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The method of iterative weighted least squares can be used to esti-
mate the parameters in a nonlinear regression model. If the dependent
variables are observations from a member of the regular expdnential
family, then under mild conditions it is shown that the IWLS estimates
are identical to those obtained using the maximum likelihood prin-
ciple. An application is provided to illustrate the results.

1. INTRODUCTION

Let Yy, Y, ---, Y, be a random sample of size n
drawn from a population with.density A[y.; f(x:, 0)],
where x; = [Zi1, %i2, -, Zim] (=1, -+, n) are a
set of known values of the independent wvariables,
6 = [0y, - - -, Om ] are unknown parameters, and f(x;, 0) is
a known function of the independent variables and the
parameters. The regression function, f(x;, 0), will in
general be nonlinear (with respect to the parameters),
and we assume that it is a differentiable function of 6.
Given the observed values yi, - - -, ¥,, the problem is to
obtain estimates of the parameters 65, - - -, m One ap-
proach to this problem is to use the least squa.res prmmple,
ie.,

Min fn_‘, V(Y)'[y: — f(x:,0)]2,

[N ) §

(L.1)

where V (Y;) is the variance of Y;. When the V (Y,)’s are
independent of 6, this requires the solution of the system
_ of equations :

V) — fx ©)1(35(xe, 8)/36) = 0

[ | .
: j=1---,m. (12

If f(x, @) is linear (or concave) in 8 and V(Y), ¢ = 1,
-+, n.are known, then the solution of (1.2) ylelds a
weighted least squares estimate of 8. When the regressmn
function is nonlinear in the parameters, or the variances
depend on 6 (i.e.,, V(Y|x) is a known functional form in
6), a solution of (1.2) can be obtained using an iterative
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weighted least squares (1wrs) procedure. The usual rwiLs
approach is to

i. obtain an initial estimate of 8, °
ii. replacef(x;, 8) with a first-order Taylor series approximation,
iii. evaluate all expressions that involve 0 at the current esti-
mate (this includes the variances if they depend on 8),
iv. solve the resulting linear system of equations for a correction
vector, say 9,
v. set 0% «— 0+ 1 + §, and repeat (ii)—(v) until {0*} converges.

.The resulting 1wirs estimate will not necessarily be .a

solution of (1.1), but under conditions described in
Section 2 will yield a maximum of the likelihood function.

The 1wis computational procedure is familiar to the
statistician, since it reduces to a linear weighted least
squares problem on each iteration. Various approaches
to the numerical solution of linear system of equations
required in iv have been presented by Lawson and
Hanson [5]. We note that if a singular system is en-
countered, the procedure can be modified by using a gen-
eralized inverse (see [1]) to obtain ‘a solution—i.e.,
sequential generalized nonmlinear least squares (sGNLs).
SGNLS estimation is a considerably more difficult problem
both theoretically and computationally and will not be
considered here. '

The other approach to the estimation problem that we,
consider employs the maximum likelihood (ML) principle.
The log of the likelihood function is

3 log hlys; f(xs, 0)1 , 1.3)

fal

L(e) =

and the ML estimates are the solution of the system of
equations

aL(8)/a0; =0 j=1,---,m (1.4)

It is well-known that if the Y/s are normally dis-

tributed and the regression function is linear in the

parameters, then the ML and Ls estimators are identical.

Bradley [2] has established that when the density of the

- Y/s is in the regular exponential family and the regres-

sion model is linear, then the ML and IwLs estimates
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satisfy (1.2). Nelder and Wedderburn [8] have shown
that this result is also true for certain generalized linear
models. The equivalence of Ls estimates and ML estimates

"~ when the regression function is nonlinear in the parame-

ters has been established for the normal distribution by
Turner, Monroe, and Lucas [9], the binomial distribution
by Moore and Zeigler [7], and for the Poisson distribu-
tion by Frome, Kutner, and Beauchamp [4].

Theorem 1 of Section 2 extends Bradley’s result [2] to
the nonlinear case, and Theorem 4 gives conditions which
guarantee that a solution of (1.2) will provide a global
maximum of the likelihood funetion. This additional
result (Theorem 4)—which is necessary to establish the
equivalence of the ML and 1wLs methods of estimation—
was not provided by Bradley.

2. RESULTS

Suppose that Y is a random variable with a density.

function of the regular exponential family; i.e.,

h(y;8) = exp {pBy — ¢B) + g} ,

where E(Y) = 8, p(8) and ¢(B8) are at least twice differ-
entiable, and the range of ¥ does not depend on 8. In
some applications an additional ‘“nuisance parameter”
(e.g., the variance of a normal distribution) would appear
in (2.1). We assume here that this nuisance parameter is
either known or is constant for all values of the inde-
pendent variable. Then, following the approach used by
Bradley [2], differentiation (with respect to 8) on both
sides of /" h(y; B)dy = 1 yields

E(Y) = ¢@)/p'®) = 8

where p’(8) and ¢'(8) denote the derivatives with re-
spect to 8 of p(8) and ¢(8). A second differentiation of the
integral, along with eva,luanon of the derivative of (2.2),
results in

2.1)

.(2.2)

V() =p'®™".

The following theorem generalizes the results that were
presented by Bradley [1].

Theorem 1: If Y1, Yy, ---, Y, is a random sample of
size n from (2.1) with E(Y;) = f(x;, 6), then a ML esti-
mate of 8 will satisfy (1.2), provided it is an interior
point of © (the parameter space).

Proof: The log of the likelihood functlon—neglectmg
a constant that does not involve the #s—is

2.3)

— 5 o[f(x 0)] .

fm=]

L=3 pli@, 0Ty

t=l

(2.4)

The ML estimates of 8 are obtained by solving the likeli-
hood equations (1.4), i.e.,

= = LI, 01@S(x:, /36
- Z q’[f(xh e)](af<xiﬂ 0)/601) =0 3

oL/ d6;

j=1;"'7m

. least one of the p[ f(x:, 0)Jy:, ¢[ f(x;,0)]¢ =1, .-,
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By using (2.2) é,nd (.2.3), we obtain '
0L/ d6; = Z p'Lf(x:, 8)1{y: — f(x:, 0)}(8f(x:, 0)/36;)

= Z {(V(¥a- 1[:zh — f(x:,8)](0f(x:,0)/38;) =0 ,

Jj=LL-m. (25)

Since (2.5) and (1.2) are the same, the proof is complete.

This result demonstrates that a solution of (1.2) will
yield a critical point of the likelihood function. If the
wLs procedure converges to a stable solution (con-
vergence is not guaranteed), will it be an optimal global
solution to the maximization problem? The following
theorem indicates conditions which guarantee that a
solution of (1.2) will in fact be a ML estimate of 6.

Theorem 2: Let L(8) be defined over a convex set ©.

 If (i) 8 € O is a solution to (2.5), (ii) both p[ f(x, 8)] and’

—q[f(x, 8)] are concave! in 8 over ©, and (ii) the y.’s are
nonnegative, then 8 is a global maximum of L(8) over ©.
It is the unique global solution if at least one of the
plf(x:, 0)Jy:, —q[f(x:,8)], 2 =1, - .-, nis strictly con-
cave over ©.

Proof: L is concave if p[ f(x, 0)] and —q[ f (x, )] are,
and the y/s are nonnegative. L is strictly concave if at
n is.
For a differentiable concave function, a peint at which
the gradient vanishes is a global maximum. Further, the
maximum point of a strictly concave function is unique
whenever it exists.

Remark: Sufficient conditions for 8 to be a global maxi-
mum of L(8) over © are that (i) L(8) be pseudoconcave
(see [6]) over ®, and (ii) that 8 satisfies (2.5). It is,
however, difficult to verify pseudoconcavity without con-
ditions similar to those in Theorem 2.

Theorem 3: Let L(8) be defined over a set ® which has
a nonempty ‘interior. Suppose that there is a 6* € © and
positive numbers M and e such that (i). L(8) < L(6*) — e
whenever ||6]f > M and (ii) for every sequence {6*} of ©
which converges to a boundary point of ©, lim, ..., L(6%)
< L(8*) — e Then there is a global maximum point of
L(8) on O. Each such maximum point satisfies the likeli-
hood equations (2.5).

Proof: Define O* = {6 € ©|L(8) > L(6%}. Note
that ©* is nonempty and is in the interior of ©. Observe:
that ®* is closed—because ©O* is interior to ® and L(6)
is continuous over ®—and bounded—this follows from
(ii). Consequently, ®* is compact. Since L(8) is con- *
tinuous over ©* it has 3 maximum point, which is in turn
a maximum point of L(8) over ®. Finally, it follows that
since a maximum point must be an interior pomt of O,
it must satisfy (2.5). ,

Theorems 2 and 3 can be combined as follows.

11f f(x, 8) is concave in & and p(z) is concave and nondecreasing in z,
then p{f{z, 6)] is concave in 6. This fact may be useful in verifying the concavity
of p(f(=, 6)] and —olf(z, 6)].
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Theorem 4: Under the assumptions of Theorems 2 and
3, L(6) has a nonempty set of global maxima which
coincides with the solution set of (2.5), i.e., the ML
estimates and the TwLs estimates are identical.

3. APPLICATION

Suppose that Yy, -+, ¥, is a random sample from the
Poisson distribution, and that the regression function is
positive and linear in the parameters, ie., f(x: 6)
= 3.7 zi8; > 0. In this 31tuat10n the log of the likeli-
hood function is

L(0) = X log (X z:i6)y: — 2 X 285 , ~(3.1)
Tm] L) fom] juml -
and the likelihood equations (2.5) reduce to
0L/36) = Z [y,(Z zi05)7t — 1o = 0,
= k=1,---,m. (3.2

If (3.2) has a solution, it will be a global maximum (from
the first part of Theorem 2). If the matrix C with entries

P ¥ vesal Tzt
rhk = = iLirli i0; 1
k 36,06, i-ly k puc 3Y; ’

rnk=1---,m, (3.3)

is positive definite in the region where 271 zi8; > 0 for.

each 7, then (3.1) is a strictly concave function of 8 there,
and the maximum point in ‘unique. For any m—dlmensxona.l
vector 3, we have

VCa = Z yz[Z zi,0; 1~ ’D: zA P20 . (3.4

fom]
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If we let X* denote the ‘“reduced” X matrix—obtained by

_considering only x; such that y; = 0—then C is positive

definite provided X7& = 0 has only the trivial solution

% = 0. Assuming this, a solution of (3.2) will be the

maximum likelihood estimator of 8. Further discussion
(and numerical examples) of the application of regression
analysis to Poisson distributed data have been presented
elsewhere [3, 4, 8.
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