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SUMMARY

“In vitro dose-response curves are used to describe the relation between chromosome aberrations and
radiation dose for human lymphocytes. The lymphocytes are exposed to low-LET radiation, and the
resulting dicentric chromosome aberrations follow the Poisson distribution. The expected yield
depends on both the magnitude and the temporal distribution of the dose. A general dose-response
model that describes this relation has been presented by Kellerer and Rossi (1972, Current Topics on
Radiation Research Quarterly 8, 85-158; 1978, Radiation Research 75, 471-488) using the theory of
dual radiation action. Two spec1al cases of pract1cal interest are spht—dose and continuous exposure
experiments, and the resultlng dose—trme—response models are 1ntr1n51cally nonlinear in the param-
-eters. A general-purpose maximum likelihood estimation procedure is described, and estimation for
the nonlinear models is illustrated with numerical examples from both expenmental designs. Porsson
regression analysxs is used for estimation, hypothesis testing, and regression diagnostics. Results are
discussed in the context of exposure assessment procedures for both acute and chromc human

radlatlon exposure

1. Introduction

vIn recent years there has been considerable interest in evaluatmg the influence of the
‘magnitude and temporal distribution of low linear energy transfer (LET) radiation on
biological systems. An extensive review of studies on a wide spectrum of species . and
experimental .systems is given in NCRP Report No. 64—Influence of Dose and Its
Distribution in Time on Dose-Response Relatlonsths for Low-LET Radzatzons ( 1980)
Throughout the report the linear-quadratic (LQ) model )

Md) = od + Bd* S SENR)!

is used to describe the effect of absorbed dose d on a specific biologic endpoint. The LQ
model and its more general form (1.2) are also discussed in the latest report of the Committee
on the Biological Effects of Ionizing Radiations of the National Academy of Science (BEIR
11, 1980, Chap. 2). It is pointed out that the LQ model is a convenient empirical model
for comphcated endpoints in complex systems. For “simple? cellular systems the LQ model

‘has been extensively used in the evaluation of I‘adIOblOlOglC data.
“We will consider studies that focus on specific lesions in the chromosomes of somatrc

cells as the endpoint of 1nterest Most of the early quantrtatlve studles of chromos_ome

Key words: Dual radiation action; Generalized linear function; Iterative weighted least squares
Maxrmum likelihood estimation; Nonlinear models; Poisson regression; Regression diagnostics.
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aberrations used plant cells [see Savage (1975) for a recent review], but starting in the 1960s
and continuing on to the present, this line of research has shifted more to the use of animal
cells. Recent work in human cytogenetic dosimetry used cultured peripheral blood lym-
phocytes to quantltatlvcly assess the effect of low-LET radiation on chromosome damage.
This approach provides an effective method for the evaluation of one type of radiation
damage in man. Numerous studies have demonstrated that chromosome alterations in-
duced in lymphocytes after in vitro exposure to low-LET radiation are both qualitatively
and quantitatively similar to alterations observed after in vivo exposure. Dose-response
curves obtained from carefully controlled in vitro studies are used to estimate the dose for
exposed individuals. This is the basis for the indirect evaluation of the effects of both acute
and chronic human radiation exposure. These methods are currently used to provide dose
estimates for radiation accident management (see DuFrain et al., 1980; Frome and DuFrain,
1978). It has also been proposed that they be used for the indirect assessment of the long-
term biologic effects of chronic exposure to radiation and other clastogens in human
populations—see Evans et al. (1979), Savage (1979), and Holden (1982).

In Section 2 we will describe a maximum likelihood (ML) estimation procedure that can
be used to estimate the parameters from an in vitro experiment. We assume that (i) the
dependent variable y (the number of chromosome aberrations) follows the Poisson
«distribution and (ii) that a regression function that describes the relation between the
expected value of y and the radiation exposure is spec1ﬁcd The role -of the Poisson
‘distribution in describing the dispersion of the number of dicentric chromosome aberrations
‘has been discussed by Edwards, Lloyd, and Purrott (1979)-and by Merkle (1981). The index
of dispersion can be used as a monitoring test for Poisson variation—see Fisher (1950) and
Frome (1982) Frome, Kutner, and Beauchamp (1973) have discussed testmg for hctcro-
geneity of variance and goodness of fit in a regression context.

Two examples are presented to illustrate both linear and nonlinear analysis, using both
‘empirically and thcorctlcally derived models. In the first example we present results that
were obtained using a “linear model”. approach to evaluate the effect of dose and dose rate
on aberration yield. This initial analysis is straightforward and was designed to test the
hypothesis that the coefficient of the d” term “depends” on dose rate. Although this initial
analysis is technically correct, we were led to reject thisapproach as being both inappropriate
and misleading on biologic grounds (see Section 4). We then present a more appropriate
analysis that uses a nonlinear regression function. The nonlinear model is derived from the
Ztheory of dual radiation action (DRA) described by Kellerer and Rossi (1972), hereinafter
referred to as KR. A ‘second example is presented using data obtained from a dose-
‘fractionation experiment and a nonlinear regression function predicted by the DRA theory.

The DRA theory uses concepts from mlcrod051mctry to providea quantltatlve charac-
terization of the effect of various temporal distributions of absorbed dose on the production-
of chromosome aberrations (CAs). It is postulated that elementary lesions are produced at
a rate that is proportional to the square of the specific energy that is deposited in certain
“critical sites.” The general form of the dose-effect model that is appropriate here (see KR,

§5.4) is ) | | |
Md, £) = k[vd + g(t, 7)d?, . )

where d denotes dose, ¢ is time, and A(d, t) is the yield of elementary lesions. The parametcr
« is a biophysical proportionality constant that reflects the target sensitivity for the blologlc
system (lymphocyte). The parameter vy depends on the radiation quality and can be related
to the specific energy transfcrred from the radiation field to the critical site. Kellerer and
Rossi (1978) interpret v as an average of specific energy produced in individual events in
the site. The linear and quadratic terms in (1.2) are often interpreted as intratrack and
intertrack effects, respectively (Edwards and Lloyd, 1980). The cocfﬁment of the d? term
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in (1.2) is referred to by KR as the “reduction function,” and describes the “interactions”
between dose elements given at different times. If irradiation takes place over an interval
of time, say O to ¢, at a constant rate (d/t), then the reduction function is

2
g(t, 1) = 77 [1 - % (1 - e"/’)}. (1.3)
If the dose d is given in two parts (d; and d,) separated by a time interval ¢, then
gt r)=1-20(1 = f)1 — e, (19

where f=d,/d. Substitution of (1.3) and (1.4) into (1.2) gives the appropriate dose—response
curve for the continuous exposure and split-dose experiments, respectively. In both situa-
tions, the parameter = represents the average “recovery time” and (1.3) and (1.4) were
derived under the assumption that recovery takes place at a constant rate over the interval
0to . The resulting models are intrinsically nonlinear in the parameters, and the appropriate
statistical analysis is based on the general maximum likelihood estimation procedure
described in Section 2. Note that as  — 0 in both (1.3) and (1.4), g(2, 7)> 1. Consequently,
for the limiting acute exposure situation, A\(d) = «(yd + d?), which is equlvalent to the LQ
model (1.1). The parametrization in (1.1) has traditionally been used as a matter of
computational convenience, and consequently the estimates of « and 8 can be viewed as
“computational artifacts.” Note that for the continuous exposure, split-dose, and acute
exposure experiments, the parameters of interest are the same, i.e., «, v, and 7. In the acute
exposure experiments, one assumes that 1 << 7, so that g(z, ) = 1 for all values of d,and 1
cannot be estimated. - :

- In summary, current biologic knowledge (obtained from theory and expenmental studles)
predicts that dicentric CA yields will follow the Poisson distribution, and that dose-time-
response relations for acute, chronic, and fractionated exposures can be described by the
" regression functions (1.1)-(1.4). The statistical methods presented in this paper are con-
cerned with analytic procedures for rejecting these conjecture-based regression functions.
Thus, the goodness-of-fit test provides a probabilistic basis for evaluating the falsifiability
of these proposed models (see Dolby, 1982). When the regression function cannot be
Tejected, the ML estimation procedure can be used for inference on the parameters of
biologic interest. This, at the very least, provides an effective means for summarizing data
from two different experimental designs over a wide range of experimental conditions.:We
have analyzed most of the available data from both split-dose and continuous exposure
experiments that have been reported in the cytogenetic literature. Our evaluation of results
of these analyses (Frome and DuFrain, work as yet unpublished) indicate that these data
are consistent with the regression functions obtained from the DRA theory. The results
presented here illustrate how nonlinear regression functions (that are derived from global
conjectures) can be used to summarize data obtained in cytogenetic studies. Poisson
regression provides a useful and effective methodology for an in-depth evaluation of results
from individual experiments, and also provides a basis for combining the results from
different studies. Whatever the true nature of the biophysical events that cause damage and
repair of material in the chromosomes, it appears that the regression functions (1.3) and
(1.4) provide a useful way of describing experimental data. Equivalent expressions have
been obtained by Thames (1985) using another theoretical approach to modeling the
biological effects of protracted and fractionated radiation exposure. He considered a kinetic
repair—-misrepair model (Tobias et al., 1980) and showed that it is equivalent to an empirical
model (Oliver, 1964) that has been developed to describe experimental data from cell
survival studies. These results can be related to those presented in this paper by noting that
the probability that a cell will be undamaged (i.e., have no chromosome aberrations) is

equal to exp[—A(d, 1)].
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2. Maximum Likelihood Estimation
Let y; denote the number of dicentric CAs observed at the ith set of experimental conditions,

ie., dose d; and time #; for i = 1, ..., n. The y;/’s are assumed ‘to be independent and to
follow the Poisson distribution with expectation
wi = GAX;, 8),

where ¢; denotes the total number of cells scored (in units of 100 cells). The regression
function A(X, 8) describes the relation between the expected CA yield, the ith set of
predictor variables X; = (Xi1, X2, ..., Xim), and the p-dimensional vector of unknown
parameters 8. The kernel of the log-likelihood function is ¥

L) = _;1 { yi log[e:A(X;, B)] — (X, ﬂ)}~ . (2.1)
A convenient computational approach to ML estimation is obtained by using iteratively
reweighted least squares (IRLS). Let 3; = y;/c; denote the observed CA yreld per 100 cells
scored and consider the following weighted sum of squares:

S@) = 3 wl5i = X O, e

‘where w; denotes a weight that is inversely proportional to the variance of y;. Since
M(X;, B) is, in general, nonlinear in the parameters, an iterative procedure is required to
obtain an estimate of 8. The equivalence of the resulting IRLS procedure and ML estimation
for general Poisson regression models was demonstrated by Frome et al. (1973). Further
details required for the analysis in Section 3 are given in the Appendix. The results -of the
IRLS are an ML estimate 3, the estimated parameter covariance matrix, the deviance, and
the basic “building blocks” required for regression diagnostics [see-Pregibon (1981) -and
Frome (1983)]. The deviance, D(y, it) = X, d7, is used to construct an ANOVA table for
Poisson regression models, where the “deviance residuals” are (i= 1, ..., n)

d = Sgn(yz - Nz){z[yz IOg(yz/I‘x) ( i ™ ”1)]}1/2 . ) (2 3)

and n = c,>\(X,, B). ThlS measure of residual variation was proposed by Nelder and
Wedderburn (1972) and is minus twice the ratio of the log-likelihood function of the model
defined by A(X;, B8) relative to the complete model in which there is one parameter for each
value of i. The s1mplest (or minimal) model of interest in this situation is given by
\; = Bx;, where X; is the radiation dose. The ML estrmate of Bis B = Z, y,/Z, x,c,, and the

dev1ance for the m1n1mal model is
DIy, p(1)] = 2 Z v: log[yi/(ciBx)].

Followmg the approach descnbed by Efron (1978) for the binomial d13tr1butlon we then
fit an increasing sequence of models for the explanatory vector g, and the value of the
deviance for each model is recorded in the Poisson ANOVA table. The procedure i is 1llustrated
in the next section for a sequence of models that are linear i in the parameters.

3. Exam_ples

3.1 Continuous Exposure .Experimentb—Exar'nple 1

The data in Table 1 (Purrott and Reeder, 1976) were obtained from an experiment (using
gamma radiation from a cesium-137 source) that was designed to investigate the effect of
dose rate on CA vyield. According to theoretical predictions from ‘microdosimetry, the LQ
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Table 1 .
Number of dicentrics (y) and cells scored for continuous exposure experiment
: Dose (Grays)

Dose rate 1.0 - 25 5.0
Gy/hr Cells -y Cells y Celis y
0.1 - 478 25 328 52 210 100
0.25 1907 102 185 51 138 113
0.5 2258 149 342 100 160 144
1.0 2329 160 310 100 120 106
1.5 - 1238 .75 278 107 90 111
2.0 1491 100 259 107 100 132
2.5 1518 99 249 102 313 419
3.0 764 50 298 110 182 225
4.0 1367 100 243 107 144 206

Source: Purrott and Reeder (1976).
“Table 2
Poisson ANOVA for the data in Table 1
Regression Number of Cor
model parameters Deviance.  df .

1. ad; - .1 . ..1075.30 .26 .-
- 2. adi+ 6d2 2 228.00 25
3. ad, + Bd? 10 2152 17

4. oydi+Bd7 18 1110 9

‘5. Complete S27 o 0,00 0

model (1.1) should be appropnate for this s1tuat10n The coefﬁment a of the lmear term
describes the formation of dicentrics from a smgle track, and B describes the 1nduct10n of
dicentrics by two tracks. Thus, the two-break asymmetric exchange (dlcenmc) is beheved
10 be the result of these two phenomena, and the frequency of dicentrics is descrlbed by a
second-degree polynom1al in dose. The vahdlty of the LQ model is based on the assumptlon
that the absorbed dose is delivered to a “critical site” in a short period of time, i.e., at a
high dose rate. The purpose of the study by Purrott and Reeder was to test the hypothe51s
that the effect of decreasing the dose rate would be to decrease the contribution of the dose-
squared term, without changing the linear term. Model 4 (see Table 2) corresponds to the
most general -case in which both the linear and quadratic coefficients are allowed to vary
with dose rate, i.e., A\ = a;di + B;d%, where ] identifies the dose rate group. For each of the
models in Table 2 the regression function is linear in the parameters, and the procedure
described in Section 2 was used to obtain the Poisson ANOVA. - :

A test statistic for the hypothesis 8, = 8, = ... =8 is obtained usmg the d1ﬁ'erence of
the deviance, D[y, #(2)] — D[y, (3)] = 206.48. This test statistic has an asymptotic -chi-
-square distribution with 8 degrees of freedom (df) if the more restrictive hypothesis i 18 true.
Consequently, we reject the hypothesis that the coefficient of :the quadratic. term. is
independent of dose rate. An alternative approach is to test the goodness of fit of Model 3.
The deviance for this model is 21.52 with 17 df, indicating that Model 3 cannot be rejected.

:Ad hoc model for Example 1 If the ML estimates of the quadratic coeﬁiments obtamed
from Model 3 are plotted against the log of the dose rate, it appears that the ,6] s increase
linearly with log dose Tate, and this can be described by the following regressmn functlon

>\Jk = adk [(01 + 0, log(r,)]dk
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Table 3
Results for the ad hoc regression function for the data in Table 1
Parameter - .- Estimate Standard deviation
a 2.86 0.305
6, 3.80 0.141
6, 2.26 0.144
. Tabled4 . ’
Results for the DRA model for the data in Table 1
Parameter Estimate Standard deviation
K 5.44 0.208
v 0.269 0.0677
T 7.40 0.857

The ith row of the model matrix for this ad hoc model is X; = (d;, d?, d? log r;), where r; is
the dose rate (column 1 of Table 1) and d; is the dose for the ith set of experimental
conditions. The ML estimates and estimated standard errors for this model are given in
cannot be rejected for these data. This model provrdes a good description of the effect of
dose rate on dicentric yield, i.e., the quadratic component increases w1th the log of dose
rate, and the linear component is independent of dose rate.

Dual radiation action model The ad hoc model descnbed in the previous section can be
used as an empmcal descnptlon of cytogenetlc dose-response curves for this expenment
: The parameters in'this model do not have a clear interpretation in terms of the quantitative
’eﬁ”ects of ionizing radiation. The DRA theory (see Section 1) leads to the dose effect model
(1.2), and for a continuous exposure expenment the function g, 7)—or1g1na11y proposed
’by Lea (1955)——1s glven by (1 3). Usmg ( 1 3)in (1. 2) we obtaln

- >\(X,-, )8)_ (vd +27 {1 - (1 —exp( t,/f)]/t,}d) e

where a’ is the absorbed dose and t is the duratlon of exposure ata constant dose rate The
parameters 'y, x, and 7:can be related to the rad1at10n quahty, target sens1t1v1ty, and the
‘recovery process (see Sections 1.and 4). :

The ML estimates of the parameters in (3.1) for the data in Table 1 were obtamed usmg
the ‘IRLS ‘procedure described in Section 2. Since the DRA -model is nonlinear .in  the
-parameters, the partial derivatives of (3.1) with respect to the parameters are needed (see
the Appendix). The ML estimates and their standard deviations are given in Table 4.:The
‘deviance for-this model is 28.58 with 24 df (P =-.236), indicating that the DRA model
cannot be rejected. The standardized residuals in Table 5a are used to identify outlying
observations,-and in this example there is one large negative residual. The ‘diagonal terms
-from the H matrix (see the Appendix) in Table 5b are used to identify extreme points in
the model (design) space. There are several large - values (greater than 2p/n = 0.22) in
Column 3, and two of these are in the first two rows 1. e, ‘at the hrghest dose and the lowest

dose rate (see Section 4).
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Table 5
Regression diagnostics for data in Table 1 using the nonlinear model (3.1)
(a) Standardized residuals L (b) Diagonal terms from the H
w; = (¥ — f:)/ ()" : matrix (p/n = 0.111)
- 0427 -0.929 1.35 0,056 0.164 0.406
- —-1.23 0.315 '1.19 0.143 . 0.038 0.239
0.291° -0.627 7 —1.05 T T0.155 0.036 -~ 0.157
0.383 -0563 =292 . 0161. 0035 0.080
—0.927 09147 - =0.140. . 0.086 - 0.037 0.062
—0.111 1.48 0.247 0.105 .-..-0.038 . 0.075
-0.423 1.26 0.315 - 0.107 0.039 0.251
—0.293 0.144 -1.17 .~ 0.054 0.049 0.154
0.670 1.88 0.732. . 0.097 -0.043 0.132

3.2 Split-dose Experzment—Example 2

Schmid, Bauchinger, and Mergenthaler (1976) undertook a study to 1nvest1gate the time-
" dependent quadratic component of the 1LQ model using a spht-dose technique. Two
experiments were carried out using 250 kV X-rays for the in vifro exposure of human
peripheral lymphocytes. The purpose of the first experiment was to determine the coeffi-
cients for the LQ model (see Table 6a). In the second experiment the lymphocytes were
irradiated with a dose of 3.4 grays split into two equal fractions separated by intervals of
from 50 minutes up to 6 hours—see Table 6b. They assumed that the primary damage
induced by the first dose fraction decreases at 4 constant rate and obtamed the following

for the “interval-dependent” yield:
—_ lﬂe—t/'r d2

The interval-dependent yield was estimated by subtracting the yield at d = 1.7 with 1 = 0
from the observed yield obtained for each value of t with d=3.4. The resultmg values were
then used to estimate the parameter 7. _

The DRA theory predicts that the coefficient of the term will be given by (1.4) for this
split-dose experiment (see KR, §5) Usmg (1.4) with f =1in (1 2) we obtain the dose-

time-response function
AX;, 8) = xlyd; + Y1 + exp(—t/7)] a3}, (3.2)

where X; = (d;, ;) and 8 = (x, v, 7)’. Consequently, we can combine the data in Tables 6a
and 6b and use (3.2) to obtam ML estimates of «, vy, and v. The ML estimates and their
standard deviations are glven in Table 7a. The correspondmg estimates of «, v, and 7
obtained using the results given by Schmid et al. (1976) are 5.4, 1.5, and 1.8, respectively.
Using their estimates in (3.2) gives 22.56 for the deviance (the deviance for the ML estimates
is 18.45). The Poisson ANOVA table for the data in Table 6 is given in Table 7b. The
difference in the deviance values on rows 2 and 3 is 96.7 with 1 df. This is a test statistic
for the hypothesis r = 0; i.e., the simple LQ model is rejected. The next-to-last line in Table
7b corresponds to the “pure error” sum of squares in the usual ANOVA table (note that there
-are two replications for each value of d in Table 6a). A goodness-of-fit test for the nonlinear
-model (3.2) is obtained from the deviance values on lines 3 and 4in. Table 7b,.and the
value of the resulting likelihood ratio statistic is 15.8 with 22 df mdlcatmg that (3. 2) cannot

be rejected
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Table 6
(a) Dicentric yields for acute exposure experiment (¢ = 0 and ¢ = 1)
d, dose (Grays)
25 S50 1.0 1.5 2.0 2.5 3.0 3.5 4.0
3 5 9 30 37 54 74 77 © 128
1 4 12 - 27 41 57 70 84 - 123

b) Dicentric yield for split-dose eXpefiment (d= 3.4 Gyy

Interval (hours) Cells Dicentrics
0 500 1352
0 600 540
83 : .. 500 - 417
1.00 500 393
1.17 300 238
1.33 200 150
1.50 300 214
1.67 500 - ' - 354
1.83 200 141
£ 2,00 ¢ - E 400 : - 277
-2.50. : S 300 - - . 200
3.00 _ .. 200 - : 122
3.33 200 , 127 .
4.00 , 200 104
S 5.00 o200 : 107
6.00 . -t 200 : ‘ 104

Ca Dose = 3 4 Gy for all except the first row where d = l 7 Gy '
Source Schnid et al. (1976). '

Table 7
Results for split-dose data in Table 6
: ~(aML Estlmates o
K B ‘Y : - . ~,T
Acute only : 5.49 1.37 —

Acute and split-dose - 6.23 088 . 215. .
(Standard deviation) 0.49)  (0.28) 0.42)

~:(b) Poisson ANOVA

Regressmn function df Deviance
ad , , 33 . 16222
ad + Bd? . 32 1152
DRA (3.2) 31 18.45
Each (d, 1) - 9. 26
- Complete - .~ - .0~ - 0.0

4. Dlscussmn

The results in Section 3 show how Poisson regression methods can be- used in the analysis
of cytogenetic dose-response curves. In our original analysis-of the data in Table 1 (Frome
and DuFrain, unpublished work), our objective was to show how to use linear regression
(with Poisson weights) to obtain a Poisson ANOVA table. The deviance values were then
used to construct a likelihood ratio test statistic for the hypothesis of interest as specified
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Table 8
Additional data for continuous exposure experiment in Table 1

- Dose Dose rate (Gy/hr) Cells  Dicentrics

5.0 0.15 204 - 157

2.5 0.15 ... 225 50

2.5 0.05 540 100

1.0 0.05 1401 50

1.0 - 005 - 574 25

1.0 0.019 629 25
- Table 9

Values of the deviance for continuous exposure study
Table 1, "Table 1 + Table 8,

'Regression model n=27 o . n=33
d+d*+d*logt 24.54 - 35.00
~d+d*+d*logr 29.95 41.96
DRA (3.1) 28.58 - 50.37

by Purrott and Reeder (1976). In order to simplify the analysis, only those data with three
doses at each dose rate were included. There were six additional data points at the low dose
rates (see Table 8) and these data were also excluded from our later analysis using the
DRA model (see Frome and DuFrain, 1982). This was done partlally to ensure compara-
bility with the earlier analysis and partly on biological grounds since the stability of the
unstimulated Go lymphocyte maintained in culture for long time intervals can be ques-
tioned. The values of the deviance for the ad hoc model the DRA model and a th1rd

model
>‘(Xu ﬂ) ﬁld + 62d2 =+ :83(d210g t)s

are given in Table 9. When all of the data are included, both of the empirical linear models
provide better fits for the complete set of data. Both of these models can be rejected,
however, on biological grounds since they do not lead to reasonable results in the limiting
situations of interest, i.e., as f — 0 and as # — . Much of the lack of fit for the DRA model
comes from the data at the lowest dose rates, and, as we noted earlier, there are reasons to
question these data. Further support for the DRA paradigm is indicated in the second
example. The nonlinear dose-time-response function (3.2) for the split-dose expenment is
also predlcted by the DRA theory. The important point is that both local regression
functions are deduced from the DRA paradigm. The experimental data are used to challenge
these models, not to generate them. The goodness-of-fit test statistic can be used to attempt
to ’reject the dose-time-response functions and thereby show that the théory is false. ’

It is apparent that both of these studies were motivated by the DRA theory, and
consequently we feel that the use of the appropriate model for these and related experiments
" is of prime importance in furthering our understanding of the effects of the temporal
distribution of low-LET radiation on the -yield ‘of dicentric aberrations. Under similar
~ expérimental conditions the results from both continuous exposure and ‘split-dose experi-
ments should be comparable for the human lymphocyte data. The parameter v is related
to radiation quality but the values of x and  should be the same for normal human
Iymphocytes. We propose that future research efforts should focus on experiments that are
designed to test for-lack of fit of the regression function (1.2), with particular emphasis on
the time-dependent component. If either (3.1) or (3.2) can be rejected, then amore complex
model could be obtained, for example, by assuming a more general form for the recovery
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process. This would provide evidence against the DRA theory or any other theory that
leads to the same dose-response models. The purpose of this paper is to describe the ML
estimation, hypothesis testing, and regression diagnostic procedures that can be used for
any appropriate regression functions for CAs that follow the Poisson distribution. The two
examples illustrate the effectiveness of Poisson regression methods in cytogenetic data

analysis.
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RESUME

Des courbes de réponses in vitro sont utilisées pour décrire la relation entre aberrations chromoso-
miques et doses d’irradiations dans le cas de lymphocytes humains.

Les lymphocytes sont exposés 4 de faibles radiations L.E.T. Les aberrations chromosomlques
décentriques qui en résultent obéissent a une loi de Poisson. L’espérance de leur nombre depend ala
fois de I'amplitude et de la repartmon de la dose dans'le temps.

Un modéle général de réponses aux doses décrivant cette relation a ete proposé par Kellerer et
Rossi (1972, Current Topics on Radiation Research Quarterly 8, 85~158; 1978, Radiation Research
75, 471-488) a I'aide de la théorie de Peffet dual de radiation. Deux cas partlcuhers d’intérét prauque
sont d’une part celui des expérimentations en doses fragmentées et d’autre part celui des expérimen-
tations en expositions continues. Les modéles correspondants de réponses aux doses sont intrinséque-
ment non linéaires.

Une procédure générale d’estimation par maximum de vraisemblance est décrite, et des exemples
d’estimations dans le cas de modéles non linéaires sont présentés a partir des deux plans d’expériences
précédents. La régression poissonienne est utilisée pour lestimation, les tests d’hypothéses et toutes
les interprétations.

Les résultats sont discutés dans le contexte de procédures de répartition d’expositions dans les cas
d’irradiations intenses et d’irradiations chroniques chez des humains.
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. APPENDIX

Maximum Likelihood Estimation Using Weighted Least Squares

Frome et al. (1973) have shown that for the general Poisson regression model the ML estimate of the
parameter vector B can be obtained using a properly weighted iterative least squares procedure. The
resulting iterative procedure is equivalent to using the method of scoring to obtain a root ‘of the
likelihood equations. On iteration k + 1, this leads to the followmg system of p linear equatlons

(P'WP)s* = P'W[y — 2], . : o (A

where W is diagonal with w; = ¢/AM(X;, 8, P is an nby b matrix of partial derivatives, and § and Ak
are n-dimensional vectors with elements y: and M(X;, 8%, respectively. The elements of the ith row
of the matrix P are oMX;, ﬁ)/aﬁ,, = 1, ..., p. Each of the quantities in (A.1) that mvolves Bis
evaluated at the current value, 8%, and an estimate of the “correction vector” 8 is obtained and used
to compute a revised estimate ﬁ"“ = B* + §* This iterative procedure (Gauss-Newton method)
continues until some convergence criteria are satisfied. This can be viewed (on each iteration) as a
weighted linear regression of the residuals 7; — A(X;, 8%) on the p—dlmensmnal row vector of “predictor
variables” P; evaluated at 8% (sce Frome 1983, 1984) Consequently, any statistical package that
supports IRLS can be used to obtain ML estimates of the 8;. The estimate of the asymptotic covariance
is obtained by inverting the matrix P’ WP evaluated at B The basic “building blocks” that are required
for regression diagnostics are standardized residuals and the dlagonal terms from the matrix

H = WY2P(P'WP)~'P'W /2 .

evaluated at the ML estimate B (see Frome, 1983).
A special situation of considerable practlcal interest occurs when the regresswn function is a

generalized linear function (GLF); i.e., A(X;, 8) = g(3: 8ixy), where g is a nonnegatlve monotonic
differentiable function. The statistical package GLIM (Baker and Nelder, 1978) is espeC1ally suited
for this situation. When A(X, 8) is a GLF, the IRLS computations can be easﬂy done using standard
options in GLIM. This is done by specifying the “link function” (which is the inverse of the regression
funct10n) and the predlctor variables of interest. GLIM can also be used when the regression function
is intrinsically nonlinear in the parameters. This requires the partial derivatives of A(X, 8) w1th respect
to the ;. As an example, consider the nonlinear regressmn function for the spht-dose expenment—

see (1.2) and (1.4),
Md, 1) = K{7d+ [1 - 2f(I —f)(l - e"")]dzl

To obtam ML estimates of the parameters usmg GLIM, we wrote a GLIM macro named fitml. A
listing of the GLIM driver program, the macro fitnl, and detailed computanonal results for the split-
dose experiment in Section 3.2 can be obtained from the authors.

- Identical results can also be obtained, for example, by using a FORTRAN program PREG (Frome,
1981), the system .S (Becker and Chambers, 1984), or the statistical program SAS (Goodnight and
Sall, 1982; see also Frome and MaClain,  1984). Each of these approaches requires the partial
derivatives, initial estimates of the parameters, and some convergence criteria.. Additional examples
of Poisson regression with -nonlinear models are given-in Frome and Beauchamp (1968), Frome
(1983), and Frome and Checkoway (1985). Further note that the computational approach described
here can be extended to situations where the response variable y is in the regular exponential family
for a general nonlinear regression function (Charnes, Frome, and Yu, 1976). If the regression function
is a GLF (see Nelder and Wedderburn, 1972) then the analysis can be done using standard options
in GLIM. An excellent account of GLF for the exponential family is given by McCullagh and
Nelder (1983), and application of these regressmn methods to discrete data has been reviewed by

Frome (1985).





