE
Aug 93) contains the summary statistics for the current analysis method. For
each set of culture conditions, the following information is provided: The number
of wells used to calculate the average and coefficient of variation (this column is
labeled Reps in the output), the counting time (labeled Time), the mean (Avg),
the coefficient of variation (CV), the log of the Stimulation Index (1og(SI)), and
the Stimulation Index (SI).

The second section of the report contains the results of the LAV analysis and
is labeled Method 2 - LAV Log(Well Counts). This section has three distinct
subsections, the first contains summary statistics, the second shows the log of the
Stimulation Indices and the Stimulation Indices, and the third contains the log
of the well counts (labeled Repl - Rep4) along with the median (Median) and
the resistant scale estimate (S-MAD) for each set of culture conditions, and the
standardized residuals (R1 - R4).

The standardized residuals are defined as

and are the basis for several of the summary statistics shown in the first sub-
section. A set of weights are calculated from these residuals using Huber’s loss
function (See Section 2.3). Summing these weights provides us with quantity
labeled Nprime. We also use these weights to calculate Phihat which is defined
as

q%: S (wjr x g?k)

N—p
where wj;, is the calculated weight using Huber’s loss function. This quantity
is similar to ¢; which is defined in Section 2.2 and labeled Phitilde in the
summary report. N is the number of available well counts used in the analysis,
N > z(.995) is the number of standardized residuals that exceed the 0.9995
percentile of the standard normal distribution (this number is 2.576), and N >
z(.9995) is the number of standardized residuals that exceed the 0.995 percentile
of the standard normal distribution (3.291).

The third section, labeled Method 3 - Quasi-Likelihood Resistant Re-
gression (Well Counts) shows the results of the quasi-likelihood analysis. The
format of this section is similar to the section containing the LAV results. The
first subsection contains summary statistics, the second shows the log of the

Stimulation Indices and the Stimulation Indices, and the third shows the well
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counts (Repl - Rep4) on the original scale, the fitted values from the QL model
(Fitted), a resistant scale estimate (S-MAD), and the standardized residuals R1
- R4). The standardized residuals for the QL analysis are defined in Section 2.3.

In the Summary Statisticssubsection, the quantity Phitilde.f is the value
&, defined in Section 2.3. The value Phitilde.i is an estimate of ¢ that uses
residuals calculated from the initial estimates for the fitted values, i.e. the median
for each set of culture conditions. The value of Iterations is simply the number
of iterations required for convergence.

The final section provides a comparison of the log(SIs) and Sls as calculated
by the three methods. This section is labeled Summary Comparison for Three
Methods.
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Method 1-Current Method (ORISE Aug 93)(Original Well Counts on next page)AC153

Reps Time Avg CV log(SI) SI

day5 controls 10 30 1220.000 0.281 NA NA
day5 bel 3 30 814.333 0.251 -0.404 0.667

day5 bel0 4 30 1744.750 0.217 0.358 1.430
day5 bel100 4 30 4647.750 0.222 1.338 3.810
day7 controls 8 30 2929.750 0.239 NA NA
day7 bel 3 30 982.000 0.237 -1.093 0.335

day7 bell 3 30 761.333 0.130 -1.348 0.260
day7 bel00 4 30 7921.750 0.245 0.995 2.704
pha 4 10 59633.750 0.255 4.988 146.640

candida 4 10 25190.500 0.273 4.126 61.944

Overall: 0.367

Day 5 Control: 0.443 Day 5 Treated: 0.34

Day 7 Control: 0.563 Day 7 Treated: 0.276

N: 56 Nprime: 53.06

N > z(.995): 4 N > z(.9995): 3

*Phitilde is MAD est. of the std. dev. on log scale (corresponds to CV
#on orig. scale)

Stimulation Indices

Day 5 Day 7 Positive Controls

bel bel0 bel00 bel bel10 bel100 pha candida

log(SI) -0.423 0.199 1.248 -1.122 -1.436 0.792 4.792 3.909

SI 0.655 1.221 3.483 0.326 0.238 2.207 120.490 49.860

Log(Well Counts) Standardized Residuals

Repl Rep2 Rep3 Rep4 Median S-MAD R1 R2 R3 R4
day5 controls 6.872 7.067 6.719 6.759 7.182 0.443 -0.8 -0.3 -1.3 -1.2
day5 controls 7.296 8.887 6.929 6.883 7.182 0.443 0.3 4.6 -0.7 -0.8
day5 controls 7.313 7.455 7.422 7.597 7.182 0.443 0.4 0.7 0.7 1.1
day5 bel 6.957 6.560 7.268 6.532 6.758 0.363 0.5 -0.5 1.4 -0.6
day5 bel0 7.347 7.290 7.415 7.741 7.381 0.107 -0.1 -0.2 0.1 1.0
day5 bel00 8.181 8.662 8.297 8.562 8.429 0.313 -0.7 0.6 -0.4 0.4
day7 controls 9.127 8.567 8.239 8.559 8.139 0.563 2.7 1.2 0.3 1.1
day7 controls 7.745 7.953 7.557 8.040 8.139 0.563 -1.1 -0.5 -1.6 -0.3
day7 controls 7.807 8.278 8.035 8.793 8.139 0.563 -0.9 0.4 -0.3 1.8
day7 bel 6.571 7.034 8.713 7.000 7.017 0.397 -1.2 0.0 4.6 0.0
day7 bel0 6.667 6.741 7.922 6.480 6.704 0.223 -0.1 0.1 3.3 -0.6
day7 bel00 8.706 9.030 8.832 9.264 8.931 0.278 -0.6 0.3 -0.3 0.9
pha 11.320 10.877 10.872 10.829 10.874 0.041 1.2 0.0 0.0 -0.1
candida 10.477 9.982 9.978 10.003 9.992 0.021 1.3 0.0 0.0 0.0
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Method 3 - Quasi-Likelihood Resistant Regression (Well Counts) AC153

Phihat: 0.509
Phitilde.i: 0.333
Phitilde.f: 0.295
N: 56
NPrime: 52.313
Iterations: 4

Stimulation Indices

Day 5 Day 7 Positive Controls
bel bel0 bel00 bel bel0 bel100 pha candida
log(SI) -0.367 0.220 1.200 -1.028 -1.391 0.707 4.851 3.989
SI 0.692 1.247 3.321 0.358 0.249 2.028 127.815 53.992
Well Counts Standardized Residuals
Repl Rep2 Rep3 Rep4 Fitted S-MAD R1 R2 R3 R4
day5 controls 965 1173 828 862 1399.691 0.391 -1.1 -0.6 -1.4 -1.3
day5 controls 1474 7237 1021 976 1399.691 0.391 .2 14.2 -0.9 -1.0
day5 controls 1500 1729 1672 1992 1399.691 0.391 0.2 0.8 0.7 1.4
day5 bel 1050 706 1434 687 969.250 0.321 0.3 -0.9 1.6 -1.0
day5 bel0 1551 1466 1661 2301 1744.750 0.096 -0.4 -0.5 -0.2 1.1
day5 bel00 3571 5780 4011 5229 4647.750 0.305 -0.8 0.8 -0.5 0.4
day7 controls 9202 5253 3786 5212 3906.641 0.420 4.6 1.2 -0.1 1.1
day7 controls 2310 2844 1915 3102 3906.641 0.420 -1.4 -0.9 -1.7 -0.7
day7 controls 2458 3936 3087 6588 3906.641 0.420 -1.3 0.0 -0.7 2.3
day7 bel 714 1135 6084 1097 1397.485 0.258 -1.7 -0.6 11.4 -0.7
day7 bel0 786 846 2757 652 972.431 0.171 -0.7 -0.4 6.2 -1.1
day7 bel00 6037 8349 6852 10449 7921.750 0.250 -0.8 0.2 -0.5 1.1
pha 82425 52954 52669 50487 59633.750 0.035 1.3 -0.4 -0.4 -0.5
candida 35501 21623 21551 22087 25190.500 0.018 1.4 -0.5 -0.5 -0.4
Summary Comparison for Three Methods
Day 5 Day 7
bel bel0  bel00 bel bel0  bel00
Log(SIs)
Method 1 -0.404 0.358 1.338 -1.093 -1.348 0.995
Method 2 -0.423 0.199 1.248 -1.122 -1.436 0.792
Method 3 -0.367 0.22 1.2 -1.028 -1.391 0.707
SIs
Method 1 0.667 1.43 3.81 0.335 0.26 2.704
Method 2 0.655 1.221  3.483 0.326 0.238 2.207
Method 3 0.692 1.247 3.321 0.358 0.249 2.028
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Method 1-Current Method (ORISE Aug 93)(Original Well Counts on next page)AC147
Reps Time Avg CV log(SI) SI
day5 controls 9 30 1806.667 0.243 NA NA
day5 bel 4 30 2509.250 0.148 0.329 1.389
day5 bel0 4 30 11295.500 0.240 1.833 6.252
day5 bel100 3 30 7415.333 0.132 1.412 4.104

day7 controls 11 30 2804.455 0.249 NA NA
day7 bel 3 30 2366.667 0.362 -0.170 0.844

day7 bel0 4 30 17929.000 0.233 1.8556 6.393
day7 bel00 4 30 17146.000 0.219 1.811 6.114
pha 3 10 86739.000 0.191  4.970 144.032

candida 4 10 17866.000 0.278 3.390 29.667

Overall: 0.264

Day 5 Control: 0.363 Day 5 Treated: 0.13

Day 7 Control: 0.39 Day 7 Treated: 0.218

N: 56 Nprime: 51.514

N > z(.995): 5 N > z(.9995): 2

* Phitilde is MAD est. of the std. dev. on log scale (corresponds to
#CV on orig. scale)

Stimulation Indices

Day 5 Day 7 Positive Controls

bel bel0 bel00 bel bel0 bel0O pha candida

log(SI) 0.260 1.856 1.450 -0.013 1.805 1.813 5.040 3.315

SI 1.297 6.398 4.264 0.987 6.082 6.130 154.543 27.519

Log(Well Counts) Standardized Residuals

Repl Rep2 Rep3 Rep4 Median S-MAD Ri1 R2 R3 R4
day5 controls 8.422 8.097 7.928 7.444 7.533 0.363 3.4 2.1 1.5 -0.3
day5 controls 7.621 7.351 7.482 8.223 7.533 0.363 0.3 -0.7 -0.2 2.6
day5 controls 7.246 7.137 7.566 7.501 7.533 0.363 -1.1 -1.5 0.1 -0.1
day5 bel 7.758 7.828 7.678 8.015 7.793 0.129 -0.1 0.1 -0.4 0.8
day5 bel0 9.426 9.531 8.919 9.352 9.389 0.153 0.1 0.5 -1.8 -0.1
day5 bel00 8.964 9.526 8.749 9.003 8.983 0.218 -0.1 2.1 -0.9 0.1
day7 controls 7.624 7.929 7.966 8.237 7.964 0.390 -1.3 -0.1 0.0 1.0
day7 controls 7.640 7.574 8.316 8.066 7.964 0.390 -1.2 -1.5 1.3 0.4
day7 controls 7.962 11.129 7.734 7.978 7.964 0.390 0.0 12.0 -0.9 0.1
day7 bel 8.0256 7.250 7.877 8.781 7.951 0.663 0.3 -2.7 -0.3 3.1
day7 bel0 10.060 9.497 9.735 9.804 9.769 0.262 1.1 -1.0 -0.1 0.1
day7 bel00 9.819 9.735 9.407 9.9858 9.777 0.191 0.2 -0.2 -1.4 0.7
pha 11.889 11.485 11.122 11.465 11.475 0.311 1.6 0.0 -1.3 0.0
candida 9.853 9.646 9.454 10.095 9.749 0.342 0.4 -0.4 -1.1 1.3
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Method 3-Quasi-Likelihood Resistant Regression (Well Counts) AC147

Phihat: 0.787
Phitilde.i: 0.26
Phitilde.f: 0.337
N: 56
NPrime: 51.168
Iterations: 4

Stimulation Indices

Day 5 Day 7 Positive Controls
bel bel0 bel00 bel bel0 bel0O pha candida
log(SI) 0.155 1.669 1.386 -0.029 1.718 1.673 4.945 3.217
SI 1.168 5.308 3.998 0.971 5.573 5.329 140.421 24.941
Well Counts Standardized Residuals
Repl Rep2 Rep3 Rep4 Fitted S-MAD RI1 R2 R3 R4
day5 controls 4547 3285 2774 1710 2148.980 0.281 3.3 1.6 0.9 -0.6
day5 controls 2041 1558 1776 3725 2148.980 0.281 -0.1 -0.8 -0.5 2.2
day5 controls 1403 1268 1931 1809 2148.980 0.281 -1.0 -1.2 -0.3 -0.5
day5 bel 2341 2511 2160 3025 2509.250 0.120 -0.2 0.0 -0.4 0.6
day5 bel0 12405 13775 7476 11526 11407.678 0.169 0.3 0.6 -1.0 0.0
day5 bel00 7814 13715 6303 8129 8591.519 0.182 -0.3 1.8 -0.8 -0.2
day7 controls 2047 2776 2882 3779 3217.398 0.334 -1.1 -0.4 -0.3 0.5
day7 controls 2079 1946 4088 3183 3217.398 0.334 -1.0 -1.2 0.8 0.0
day7 controls 2869 68132 2285 2915  3217.398 0.334 -0.3 59.9 -0.9 -0.3
day7 bel 3056 1408 2636 6509 3124.210 0.452 -0.1 -1.6 -0.5 3.2
day7 bel0 23397 13323 16897 18099 17929.000 0.228 0.9 -0.8 -0.2 0.0
day7 bel00 18387 16898 12176 21123 17146.000 0.211 0.2 0.0 -0.9 0.7
pha 145721 97238 67646 95333 100586.974 0.252 1.3 -0.1 -1.0 -0.2
candida 19021 15453 12758 24232 17866.000 0.300 0.2 -0.4 -0.8 1.1
Summary Comparison for Three Methods
Day 5 Day 7
bel bel0  bel00 bel bel0  bel00
Log(SIs)
Method 1 0.329 1.833 1.412 -0.17 1.855 1.811
Method 2 0.26 1.856 1.45 -0.013 1.805 1.813
Method 3 0.155 1.669 1.386 -0.029 1.718 1.673
SIs
Method 1 1.389 6.262 4.104 0.844 6.393 6.114
Method 2 1.297 6.398 4.264 0.987 6.082 6.13
Method 3 1.168 5.308 3.998 0.971 5.573 5.329
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Method 1-Current Method (ORISE Aug 93)(Original Well Counts on next page)AC234

Reps Time Avg CV log(sSI) SI

day5 controls 12 30 2247.750 0.287 NA NA
day5 bel 4 30 2486.000 0.214 0.101 1.106

day5 bel0 4 30 4177.750 0.139 0.620 1.859
day5 bel00 4 30 9181.250 0.200 1.407 4.085
day7 controls 10 30 2158.300 0.277 NA NA
day7 bel 4 30 1779.750 0.279 -0.193 0.825

day7 bel0 3 30 6777.667 0.057 1.144  3.140
day7 bel00 4 30 12628.000 0.118 1.767 5.851
pha 4 10 139793.250 0.259 5.229 186.578

candida 3 10 12960.333 0.271 2.851 17.298

Overall: 0.315

Day 5 Control: 0.29 Day 5 Treated: 0.196

Day 7 Control: 0.418 Day 7 Treated: 0.075

N: 56 Nprime: 53.861

N > z(.995): 2 N > z(.9995): 0

* Phitilde is MAD est. of the std. dev. on log scale (corresponds to
#CV on orig. scale)

Stimulation Indices

Day 5 Day 7 Positive Controls

bel bel0 bel00 bel bel0 bel0O pha candida

log(SI) 0.074 0.636 1.371 -0.122 1.130 1.829 5.197 2.906

SI 1.077 1.889 3.940 0.885 3.097 6.228 180.708 18.280

Log(Well Counts) Standardized Residuals

Repl Rep2 Rep3 Rep4 Median S-MAD Ri1 R2 R3 R4
day5 controls 7.717 7.136 7.782 7.742 7.729 0.290 0.0 -1.9 0.2 0.0
day5 controls 7.878 7.469 8.079 7.796 7.729 0.290 0.5 -0.8 1.1 0.2
day5 controls 8.135 7.604 7.503 7.306 7.729 0.290 1.3 -0.4 -0.7 -1.3
day5 bel 8.059 7.766 7.538 7.842 7.804 0.251 0.8 -0.1 -0.8 0.1
day5 bel0 8.136 8.452 8.304 8.427 8.366 0.127 -0.7 0.3 -0.2 0.2
day5 bel00 8.986 9.215 8.903 9.336 9.101 0.268 -0.4 0.4 -0.6 0.7
day7 controls 7.481 7.622 7.714 8.503 7.668 0.418 -0.6 -0.1 0.1 2.7
day7 controls 7.307 8.548 7.378 8.088 7.668 0.418 -1.1 2.8 -0.9 1.3
day7 controls 7.418 7.960 7.568 7.907 7.668 0.418 -0.8 0.9 -0.3 0.8
day7 bel 7.543 7.549 6.984 7.720 7.546 0.151 0.0 0.0 -1.8 0.6
day7 bel0 8.755 8.065 8.842 8.864 8.798 0.094 -0.1 -2.3 0.1 0.2
day7 bel00 9.503 9.491 9.249 9.509 9.497 0.015 .0 0.0 -0.8 0.0
pha 12.130 11.505 11.755 11.901 11.828 0.321 1.0 -1.0 -0.2 0.2
candida 9.267 9.741 10.049 9.332 9.537 0.406 -0.9 0.6 1.6 -0.6
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Method 3-Quasi-Likelihood Resistant Regression (Well Counts) AC234

Phihat: 0.296
Phitilde.i: 0.307
Phitilde.f: 0.32
N: 56
NPrime: 54.11
Iterations: 3

Stimulation Indices

Day 5 Day 7 Positive Controls
bel bel0 bel00 bel bel0 bel00 pha candida
log(SI) 0.095 0.614 1.402 -0.296 0.923 1.651 5.223 3.015
SI 1.100 1.848 4.062 0.744 2.516 5.211 185.527 20.384
Well Counts Standardized Residuals
Repl Rep2 Rep3 Rep4 Fitted S-MAD RI1 R2 R3 R4
day5 controls 2247 1257 2397 2302 2260.482 0.283 0.0 -1.4 0.2 0.1
day5 controls 2639 1753 32256 2432 2260.482 0.283 0.5 -0.7 1.3 0.2
day5 controls 3412 2006 1814 1489 2260.482 0.283 1.6 -0.4 -0.6 -1.1
day5 bel 3162 2358 1878 2546  2486.000 0.230 0.8 -0.2 -0.8 0.1
day5 bel0 3416 4684 4040 4571  4177.750 0.132 -0.6 0.4 -0.1 0.3
day5 bel00 7990 10050 7351 11334 9181.250 0.252 -0.4 0.3 -0.6 0.7
day7 controls 1774 2043 2239 4929  2423.313 0.356 -0.8 -0.5 -0.2 3.2
day7 controls 1491 5155 1601 3254 2423.313 0.356 -1.2 3.5 -1.1 1.1
day7 controls 1666 2864 1935 2716  2423.313 0.356 -1.0 0.6 -0.6 0.4
day7 bel 1888 1899 1079 2253 1803.309 0.173 0.1 0.2 -1.3 0.8
day7 bel0 6340 3181 6919 7074 6096.200 0.103 0.1 -1.5 0.4 0.5
day7 bel00 13397 13242 10397 13476 12628.000 0.016 .2 0.2 -0.6 0.2
pha 185261 99187 127343 147382 139793.250 0.295 1.0 -0.9 -0.3 0.2
candida 10584 16998 23131 11299 15359.339 0.357 -1.0 0.3 1.6 -0.8
Summary Comparison for Three Methods
Day 5 Day 7
bel bel0  bel00 bel bel0  bel00
Log(SIs)
Method 1 0.101 0.62 1.407 -0.193 1.144 1.767
Method 2 0.074 0.636 1.371  -0.122 1.13 1.829
Method 3 0.095 0.614 1.402 -0.296 0.923 1.651
SIs
Method 1 1.106 1.859 4.085 0.825 3.14 5.851
Method 2 1.077 1.889 3.94 0.885 3.097 6.228
Method 3 1.1 1.848 4.062 0.744 2.516 5.211
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F. Detailed Protocol - Lymphocyte Proliferation Assay

The ORISE protocol for performing Lymphocyte Proliferation assays essentially
adheres to the recommendations of the expert panel (i.e., Committee to Accredit
Beryllium Sensitivity Testing [CABST]) convened jointly by the U.S. DOE Office
of Health and the Beryllium Industry Scientific Advisory Committee (BISAC) at
a meeting held in Washington, DC, on February 3- 4, 1992. We collect approx-
imately 30 ml of venous whole blood in sterile vacutainers containing sodium
heparin for each assay (Figure 14). Tubes are inverted to mix blood with the
anticoagulant and transported to the laboratory for processing. Cells are main-
tained at room temperature overnight. Within 24 hours after blood collection,
mononuclear cells are separated using Ficoll-hypaque density gradient centrifu-
gation, carried through three sequential washes, and counted in triplicate on an
automated cell counter. Lymphocytes are cultured in RPMI 1640 culture medium
(GIBCO) buffered with Hepes salts, and supplemented with 2mM/1-glutamine,
100 units per ml penicillin, and 100 pg per ml streptomycin. Pooled human
serum is added at a final concentration of 10 percent. We are using 96 well flat-
bottom microtiter plates and a final cell concentration of 2.5 x 10° cells per well
contained in 0.2 ml volume of medium.

Beryllium sulfate (BeSO4, Aldrich Chemicals, 99.9% purity) in concentrations
of 1, 10, and 100 M is being used to evaluate donor lymphocyte hypersensitivity
to Be metals. As positive controls we are using concanavalin-A (10 pg/ml) and
phytohemagglutinin (30 pg/ml). For each set of exposures, quadruplicate wells
are being evaluated to obtain estimates of lymphocyte proliferation response.
Unstimulated control wells are run in replicates of 12 because other laboratories
have observed considerable variability in rates of tritiated thymidine incorporated
in the control series, and extra replicates are needed to achieve the required levels
of statistical confidence. All cells are incubated at 37 + 0.5°C' in an atmosphere
of 5% C03 in air. Cells assayed for response to Be are harvested at five and seven
days with a terminal six-eight hour pulse of 1.0 uCi of tritiated thymidine (sp.
act. 6.7 mCi/mM). We are using a Packard 96 well cell harvester which deposits
lymphocytes from each individual well on a standard glass filter paper which can
be counted intact on the Packard Matrix 96 gas ionization counter, or punched
for assay using a liquid scintillation counter. The Matrix 96 unit is less efficient
in detecting beta decays than scintillation counters, but has the great advantage
of simultaneously detecting beta radiation emissions from all 96 wells. Statistical
accuracy can be achieved quite readily by increasing counting time using this

instrument.
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ORISE LPT CULTURE ASSAY

I. Culture Method

* Heparinized blood (~15ml)
Ficoli-hypaque centrifugation
» Separated lymphocytes

RPMI 1640 Medium
10% pooled human serum
antibiotics

II. Beryllium Challenge

* 2.5 x 105 lymphocytes per well
» 96 well flat-bottomed microtiter
plates

Beryllium #Replicate Day
Sulfate(uM) Wells
0 12 57
1

10

100
PHA(30pg/ml)
CON A(10 pM)

57
57
57

AR DADAD

5
5

of Harvest

lll. Harvest Method (day 5 and day7)

 Add tritiated thymidine (-8:00 A.M.)
(1pCil/well sp. act. 5-7 mCi/mMol)

* Freeze plates at -20°C (-4:00 P.M.)

*Perform 30 min counts on Packard
Matrix 96 gas ionization counter

IV. Data Reduction

* CONTROL WELLS

12 replicates - drop outlines
calculate mean +/- cv

* Be TREATMENTS
4 Replicates drop 1 outlier
calculate mean +/- cv

* STIMULATION INDEX = (SI)
mean Be treated
mean control

Sl =

Figure 14: ORISE LPT Culture Assay
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F.1. Quality Control

Excess variability in counts between replicate wells within a treatment, i.e., “out-
liers” could result from technical errors in initiating the tests, or possibly from
intrinsic biological variables associated with the characteristics of lymphocyte
proliferation response in certain cell donors. Sources of technical error might in-
clude mistakes in pipetting, such as failures to add appropriate numbers of cells
to individual wells, lack of addition or double addition of tritiated thymidine
to specific wells, or improper washing of filters resulting in residual counts of
unincorporated thymidine, or smearing of radiolabel across the filter paper.

Stringent methods for quality control are used routinely to guard against in-
advertent technical errors. To minimize the risk of pipetting errors, all media
and other test reagents are delivered to complete rows or columns of the test
plate using electronic micropipetters that deliver up to 8 or 12 aliquots simulta-
neously. Thus, it is not likely that the operator could “loose her place” in adding
reagents. Cells are harvested onto the surface of filter paper using a Packard 96
Well Harvester that simultaneously aspirates the cellular contents from each well.
To ensure complete washings of culture plates, a wash volume of approximately
10 times that recommended by the manufacturer is used. For all tests, we rou-
tinely leave all wells in rows A and H empty as a quality control measure to allow
evaluation of background counts on both the top and bottom of the filter paper.
Erratic or high counts in these empty wells would signal incomplete washing of
plates or "smearing” or radioactivity from one well to another.

Filter papers are counted intact on the Matrix 96 gas ionization counter, which
simultaneously records counts and counts-per-minute with attendant errors for
each well. Because the Matrix Counter is a gas ionization unit, only those beta
decays that are emitted at right angles to the surface filter pad are detected and
recorded. Thus, the sensitivity of the instrument in detecting counts is consider-
ably less than that of a liquid scintillation counter (about 20% of emissions are
detected using the gas ionization unit). For this reason, all plates are counted
for longer periods of time to accumulate enough counts for statistical accuracy.
Routinely, all plates containing control wells and wells challenged by beryllium
salts are counted for 30 min, whereas mitogen-stimulated positive controls are
counted for 10 min each.

To allow direct comparisons of lymphocyte proliferation response between
different blood donors, we routinely initiate 5-day and 7-day tests on lymphocytes
from 3 separate donors on a single test plate. The plate map that we routinely

employ and examples of new data are displayed below.
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Patient #1 Patient #2 Patient #3
1 2 3 4 5 6 7 8 9 10 11 12
C C C C C C C C C C C C
C C C C C C C C C C C C
C C C C C C C C C C C C
*Be1] Bei1| Bei1]| Bei1| Ber1| Ber| Ber1| Ber1 | Be1| Be1| Be1| Be:
Beio] Beio| Beio] Beio| Beio] Beio| Beio] Beiwo] Beio] Beio| Beio] Beio
Be1oo| Be1oo| Be1oo| Be1oo| Beioo|Be1oo|Beiloo|Beioo|BeloolBeioo|BeloolBeioo
P#1| P#2] P#3
1 2 3 4 5 6 7 8 9 10 11 12
PHA |PHA [PHA
PHA |PHA [PHA
PHA |PHA |PHA
PHA |PHA [PHA
ConA ConAConA
ConAI ConAConA
ConAI ConAConA
ConAI ConAConA

*Beryllium Sulfate 1,10,100 p Molar Solutions

Figure 15: ORISE Plate Maps for LPT Assay.

This figure displays the platemap for initiating LPT for Oak Ridge Beryllium
Workers. Cells from 3 persons are cultured on the same microtiter plate. Cells
from Patient 1 are pipetted into columns 1-4; cells from Patient 2, into columns
5-8; and cells from Patient 3, into columns 9-12. Rows A and H are left blank to
monitor background counts in the culture system. Rows B, C, and D are replicate
sets of control wells, whereas rows E, F, and G contain beryllium concentrations
of 1, 10, and 100 ¢ M respectively. The lower half of the figure demonstrates the
platemap for initiating cultures with phytohemagglutinin or ConA.
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PROTOCOL #: 1 NAME: Ac.coh 10-JUN-93 12:01
TIME 30:00 ELAPSED TIME 30:00

1 2 3 4 5 6 7 8 9 10 11 12
1-A: 57 47 48 52 126 68 99 69 27 37 36
1-B: 515 881 489 303 191 260 673 382 1300 1451 3353 127
1-C: 535 742 1602 676 310 420 251 669 | 2850 1368 634 1478
1-D: 923 570 510 568] 253 550 333  439] 540 1654 1487 1330
1-E: |17700 10749 19080 18855 696 372 270 434 1236 1991 1173 1743
1-F: |19197 27501 27280 31033 286 383 758 1369 1175 1591 1617 1877
1-G: |21083 38090 45938 29685 454 428 366  654] 1772 2415 2766 3737
1-H: 41 63 52 75 66 83 91 43 49 44 31 24

Figure 16: Typical Printout Sheets of Data from Three Different Individuals.

This figure displays a typical printout sheet of data from three different individ-
uals. The test is a 5-day plate, counted for 30 min. Data are shown as total
counts. Patient 1 displays a pronounced response to all 3 levels for beryllium
challenged wells, whereas Patient 3 demonstrates higher levels of counts in con-
trol wells, but also demonstrates no response to beryllium. Direct comparisons of
data between the three persons can be readily made from a single printout sheet.
This approach readily allows comparisons of counts within replicate treatments
for lymphocytes from the same donor, as well as comparisons of inter-individual
variability in counts between different subjects.
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08-JUN-93 10:48
TIME 30:00 ELAPSED TIME 30:00

1 2 3 4 5 6 7 8 9 10 11 12
1-A: 36 30 25 33 55 40 51 44 60 56 60 54
1-B: ] 1734 1603 758 1501 34 25 37 33 832 6931 1121 670
1-C: 1036 607 2710 523 35 33 25 36| 2248 5274 726 1230
1-D: | 1018 597 1861 2372 34 27 244 23| 1854 896 1566 5718
1-E: | 7336 3841 4513 4343 52 33 42 40128604 3092 16175 20088
1-F: 3145 6285 1628 1850 40 37 40 46131880 36893 6556 48059
1-G: | 3730 9293 18045 6304 49 37 43 38122735 49557 18859 31056
1-H: 90 97 68 86 54 45 42 46 25 66 64 37

10-JUN-93 12:01
TIME 30:00 ELAPSED TIME 30:00

1 2 3 4 5 6 7 8 9 10 11 12
1-A: 37 33 33 31 31 32 43 37 46 35 56 37
1-B: ] 1910 3867 1433 1371 36 41 26 441 3007 968 2460 4952
1-C: 1360 3474 14034 1659 47 40 35 35] 3531 16753 1131 5535
1-D: ] 1336 1391 1096 6996 25 29 37 26] 3002 20512 3036 5312
1-E: |10028 1784 13968 3306 39 32 39 50152721 91752 32199 1115
1-F: ]15032 5155 2105 5255 60 39 34 48123931 21429 15385 12076
1-G: |14231 4622 8587 7924 50 35 38 50117279 43695 25714 13323
1-H: 55 81 57 50 73 27 28 51 72 78 65 82

Figure 17: Repeat Cultures for a Person.

This figure represents repeat cultures for a person who initially showed a positive
response to beryllium. For this set of data, the patient’s cells were cultured in
columns 1-4 and in 9-12, with the middle for columns being blank. The patient’s
cells were cultured in two types of serum; i.e., heat inactivated at 56°C' for 30
min, and in the same lot of sera which had not been heat inactivated. Note
pronounced difference in the level of response between the two types of sera.
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