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ABSTRACT

In thie dissertation we consider the application of statistical
theory and methods to two general problems in biomedical data analysis.
First, we investigate the application of regression techniques when
the observations are counts. In the second problem we propose the use
of spectral analysis to deal with certain time series data that occur
in the study of respiration. It is assumed thro:ghout that a digital
computer will serve as the primary instrument for data analysis, and
in the time series problems a computer is also essential for data
acquisition,

In Chapter 2 a gencral regression model is defined. Assuming that
the observations are counts that follow the Poisson distribution, the
maximim likelihood principle is employed to estimate the mnknown
parameters in the regression model. A procedure for testing the
asamed Poisson variation and 'goodness of fit'! of the model is devel=
oped. In Chapter 3 we demonstrate that weighted least squares estie
mates obtained via the Gauss-Newton iterative procedure are identical
to the maximum likelihood estimates =-which are obtained using the
method of scoring. A minimum chiesquare estimation proced:re is then
considered as a method for obtaining best asymptotically normal
estimates. We show that when the observations are counts that follow
the Poisson distribution, then the maximum likelihood estimates, the
least squares estimates, and the modified minimum chiesquare estimates

are all identical. In Chapter 4 the estimation procedure is applied
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to data from biological experiments where the observations are colony
conts. The computational procedure is summarized in Section 4.4 and
a Fortran IV implimentation is provided in the Appendix.

In Chapter 5 we review the statistical considerations of numerical
spectrum analysis, Spectral estimation s based on the periodogram
w-which is computed frow the finite Fourier transform of a realization
of a time series= and frequency domain smoothing techniques. The
computational procedures that we use are summarized in Section S5e3.

In Chapter 6 a simple mecharical model of the respiratory system is
developed. Cross-spectral analysis is proposed as a data analytic
techniq e that can be used to describe the respiratory system, and

an example using pressure-flow time series data is provided. We claim
that when the flow-resistive component of the transpulmonary pressure
is linearly related to air flow, then the spectrum -=which is calcula=
ted from the flow measurementse— will truly be a power spectrim, In
this situation the flow variance provides a single statiatic that way
be nged to desecribe the mechanical work of breathing.

The impedance pneumograph is a bioimpedance recorder that is used
for the indirect measurement of respiration. In Chapter 7 we propose
spectral analysis of the pulmonary impedance pneumograph and illustrate
with an example how spectra calculated from the impedance tracings
reflect changes in the depth, regularity, and frequency of breathing.
We then point out certain inadequacies of this approach and propose a
new method of analysis which tses the first difference of the plmonary

{mpedance measurerents. We claim that thig new method res:lts in a
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more meaningful measure of respiratory function. The power concept
of Chapter 6 is used to define conditions under which the spectrum
calculated from the first difference data will be a power spectrum,
An example ==which graphically demonstrates the effect of the differ-

encing operation on low frequency 'noise'w is presented.
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1. INTRODUCTION

The subject of data analysis --especially its relation to
statistics (mathematical) and its future-= has been investigated by
Tukey (1962). He stated that 'theory' will have to guide rather than
command data analysis - if it is to be successful « since much of what
is done is a matter of judgment. Tukey and Wilk (1966) have observed
that data analysis is similar to experimentation and pointed out some
common characteristics - emphasizing the interactive, iterative, open-
ended nature of the data analysis process. They use the term 'data
analysis' to "encompass the techniques, attitudes, interests and con-
cepts which are relevant to the process of learning from organized
records of experience"., In this dissertation we shall be concerned
with the nse of statistical theory and methods in data analysis. Two
general problems will be considered. The first involves the applica-
tions of regression techniques to the analysis of data when the obser-
vations are conts. In the second problem we will propose the use of
spectral analysis to deal with certain time series data that occur in
the study of respiration. It will be assumed throughout that the
computations which will be required are to be carried out by a digital
computer. Th:s we will rely upon the computer as the primary instru-
ment for data analysis —see Muller (1970). This reliance is necessary
since we will require extensive computation. In the time series prob-

lems we will encounter large volumes of data and the computer will

be essential for data acquisition as well as data analysis.
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1.1 Regression Analysis
Consider the general regression model

E(yij) = f(xi,e) (1.1.1)

vhere X = (xil’ ceey xim) is the ith set of values of the m indepen-
dent variables, n, is the number of replications of the ith experi-
mental condition, 6= (91, ceny Bp)' is a p dimensional vector of
upknown parameters, and Vi ie 1,e0ey, Ny j= 1,400, N is a partie
cular realization of the experiment. The regression function, f(xi,e),
relates the expected value of the dependent variable to the indepen-
dent variables and the parameters, and given the experimental condi-
tions and the data we would like to estimate the 'nknown parameters.
The most widely used methods of estimation are maximum likelihood and
least squares. A discussion of the assumptions underlying these
principles of estimation and the properties of the estimators can

be found in Kendall and Stuart's The Advanced Theory of Statistics II.

It is well known that maximum likelihood and least squares
estimates are identical when the observations are independent and
normally distributed with expectation given by equation (1.1.1) and
constant variance. If £(X,8) is linear in the parameters then the
estimates are obtained using linear regression analysis. When f(X,8)
is not linear in all of the parameters estimation is more difficult,
and some type of iterative procedure will usually be required. An
introductory discussion of nonlinear regression and the extent to
which standard results from linear estimation are applicable has been

given by Draper and Smith (1966, chap. 10). The equivalence of maximum
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likelihood and least squares methods was demonstrated by Turner,
Monroe, and Lucas (1961) for a wide class of nonlinear models when
the errors are assumed to be normally distributed and independent
with constant variance or variance that depends on the independent
variable in a known way. Beauchamp (1966) has presented an extensive
discussion of generalized least sq:ares estimation, aﬁd properties of
the estimators obtained using a weighted nonlinear regression proce=
dure. He showed that under normality assumptions with unknown
variances weighted least squares and maximum likelihood estimates
will be equivalent when the weights are obtained from consistent
estimates of the variance-covariance matrixe.

Another situation in which maximum likelihood and least squares
estimates are found to be eqivalent 1s in the analysis of 'quantal'
response data, such as probit analysis. In this situation the obser-
vations are assumed to be independent, and to follow the binomial
distribution with expected value given by the regression model. Moore
and Zeigler (1967) have shown that maximum likelihood estimates are
identical to those obtained in a properly weighted least squares
analysis in the situation just described. An extension of this result
to include a class of models whose expectations are given by inverse
polynomials has been dealt with by Nelder (196:).

In Chapters2 and 3 of this dissertation a general approach to
regression analysis ~=which is applicable when the observed values
of the random variable are counts= will be developed. In Chapter 2

the Poisson distribution will be proposed as an alternative to the
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normal distribution when the observations are discrete counts rather
than continuous measurements. A general regression model will be
defined and the maximum likelihood principle will be used to estimate
the parameters in the model. For all but the simplist case cone
sidered wer will find it necessary to use the method of scoring to
maximize the logarithm of the likelihood function witﬁ respect to the
parameters. Methods for testing the assumed Poisson variation and
tgoodness of fit' of the model will be developed. Special cases of the
general model that have been previously investigated =wi.e., linear
regression and certain nonlinear modelg~ will be reviewed. 1In
Chapter & we will apply the maximum likelihood estimation proce-~

dure to data from biological experiments where the observations are
colony counts. A particnlar application that will be developed is
the analysis of certain survival curve models,

In Chapter 3 we will review least squares estimation and show
that weighted least estimates will be identical to the maximum
likelihood estimates when the weights are defined in accord with
the assumption of Poisson variation. That is, we will show that
when the method of scoring is used to obtain the maximum likelihood
estimates and the Gauss-Newton method is ised to find the least
squares estimates, then the resulting iterative procedures will be
identical. We will also consider minimum chiesquare estimation as
a method for obtaining best asymptotically nmormal estimates. Using
some results that were obtained by Ferguson (1958) it will be shown

that when a modified minimum chi-square procedure is followed then

E
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the iteratively obtained estimates are identical to weighted least
squares estimates. Consequently, under the conditions which are
given in Section 3.3 weighted least squares estimates will be best
asymptotically normal whatever the distribution of the observations.
When the observations are counts that follow the Poisson distribution
then maximum likelihood, least squares, and minimumcﬁi-squnreeatimates
will all be equivalent ==in the sense that they are obtained using
identical computational pfocedures. The computational procedure that
we will use is summarized in Section 4.4 and a listing of a Fortran IV
implementation will be provided in the Appendix.
1.2 Spectral Analysis

The recent developments in the areas of biomedical signal measure=
ment, analog to digital converters, and high sneed digital compnters
hos led to a new kind of problem in data analysis. The potential
contribution to be made by the statistician to the development of
quantitative methods for extracting useful and/or interesting informa=
tion in this area is exemplified by the recent development of the
Cooley-Tukey fast Fourier transform. As Tukey (1967) has pointed out
the specter of computational effort has been exorcised from spectrum
1 analysis. Consequently, the data analyst is now confronted with
the substantive aspects of the scientific problems which are approach~
able via the frequency domain. We venture to predict that as the
hybrid computer emerges as an important instrument for data acquisi-
tion and analysis, so must a new hybrid approach to data analysis

evolve. The development of quantitative methods in this area requires
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some knowledge of the overall scientific problem, hardware limitations,
and response time requirements if meaningful results are to be
obtained. We hope to make a contribution in this area by applying
existing statistical theory and methods to solve some problems in
biomedical data analysis. Following the suggestion of Tukey and Wilk
(1966) we will attempt to develop new techniques thatlare empirically
informative and that will provide exposure and summarization of the
data. Accordingly, the models and the methods that we will use are
intended to be of data analytic value. We do not suggest that any
new results of a theoretical nature (either physiological or mathme-
tical) will be presented here.

In Chapter 5 we will discuss the statistical considerations of
numerical spectrum analysis, and describe the estimation procedure
that will be used in Chapter 6 and 7. The basic theory of bivariate
spectral analysis will be reviewed. The method of estimation that
we will use is based on the periodogram. The periodogram is computed
from the finite Fourier transform of a realization of a time series.
A heuristic treatment of the statistical properties of spectrim
estimators will be incl:ded. The calculations of spectrum analysis
will be discussed and two estimation procedures that employ frequency
domain smoothing techniques are summarized.

In Chapter 6 a simple mechanical model of the respiratory system
will be developed. The model will be used to motivate the definition
of the power spectrum that we will present. We will propose spectrum

analysis as a data analytic technique that can be used to quantify the
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mechanical activity of the respiratory system. When the flow-resistive
component of the tramspulmonary pressure is linearly related to air
flow, we claim that the flow spectrum will be a power spectrum. In
this case the flow spectrum will show how the average power dissipated
in overcoming the resistance to air flow in the respiratory system is
distributed with respect to frequency. A cross-spectrum analysis of
some respiratory pressure-flow time series data will be presented.
We further propose that the flow variance may be used as a single
statistic to describe the mechanical effort of the respiratory system.
In Chapter 7 we will describe a situation in which such a statis=
tic can be employed. The impedance pneumograph is a bioimpedance
recorder that is used for the indirect measurement of respiration. It
is currently used to monitor the respiratory function of remotely
located subjects. Although calibration (in terms of respiratory
volume) is theoretically possible, the restrictive requirements are
not considered realistic in the monitoring situation. Nevertheless,
spectra calculated from pulmonary impedance tracings do reflect changes
in the depth, regularity, and frequency of breathing. An example using
pulmonary impedance recordings obtained from a patient before and after
cxposire to total-body radiation will be presented. We will then
propose that the [irst difference of the pulmonary impedance pneumo=
graph should be used to obtain a more meaningful measure of respira-
tory effort. Argument in favor of this approach will be developed
using the power concept which was introduced in Chapter 6. An example

will be included which graphically demonstrates the effect of the
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differencing operation on the spectruvm. That is the influence of the
low frequency noise components is greatly reduced when the spectrum

is calculated using the first difference data.
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2. POISSON COUNT DATA: MAXIMUM LIKELIHOOD ESTIMATION

1 The meximum likelihood (ML) principle has been extensivelv used
as a method of estimation since first being introdnced into statisti=-
cal theory by R. A. Fisher in 1921. 1In Section 2.1 the ML principle
is used to estimate the parameter in a linear regression model.
Although this problem has_been thoroughly treated by Gart (1964),
a brief account is inciuded hére since it is the only known case of
the general model which does not require iterative methods for solu=-
tion., In Chapter 3 the same estimate of the parameter will be
obtained when a weighted least squares analysis is carried out.

In Section 2.2 a general repression model will be defined,
and in Section 2.3 the method of scoring will be used to maximize
the logarithm of the likelihood function with respect to the para-

meters. In Section 2.4 some special cases of the general model will

be considered, and we shall obtain some results that will be needed

for the applications in Chapter 4.
2.1 One Parameter Model

Before obtaining the ML estimates for the parameters in the

. general regression model —which will be defined in Section 22w
' the special case of one parameter and one independent varisble will

i < .
; be considered, i.e.,

|

i

| E(y,.) = £(X.,0) = 6x,, i= 1,..., N,

% ) j= 1!"‘, n'i . (?.1.1)

;In the above equation 6 mav represent the concentration of particles

[—
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(e.g. bacteria) per unit volume of suspension, and X, the concentra-
tion of the ith dilution of the original suspension which is intro-
duced into some mnutrient medium, The viable particles each grow

and form one visible colony, and y]._j is the number of colonies

. observed on the jth replication of the ith dilution (see Section 4.1).
If the counts follow the Poisson distribution and are independent,
then the likelihood of 6 given the observed valnes of the random

variables, Vi i=1,..., N, j=1,..., n, is

N n. -0x, V..
i i (Ox, )75 (2.1.2)
i=1 j=1 y..!

i
To find the ML estimate of 6, we differentiate the logarithm of the
likelihood function with respect to 8, set the resnlting expression

n
i ermal to zero and solve for 8, denoting the solvtion by 6. i.e.,

V.
aL(e) =3, %, J_x]=0 . (2.1.3)

e

| The ML estimate of @ is easily found to be

=3y Ty vyl Eyngxy (2.1.4)

As wve shall see in Section 2.3 this special case is the only one
: congidered which does not require some type of iterative method to
. solve,
%2.2 Specification of the General Model

The mathematical expression for the Poisson distribution was
first discovered by Simeon Denis Poisson in 1837, It was however

Bortkiewicz in 1898 who first demonstrated that Poisson's formula
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{ the expected number of failures of a piece of equipment per unit time,

. or the average number of purchases of a particular commodity per

could be used as a probability distribution for certain types of

discrete data, In his Handbook of the Poisson Distribution, Haight

claims that the Poisson distribution is second in importance to the
normal distribution, both in terms of abstract theory and breadth
of application. A complete account of the historical development,
mathematical properties, and applications of the Poisson distribu-
tion as well as the Poisson process can be foind in Haight's handbook.

The se of the Poisson distribution to characterize the variabi-
1ity of the observations in a regression analysis has only recently
been considered. In this chapter it will be assumed that the obser=
vations obtained in an experiment are counts that follow the Poisson
distribution with expectation given by

E(yij) = f(xi,e), i= 1,..., N,

(2.2.1)

i= 1l,0aa, n, .
In the above expression X,= (xil yeres xim) represents the ith value
taken by a set of m independent variables, and n, is the number of
replications of Xi' @ is a p-dimensional vector of unknown parame=-
ters.--which belongs to @ERP (p dimensional Euclidean space)~- and will

be estimated from the data. The quantity f(X,8) may represent, for

example, the mean number of bacteria per unit volume of suspension,

family., It is assumed that

1. some general form of the model is known,

2. £f(X,0) is a differentiable function of O,
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3. N values of the independent variables are selected by
the experimenter or specified by the situation, and

4, N is greater than p to ensure estimability of the parameters.

The problems of estimation and hypothesis testing in simple
linear regression were solved by Gart (1964) and Roberts and Coote
(1965), and multiple linear regression has been considered by Jorgen-
son (1963). 1In Section 2.3 we will use the ML principle to estimate
the parameters in the model defined above. 1In Chapter 3 it will be
demonstrated that the ML estimates are equivalent to those obtained
in a nroperly weighted least squares analysis. The least squares
estimates are shown to be identical to those obtained by minimizing

an anpropriately defined auadratic form which will in general result

in estimates of the parameters that are best asymptotically normal,.
Methods of testing the 'goodness of fit' of the model and the assump-

tion of Poisson variation are proposed, and modifications of the

analvsis are suggested for instances in which the Poisson assumption

does not appear to be acceptable,.
2.3 ML Estimates for General Regression Model

From the assumptions stated in Section 2.2 the likelihood

function of the p-dimensional parameter 6, given a particular reali-
zation of the experiment is

N n -f(X,,0)
i e i
s

‘ f(Xi,B)yij
i=l j=

yij! . (2.3.1)

ot

' The logarithm of the likelihood is

L(8) = 3

| <
; Lz [.f(xi,e) . yijlnf(xi,e)] £ C (2.3.2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

vhich may be written, neglecting a constant which does not involve

the parameters, as
L(®) = Ty, Inf(x,,0) - :Zinif(xi,e) , (2.3.3)
where Vi.= zijilyii° The likelihood equations are obtained by

differentiating (2.3.3) with respect to Gk, k= 1,..., P, and equating

the partial derivatives to zero, i.e.,

210) _ [(aﬂxi,e)] o ] i
%, o | e
df(X,,0) v
aL(G) i \ V. ‘l _
aep ) zl[ BSP | f(Xi,G) -0y I 0 (2.3.4)

The ML estimate of 6 is the solution of these equations.

} Since these eanations are not linear in the Gk's (2.3.4) is
° :

expanded about a trial value, 8, in a first-order Taylor series

and the following equations result

AL(O) _ dL(8%) , O azL(e°) . . 80 221,(6%) ’
| 38, 36, 8 aég — . 3§;§6;‘
|
| : : ) )
| 3L(8)  3L(8%) 20 (8° 2, 6°
o oL + 8o d3L(B) + N 8o d"L(87) (2.3.5)
o6 b)) vee ’ e
P P 1 98198, aei

vhere the first-order and second-order partial derivatives are

evaluated at 8= 8°. This system of equations is linear in the
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i o
. unknown Sk's and the - right hand

order partial derivatives.

imethod of scoring (Rao 1965, p.305).

the matrix of second-order partial derivatives with its

value, and solve the new svstem of equations.

first obtain the 'information' matrix:

side may be rewritten as

r O 1A
aL(8% | | 226" 2’167 | |¢°
N 20’ 50,00 | |1
. + . - L
(8™ | | 3°L(6% 22169 | |°
%6 56,06 7 o | . 2.3.6
_ P L 1 aep L pﬂ ¢ )

When eqruoted to zero this system of equations can be solved, but
it requires the calculation and evaluation of the matrix of second-

An alternative approach is to replace

expected

This is known as the

Following this approach we

22L(0) _
(2.3.7)

E [' 6 30 |
r 8

{1

Then substituting the expressions for the first-order partial

bL(Qﬂ] .

20
s

' derivatives given by equation (2.3.4) into (2,3.7) we have the

! element in row r column s equal to

| 2 (X, 00\ ¥. 2f(X,,0))[ v,

E z 1 1° -1 z 1 le -n

| i\_ o0 f(X,,0) ~ "1 i\~ o0 £(x.,0 - "],

? r i s i

)

| (2.3.8)
i which may be rewritten as
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af(xi,e)
26
s

2
v;. -f(Xi,G) .
f(xi,e)

af(x.,e))
1

06
T

d f - ,0 -n, f(X 16
ii §:k ( f(X e) ‘o (xk 9)\‘yi :(f(x ))( R (xk )

igk ber X f(Xk,B) ) (2.3,9)

To evalvate (2.3.9) we use the assumption that the v, 's are

independent and follow the Poisson distribution with E(yii)= f(Xi,B)

i to obtain

E(y, ) = E(3*" vy = nf(X,0)

Bly;.- By, ))% = Var(y, ) = 0 f(x,,0),

and E(yi.yk_) = E(yi.)E(yk') . (2.3.10)

' Evaluating the expectation in (2,3.9) and using the resuvlts in
|
: (2.3.10) ve obtain the following expression for the information

matrix

r (X, ,0)
5 (2] - (=[]

r

of (X, ,0) n
i \ i

) ](f(x.,e)[
] 1

]’ (2.3.11)

T,8 = ],,..., Pe

' Eanation (2.3.6), vhen set equal to zero, then becomes
aL(8”) 2F(x,,07)| [3F(X, 67 .
a0 - 551( Y 5 | =0
" T (2.3.12)

08
s

n

0
f(Xi,Q )

r,s = 1l,..., p,
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o
This system of p-simultaneous equations is then solved for Sr’

r= 1,..., p and new values of the parameters are obtained, i.e,,

1 o 0
er = er + Sr r= 1,000, D & | (2.3.13)

The procedure just described is then repeated until a stable solution
is reached. The criterion that is vsed to determine when convergence
has occured will be discussed in Chapter 4.
2.4 ML Estimates for Some Special Cases

In this section the results obtained in the preceding section
will be used to write down the likelihood equations and the infor=-
mation matrix for several regression models that will be considered
in the apnlications in Chapter 4. A discussion of the independent
variables and parameters will be presented at that time, It will,
however, become apparent when considering the computational algorithms
that only the regression function and the first-order partial deriva-
tives of the regressive function with respect to the parameters are
necessary to perform the computations that are required to solve
the likelihood equations., In Chapter 3 it will be shown that a

general purpose nonlinear regression program can be nsed in practice

| to solve the likelihood eqrations.,

The first model is the multiple linear regression model, and
then three survival curve models are considered. A survival curve
model is obtained by writing eguation (2,1.1) in the form

f(Xi,G) = Glxils(xiz,e) . (2.4.1)

In the above expression S is a function of a sccond independent
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variable X, (snch as amount of radiation), and one or more unknown

parameters, B= (8,,¢.4,80 )'. To qualify as a survival curve model
2 P

we reqrire that-

2. S(x,8)= 1 when x=0;
3. S(x,é) is monotonically decreasing and nonnegative;
4, S(x,B) is a differentiable function of 8.
From the above it is apparent that the distribution function of

any nonnegative random variable will produce a svrvival curve if

| S(x,0)= 1 - F(x,8), where F(x,8) is a distribution function which

is differentiable with respect to 6,

The exponential and target survival curve models have been
widely need by biologists to describe the effects of radiation on
the survival of cells and microorganisms. The Weibull model, while
not previously considered in this context, appears to be an inter-

esting alternative to the target model. We shall defer further

' discussion of these models and their applications to Chapter 4.

2.4,1 Multiple Linear Regression

When the regression model defined in equation (2.1.1) is

' linear in the unknown parameters, i.e.,

P
f(Xi,e) = leil + oeee + prip = 251 xijej = xie , (2.4.2)
ithen
af(xi,e)
ae = xir y r= 1,.0., p 9 (2.4.3)
r

and the efficient scores obtained using (2.3.4) are
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N X
aL(0)
30 E:[

.. 0,
;’rel)(yi' - Xie)} = 0 ’ r= 1"'.’ p' (2-4’.4)
T i=1 3

1

The information matrix obtained using equation (2.3.11) is

N

Z _x_lz_}i}_s_ll]; r= 1,000, P,

i=1 xie ’ 8= Lyeeey D o (2.4.5)
These results agree with those obtained by Jorgenson (1963) when the
appropriate changes in notation are made and provided expected values
are taken in his expression for the information matrix. Jorgenson
accurately described his procedure for solving the likelihood egua-
tions as the Newton-Raphson iterative process, which corresponds to
the solvtion that is obtained when (2.3.6) is set equal to zero.
When the method of scoring is used the iterative eqnations obtained

{ by substitrting equations (2.4.4) and (2.4.5) into (2.3,12) will be

identical to those obtained when a weighted least squares analysis

is carried ot (Jorgenson 1963, eq. 3.14). In Chapter 3 it will be

shovn that this resvlt is true for the general regression model when

the Ganss-Newton iterative process is used in the least squares

" analvysis.
1 2.4.2 FExponential Suvrvival Curve

The exnonential survival curve is defined bv

£(X,,0) = 8 n—ezxiz 8..,8. >0 (2.4.6)
ARSI S b ’ 172 - e

"and the partial derivatives are
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. a method for solving the eaqrations. The resnlts obtained by applying

i

1

df (X, ,8)
~ = x,,exp(-0,x.,)
691 il 27127 ?
af(xi,e)
692 = -xizelxﬂexp(-ezxiz) . (2.4.7)

The elements in the vector of scores are

N
dL(e) _ 1
8, 8 'Zi “i(yi-' elxilexp('ezxiz))) ,
j=1
N
dL(8) _
6, - El ST elxile"p('ezxiz))) ’ (2.4.8)

and the information matrix is

1
-é-l zinixi,lexP(-GZXi?.) -zinixi].xiZGXD(-GZXJ‘_Z)
Zx?‘ex exp(-0,x,,) (2.4.9)
71271741 2712 : o
Lellouch and Wambersic (1966) obtained the above results and proposed
their method will be discissed in Chapter 4,

2.4.3 Target Survival Curve

The target survival curve model is
f(X,,0) = 8,x [1 - (1 - exp(-8,x ))93]
IS 1741 2712 ’

61,62,63 >0 (2.4.10)

and the partial derivatives are
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3£ (X, ,6) 9
661 = xi].( 1la Ai 3 ) ’
692 = '9163xilAi 3 xizexp(-ezxiz ,
af(xi,e) 6
| 593 = -elxilAi 3 1nAi (x12¢0) )

2.4.L, Weibull Survival Curve

The Weibnll snrvival errve model is

8
F(X,,8) = 8% jexp| =6,(x "3 ) . 81,8,.8, >0

and the partial derivatives are

af(x,,0) ] 8
1" = -8,(x,,) 3 1n(x,,)0.x, ,r¥n| <A, (x ,) 3} .
-‘W.:—_— 27742 12771741 ( 2732 )

§ dF(X,,8) 6

. 38, = xilexp( =8, (x;) 3) '

| df(X,,0)

% i’ 8 )

5 : aez - = -(xiz) 3 leilexp( -Oz(xiz) 3) ,
ﬁ

|

(2.4.11)

where A = 1- exp(—ezxiz). The partial derivatives can be substituted
| into equations (2.3.4) and (2.3.11) to obtain the efficient scores

and the information matrix. As was stated at the beginning of this
section only the regression function and the partial derivatives

are required to find 8 when the algorithm described in Chapter 4 has

i been nrogrammed for computation on a digital computer. Methods for

finding initial estimates of the parameters will be given in Chapter 4.

(2.4.12)

(2.4.13)
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The efficient scores and the information matrix can be obtained

nsing equations (2.3.4) and (2.3.11). Methods for finding initial
estimates of the parameters will be given in Chapter &4, and the
Weibull model will be considered as an alternative to the target
model. It is of interest to note that both of these models rednce
to the simpler exponential model when 63= 1 in equations (2.4.10)
and (2.4,12),
2.5 Covariance Matrix and Chi-Square Tests

The large sample covariance matrix of ML estimators is the

inverse of the information matrix, i.e.,

-1

df(X,,0)|! n
L § 1
\f(xi,e))

00
s

f {(af(xi,e))

a9

r

. (2.5.1)

If é is the solution of the likelihood equations, then estimates
A
of the elements of this matrix may be obtained by replacing © by 8.

The diagonal elements of this matrix may then be used to establish

confidence intervals for the parameters in the regression model.

Also, the expected number of counts for each valne Xi’ i= 1,..., N

of the independent variables may be estimated by

N\

B(y, ;) = £x,,8) = lyeee, g . (2.5.2)
%Then the statistic
]
!
j (yij - f(Xi,é) 2
Qt = z Z A
E f(xi,e) (2.5.3)

will be distributed approximately as a chi-square with
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Dt = (jiini) - p d.f. if the regression model and the assumption of
Poisson variation are valid. Qt may be partitioned into two inde-

pendent components as follows:

Qt = Qw + Qr
E (y._ . - 7.‘ 2 n, 2
DY | o5 Bk CT A I g, - fx, 8
i\ £(x,,8) i\ £(x,,8) '

(2.5.4)

 with degrees of freedom D = (Eiin;)-- N and D = N-p. If the value

of the first statistic, Qt’ is found to he siﬁnificant, it may be -
Ed”e either to heterogeneity of variance or 'lack of fit'! of the
%regression model, or both. In this sitmnation Qw may be compared with
thn chiegsanare distribution with Dw d.f.. If this resnlt is signifi~-
cant, then the ratio (Qr/Dr)/(Qw/Dw) may bhe compared with the F

. distribution. If this approximate F test does not indicate signi-
ficant deviation from the model, then the elements of the estimated

covariance matrix are multiplied by a heterogeneity factor, H= Qw/Dw'

Althorgh the above resvlts are only hased on approximate signi-
%ficance tests, they may provide some uvseful insight into the sonrces
%of errors in an experiment. Further, it should be noted that while
the above tests will indicate certain types of inadequacies in the
model, it is clearly possible to have an over parameterized model

that will fit the data. Consequently, it may be of interest to

' datermine if some snbset of the 8 's satisfy certain restrictions,
i r :

@Ri(9)= 0, i= 1,..., ke Minvs twice the natrral logarithm of the

:Neyman-Pearson likelihood ratio statistic for this type of composite
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hypothesis is

2 [L® - L®) | (2.5.5)
where 8 is the ML estimate of the parameters in the restricted model.
The asympotic distribution of the above statistic is a chi-square
with k d.f., and may be used to test the hypothesis stated above

(see Rao 1965, p.350).
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3. LEAST SQUARES

In the first two sections of this chapter equation (1.2.1) will be

considered in the form

yij = f(Xi,e) + eij ,

where E(eij)= 0, var(eij)= o‘?, and COV(eij’ﬁj')z 0. The problems of
estimation and inference when the variance is constant for all i will
be reviewed in Section 3.1, In Section 3.2 we will show how weighted
least squares (LS) estimates may be obtained when variances are not
assumed constant, and demonstrate that when the observations are
Poisson the weighted least squares estimates will be identical to the
maximm likelihood estimates of Chapter 2.

Tn Section 3.4 minimmm chi-square (MCS) estimation will be intro=-
duced and it will be demonstrated that when a modified minimum chi-
square procedure is followed the compntations are identical to those of
weighted least sauares. In Section 3.3 a class of estimates will be
defined which are best asymptotically normal (BAN), and a Theorem due
to Fergnson (1958) will be presented that shows how BAN estimates may
be obtained as roots of certain linear forms, Since the MCS estimates
of Section 3.4 will be of this type they are BAN, and since the modi-
fied MCS estimates will be computationally equivalent to weighted LS
estimates, the latter will also be BAN., Consequently, nnder the
assumptions to be given in Section 3.3, we see that weighted least
squares estimates will be BAN whatever the distribution of the obser=~

vations. When the observations are Poisson the solution of the
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likelihood equations results in the same linear form that is defined
by Ferguson's Theorem demonstrating that ML estimates are BAN-~as should
be expected, Further, it will be shown that when the method of scor-
ing, the Gauss-Newton method, and the modified MCS approach are used to
obtain ML, LS, and MCS estimates, respectively, the iterative procedures
that result will be identical,
3.1 Least Squares - Constant Variance Case

In this section it is assumed that the observations have been
obtained from a regression model

v, = f(Xi,Q) e, (3.1.1)

where the ei's are error residuals and are assumed to be independent
with E(ei)= 0 and var(ei)= 0'2, i= 1,..., N. In (3.1.1) X, is an
m-dimensional vector of independent variables and 0 is a p-dimensional
vector of unknown parameters. FEstimation by the least squares (LS)

principle requires minimization of

N
5@ = 3 [y, - f0x,0)7 (3.1.2)
i=1"

The least squares equations are obtained by differentiating (3.1.2)

with respect to Gr, r=1,..., p,and take the form

df(x,,0)
ds(8) _ i’
30_ - zi[yi - f(xi’e)] e | T ° (3.1.3)

r=1,00., P.
It is well known that when f(X,8) is linear in the parameters, i.e.,

f(Xi,G) = elxﬂ + oeee * epxip s (3.1.4)

the LS estimators will be best linear unbiased estimators (BLUE)

of 0.
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If in addition to the above asswmptions the ei's are assumed to
be normally distributed then minimizing (3.1.2) will be equivalent to
maximizing the likelihood function

(2To 2)'(N/2) exp [- %(yi - f(Xi,G))Z/ZO" ?] .

Consequently the large sample properties of LS estimators in nonlinear
models can be inferred from those of ML estimation. The asymptotic
properties of LS estimators in (3.1.1) have been considered by Hartley
(1964), Hartley and Booker (1965), Villegas (1969), Jennrich (1969) and
Malinvaud (1970).

When the model is linear, (3,1.1) may be written in matrix notation

as follows:
D) = [xas) (5] + [oa] (3.1.5)
Nx1 Nxp pxl Nx1

If we assumethe rank of [xii}= p, then the LS estimator is the unique

eolution of (3.1.3), i.e.

B = (] [xij])-l )" [

(x'x)’lx'Y . (3.1.6)

1

6'is BLUE and represents a set of p statistics jointly sufficient
for the estimation of 6. Further well known results for the linear
case may be summarized as follows:
1.) 8 is normally distributed with expected value 6 and covari-
-1 2

ance matrix (X'X) "o 7,

2.) S(6) is distributed as d-z %2 with N-p degrees of freedom,

n 2
3.) R(O), as defined below, is distributed as 0'2 L with
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p d.f., and
4.) the quadratic forms S(8) and R(§) are statistically
independent.
In 3. above,R(é) represents the 'regression' sum of squares and S(8)
is the 'residual' sum of squares. Since  is a random variable in a
p-dimensional linear subspace of the sample space and is orthogonal to
the N-p dimensional error space, the relation between the vector
(Y- %9), (Y- ¥), and (Y- x0) may be expressed by using the Pythagorean
Theorem as follows:
(Y- X6)' (Y- X8) = (¥- X0)' (¥~ X6) + (Y- V)" (¥- 1)
- R(8) «  s® (3.1.7)
where Y= Xé, and the regression sum of squares may be written
R = [X'(¥- x0)]" (x'00 ™ [k (v~ x8)]
= (8~ B)Y(x'x) (8- 8) . (3.1.8)
An exact 100x % confidence region for 6 is given by
R(B)/S(B) ¢ pFla 3p,N-p)/(Nep) , (3.1.9)
where F(ax ;p,N-p) is the upper 100a % point of the "F'' distribution
with p and N-p degrees of freedom. Hartley (1964) has discussed the
extension of this result to nonlinear models.

When the regression model (3.1.1) is not linear in all of the
parameters the least squares equations (3,1.3) cannot be solved direct-
ly. When this {s the case we shall refer to the regression model as
being nonlinear, or more precisely 'intrinsically nonlinear' .as
defined be Draper and Smith (1966, chap. 10)- :if it is not possible

to express the model as a linear combination of the parameters by some

|
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type of transformation. To obtain estimates of the parameters in
nonlinear regression models various iterative techniques have been
developed that involve the approximation of a nonlinear model by a linear
one., One of the best known is the Gauss-Newton method which will be
briefly described in the next section and more thoroughly considered in
Chapter 4, Meeter ()964) has discussed problems encountered in the
analysis of nonlinear models, and provides a review of the design pro-
blems (i.e., selection of the valves of the independent variables). Box
and Hunter (1965) have considered the dual problem of generating and
analyzing data in situations where the effect of some underlying physi-
cal mechaniem je expressed through the parameters in a nonlinear regres-
sion model. Draper and Hunter (1967) have considered the design nro-
blem when the model is nonlinear with normal independent errors,
constant variance, and prior information is available on the parameters.
Box and Draper (1971) have discussed the [X'X| design criterion, where
X= [af()(1 ,0) /aar] , and Feder and Mezaki (1971) have proposed variational
methods for determining the 'best' experimental design. If the assump-
tion of constant variance is not acceptable, then designs based on a
'variance criterion' reqnire prior information on the parameters,
3.2 Weighted Least Squares

In this section we demonstrate that iteratively weighted LS
catimates are identical to ML estimates when the LS weights are defined
in accord with the assumption of Poisson variation. Consider the

problem of obtaining LS estimates by minimizing
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N
2
5(8) = 55.““- %1 - f(xi,eﬂ (3.2.1)

with respect to 6. Ir the above equation v, is the weight associated
with the ith observation and we choose it to be l/var(zi). If the vari«
ances of the zi's are not known, we assume that repeated observations
have been made for each value of Xi’ that z,= ji;i].yij/ni, and that
w.= ni/sg, wvhere si is the estimated sample variance of the yij's.
Thie is a special case of the generalized least squares estimation
procedure that has been developed by Beauchamp (1966), who showed that
if the observations are normally distributed and if the variances are
known or are replaced by consistent estimates, then the LS estimates
will be eqnivalent to the ML estimates,

Before developing a general procedure for finding weighted LS
estimates we shall consider the special case of linear regression
through the origin that was discussed in Section 2.1 (i.e., where
f(Xi,6)= Gxi)- Assuming that the observations follow the Poisson law,

so that var(zi)= Sxi/ni, (3.2.1) becomes

2
5(8) = 3, w, [zi - Oxi] , (3.2.2)
and the LS estimate of O is

A 214N

8 =
S .t

111

d.n.z,
_oiii (3.2.3)
2i"%

the same result established in Section 2.1 using the ML principle.
When £(X,8) is'nonlinear, (3.2.1) can be minimized by using the

Gauss-Newton iterative method. If we let e° be an initial estimate of
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the parameter valves, and f(X,0) is replaced with the first order
‘e _ o] p _a° o
Taylor series f(Xi,G) = f(Xi,e ) + ZZr=1 (er er)af(xi’e )/aer’

then (3.2.1) becomes: -

$°(0) = Ziwi[zi- £(x,,6%) - Zr(er-ei)af(xi,e")/aer
(3.2.4)
Then letting d (B - 8° ) and p af(xi,e°)/aer, we differentiate
(3.2.4) with respect to ds’ s= 1,..., p, and obtain the LS equations
for the d:'s vhich may be written as follows:

3s (e)

o =0,
Bds

=23, w [z-f(X 0% - 3 4°

T r ir| Pis
8= 1,0.., p. (3.2.5)
This system of p equations is linear in the unknown d:’s and may be

expressed in matrix form as follows:

[ RN is] [d:] = [ziwip‘;r [2;- f(xi.e°)]] . (3.2.6)

If the observations are Poisson, then var(zi)= f(Xi,G)/ni, which we
estimate by replacing 6 by the initial estimate 0°. Then if we let

= 1/var(zi), the system of equations (3.7.6) becomes

Sn £OX, e)1°° | = o P e n (3.2.7)
irPis| %] T Zipir f(Xi,QO) T tee

which is solved for @:}. The initial estimates are then 'corrected!

by taking 9 9 + a° ;T 1,..., p, and the above procedure is repeated

with the superscript zero replaced by the superscript one, This

iterative procedure is then continued until some convergence criterion

is satisfied.
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If we compare the svstem of equations in (3.2.7) with those
obtained in Section 2.2 (see equations (2.3.4) and (2.3.7)) where the
method of scoring was used to find the ML estimates, we see that the
iterative procedvres are identical., It therefore follows that when
the Gauss-Newton method_is nsed to find the LS estimates (as described
in this section) the iterative procedure requires the solution of a
svetem of linear equations which is identical to that ohbtained when
the method of scoring is used to find the ML estimates. Consequently,
the weightedALS and ML estimates are identical when the computational
procednres described in this section and Section 2.3 are employed.

The choice of weights in (3.2.1) was somewhat arbitrary, althongh
intuitively anvealing. In the next two sections justification for this
choice will be provided. It will be shown that the LS estimates ob-
tained bv using the computational procedure described here will be
identical to the estimates obtained using a modified MCS estimation
procedure. The MCS estimation procedure will in general result in

estimates that are best asympotically normal.
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3.3 Best Asympotically Normal Estimates

The principles of best asymptotically normal (BAN) estimation
vere first expounded by Neyman (1949). He defined a class of estimates
that have the same asymptotic properties as ML estimates, buvt differ
with respect to computagional difficulity. Neyman considered the
mnltionomial case and showed that minimization of an appropriately
defined chi-square would produce BAN estimates, Barankin and Garland
(1950), Chiang (1956), Ferguson (1958), and Wijsmen (1959) have present-
ed generalizétions of the theory based on a number of independent
vectors whose distribution need not be specified. Both Chiang and
Fergnson considered methods for generating BAN estimates with a view
toward binlogical apnlications,

A BAN mstimate mav be roughly described as being asymptotically
normally distributed about the 'true! parameter valve with smallest
possible variance. Tn the rest of this section we stmmarize some of
the mathematical reenlte presented hv the anthors mentioned above. Of
special interest is a theorem first given by Ferguson which indicates
how a BAN estimate may be ohtained as the root of a linear form. In
Section 3.4 it will be demonstrated that when a MCS estimation proce-
dure is employed, the linear form that results is of the type specified
bv Fergnson's Theorem,

Let Yl’ YZ’ coey Yn, be a sequence of independent random vectors
taking values in a N-dimensional subspace, S (sample space), of
N-dimensional Epclidean space. The vector Yj= (ylj""’ yNj)'

represents the outcome of the jth replication of the experimental
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conditions X, i= 1,..., N, which are known (see Section 2.2). The
distribution of the Y's depends on a parameter & which takes values
in an open subset of the 'parameter space'’ ,9, which is a subspace of
p-dimensional Euclidean space. If we let 6% denote the true value

1

of 8 and Zn= n_ E:n Y, be the average of the vectors Yj’ then it

j=l 73
follows that

JT [zn- F(G*)] i) N( 0, v(e*)) , (3.3.1)

£

where Zn — N{0,V]| means that the limiting distribution of the
random vector Zn is multivate normal with mean 0 and covariance matrix
V. In terms of our previous notatiom, F(8)= &(xl,e), cee f(XN,e)]',
where T is a function defined on O into S, and V is a function defined
on & into the space of positive semi-definite matrices of order p.

Let U be the set {?(9), Qécp and further note that for our prrposes

we may assume that the Yi's are identically distributed, i.e.,

E(Y,) = F(8) and E[Yi- F(e)] . [Yi-F(F))}' =v(e) . (3.3.2)

Further assumptions required to obtain the resvlts in this section

are: (i) F is 1«1 and bicontinrons; (ii) V(B) is nonsingnlar for all
valnee of 83 (1ii) V is continvone and F has continuore first-order
pertial derivatives; (iv) the matrix P= [éf(xi,ﬁ)laér] ie Nyp and

has rank p for every valwe of 8, These are the assumptions given

by Wijsman (19592, p.187) and lead to a more general class of estimates
vhich include BAN estimates defined by Ferguson.

We now provide some definitions that will be nsed in establishing
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the resnlts that follow.

Definition 1. Let @n(Yl,..., Yn)’ n=1,2,..., be a sequence of
frnctions of the observations taking their valnes from the p-dimen=-
sional space containingéa. The sequence én is said to be a consistent
estimate of the parameter point 8 at the true valuve 8% if, as
n—>00, 6n tends in probability to 6%,

Definition 2. Let B be a positive definite matrix such that as

n—cw, the distribrtion of JﬁB-l(ﬁ;- %) .él;N(O,I); then the estimate

AN
Gn is said to be consistent for 6% and asymptotically normal. The

asymptotic covariance matrix of @n is n-lBB'.
Definition 3. © is called regnlaf if: (1) Q(Zn) converges
in probability to 6%, that is, D is consistent: (ii) B is differen-
tiable in every point F(8) of U.
The above definition of regular was given by Wisjman (1959a)
who pointed out that (ii) implies that for every sequence Zﬁ'satisfying

(3.3.1) we get

«n[@n(zn) - e*] ~o A(B%)yn {zn - F(e*)] . (.3.3.3)

In (3.3.3) A(8) is a pxN matrix continuous in 8, and the notation
an\/Yn means that (Xn-Yn) converges in probability to zero. When

6 is constructed according to the method described in Fergnson's
Theorem then A= (BP)-lP where B= P(B)'V(G)-l. Under any circumstance
the A corresponding to BAN estimates is continnous since it is given
by A= (1’"V'11’)'1I"V-1 (see Wijsman 1959b, p. 1269).

Definition 4. Let C be a class of symmetric positive definite
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matrices of rank n. A matrix H*¥ that belongs to C is said to be
minimal with respect to C if for every H belonging to C the Adifferencn
B-H* is nogitive.semidefinite; i.e., for any pxl wvector, G, and for
anv H in C, the anadratic form G'(H - H*)G is nonnegative,

New svpnose that C is the class of covariance matrices obtained
from the Timiting distribution of Jﬁ'?(zn)- 9{] for some regrlar
epatimate é(Z ).

n

Definition 5. A regnlar estimate é(zn) is said to be best
asvantotically normai (BAN) if the covarience matrix of the limiting
Aistrihution of Jﬁ[ﬂ(zn)- Bﬂ is minimal with respect to the claes GC.

The following theorem —=first given by Fergnson (1958  Theorem
1 and 2)= was proved by Wijsman (1959, Theorem 2). The theorem
shows ms how to penerate » BAN estimate as the root of a linear form.

Fergueon's Theorem. Let the pxN matrix B(7,0) be: (i) contin-
wone in @ for each Z; (4i) continvons in 7,0 at each point (F(8),0);
and (iii) sveh that B¥P* is nonsingular whatever 6%, The matrix
B*= B(F(8%),0%)., Then there esists a neighborhood U*C U and a
frnction 0:Uk— © . The frnection 0 is a regular estimate and

satisfies the equation

B(Z,0) {é- F(eﬂ =0. (3.3.4)
Forthermore, we have
(8 - 0%) A BEPH) " Bk [zn- F(e*)] . (3.3.5)

T1¢ B% = P*'VA"L then 8 is BAN.

We will now find the covariance matrixof © using (3.3.5) and
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Definition 2. First note that since P* has rank p and V¥ is non-
singular, B¥%= (P*)'V*-l has rank p and B*P* is nonsingular. Now if

we let the pxN matrix A= (B*P*)-lB*, we see that the covariance matrix
of (3,3.5) is given by the pxp nonsingular matrix AV*A', Consequently
there exists a matrix M such that MM'= AV'A, and it follows that
(M-lA)Jn [?n- F(e*ﬂ has a limiting normal distribntién with mean zero

and covariance matrix

wlaveany ety = wlamoy oty < o (3.3.6)

where IP is a pxp identity matrix. Then from Definition 2 we see that

A 3 . 3 I3 0
# has an asymptotic covariance matrix which is given by
n T 2 !

A b = nolavear = tEsevste (3.3.7)
2.6 Minimm Chi-Sarare Estimation
In this section we follow a eeneral approach that was developed

by Fergrson (1058) for finding BAN estimates, Using the notation of

the nreviovs section, the auadratic form
o RO ORI (R0 (2.4.1)

A
ir eallad a chi=amare, and the value of O(Zn) vhich minimizes it is
called a minimum chi-square (MCS) estimate of 8. 1If we let W(Zn) be

a nyp positive definite symmetric matrix depending on Zn only, then

n [zn- F(B)] 'z ) {zn- F(G)] (3.6.2)

is called a modified chi-sauare. Under the condition that

W(Zn)'——)V(G*)-l ag n—yw , and under the repnliarity conditions of
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the previons section, the modified MCS estimate will be BAN, To
minimize (3.4.2) we differentiate with respect fo each of the parame-
ters and set the result equal to zero. We obtein the following system

of p-simultaneous linear equations:
nP(8) 'W(z ) Fn- F(Gﬂ =0 . | (3.4.3)

Comparing this with (3.3.4) we see thet (3.4.3) is a linear form with
B(Zﬁ,e) = P(G)'W(Zn). Since W(Zp) crnverges in probability to V(G*)-I,

and W(F(Ox)) = V(é*)-l we have

B(F(B%) ,B%) = B+ = P(8%) V(B0 .
A
This implies, by the second part of Ferguson's Theorem, that 8, the
root of (3.4,3), is BAN.
To find 6 we expand F(8) in a first-order Taylor series ahout an

initial estimate 8° and obtain F(8)= F(8”)+P(8°)(8-6°). Then replac-

ing F(B8) in (3.4.3) with this approximation we have
p(O)W(Z) [7 - F(E7) - P(8M)(0-6M] =0 . (3.4.4)

Since renlacine B(Zn,e) = P(a)vw(zn) with BO(Z",Q) = P(BO)W(Zn) witl
reenlt in a BAN estimate whenever the root to (3.4.3) is a BAN estimate

(sen Ferguson (195R), n. 1056) we obtain
P(6%)1W(z_ JP(8°) (8-6%) = P(6%)W(z ) [ - F(6%)] . (3.4.5)
n n’ Un

Now if we ass'me that the elements in the random vectors Y1 of

observations are mntnally independent, then V(8) will be a diagonal
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matrix. In this situetion W(Zn) will be diagonal and (3.4.5) is then

[P?r] tdiag(w,) [r:g] [Gr- 92] = [n;’r] 'di.ag(wi)[zi- f(xi,e")] ,

(3.4.6)

which may be written as

o o o o 0
[Zipirwipis} [Or- Gr] = [ Pie"y [Zi- f(Xi,G )]:] . (3.4,7)

Thig is the same system of linear equations that was obtained in
Section 2,2 when the Geuss-Newton method wac nsed to develop an
iterative method for obtaining 1S estimates, Consequently, when the
wi's are the reciprocals of the variances or consistent estimates of
the variances, the weighted LS estimates will be BAN., 1In particuvler
if the elements of the Yi's follow the Poisson distribution, then

V(8) = diag E(x].e), ey f(XNeﬂ , and we see that the linear form
() 1v(e) ™ [zn- F(S)] =0 (3.4.8)

is of the type defined in (3.3.4). This is the same system of
equations that was obtained in Section 2.3 (see eq. 2.3.4) nsing the
ML principle with n.=n for all i. We conclude that when the observa-
tions are Poisson the ML, LS, and MCS estimates obtained by using the
method of scoring, the Gauss-Newton method, and the modified MCS
approach, respectively, will be identical ~i.e., the computational
procednres result in the same system of simultaneous linear equations
to be solved iteratively.

Also, we may use a result given in‘the previouvs section (see
equation (3.3.7)) to obtain the covariance matrix of the BAN estimate

obtained by minimizing the linear form (3.4.3). The covariance matrix
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of 6 is given by

aml [P(e*)'v(e*)'lP(e*)] -1 . (3.4.9)

The elements of this matrix may be estimated by replacing 6% by @.
When the chservations are assumed to be Poisson (3.4.9) is the information
matrix, and for the LS case it is the inverse of the pxp matrix on the

A
left hand side of (3.2.6) evalvated at 8.
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4, REGRESSION ANALYSIS WHEN THE DATA ARE COUNTS

In Chapters 2 and 3 methods for estimating the parameters in a
general regression model have been developed. It was assumed that the
observations = i.e,, the yij's - were some type of counts that might be
expected to follow the Poisson distribution, and that for a given value
of Xi (the independent variables) the mean value of the yij's was
specified by the regression equation f(Xi,e). In this chapter we will
apply the estimation procedure to biological experiments which give
rise to counts, After reviewing the biological aspects of the problem
several examples involving both linear and noniinear regression models
will be considered. The examples are intended to illustrate how one
defines the regression function and how one obtains results when the
methods are applied to actual data. It is emphasized that the approach
advocated here is intended to achieve conceptual rather than computa=-
tional simplicity. If the biologist is familiar with regression
analysis and the Poisson distribution he may access the applicability
of these methods to his particular problem, If the Poisson assumption
is acceptable and a regression model established, then the LS estima«
tion procedure may be used to estimate the parameters in the model.
When the weights are defined in accord with the Poisson assumption
the LS estimates will be identical to those obtained when the ML
principle is used ==as was demonstrated in Chapter 3. As a conse-

quence of the iteraiive nature of nonlinear LS the computations

required to solve the equations are difficult to carry out, and for
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all but the simplest cases would require a digital computer. The
computational procedure that we will use to obtain the LS estimates
is outlined in Section 4.4, When the Poisson assumption is not
acceptable the analysis may be modified by using empirically defined
weights in the LS equations and the resulting estimates will be BAN
as has been shown in Chapter 3.

4.1 Applications In Biology

In a variety of experiments the biologist is interested in
determining the concentration of microscopic particles in a suspension,
The particles may, for example, be bacteria and their presence is
established by allowing them to develop into visible colonies in a
nutrient medium.

We now propose several definitions to simplify the discussion
that follows and to provide a general frame of reference so that the
biologist may consider the problem in a context most familiar to his
own interests. Therefore, we shall speak of a 'count forming unit'
(CFU) and a 'growth medium', the precise meaning of these terms being
determined by the situation —=for examples, see Table 4,1. An experi-
ment is usually carried out by selecting N values of the independent
variable(s), Xi, and then for each value of X1 obtaining n, 'parallel!
counts. A count is obtained by introducing a known amount of suspene
sion which contains CFU's into the growth medium, and counting the
colonies (plaques) that develop. The following assumptions are made:

(i) the growth media are homogeneous,

(ii) the suspensions of CPU's are assigned to growth media at random,

|
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(iii) and each CFU results in only one visible colony (plaque).
The first two assumptions depend on the experimental technique and
the third depends upon the nature of the CFU's. The Poisson distri-
bution has generally been accepted as a reasonable model for the
distribution of colony counts since the early work of Fisher, Thornton,
and MacKenzie (1922). In the examples that follow the counts are
assumed to follow the Poisson distribution, and the ML principle is
used to estimate the parameters in the regression model. All of the
regression models that will be considered in this chapter have been
discussed in Chapter 2, and the partial derivatives required in the

computational procedure of Section 4.4 were defined in Section 2.4.

TABLE 4.1
Experiments That Give Rise to Counts
———

Type of Units Nutrient

—

|

Particle Counted Medium References*
bacteria colonies agar Fisher, Thornton and Mackenzie
(1922)
virus plaques culture Berg et al. (1963)
' of cells
bone marrow colonies spleen (of
stem cells recipient Till and McCulloch (1961)
mice)

* References for further discussion of experimental technique
4.2 Linear Regression

In this section we consider the problem of estimating the con-
centration of CFU's per unit volume of suspension. Suppose that 91 is
the mean density of CFU's per unit volume of suspension. The experi-
menter prepares N independent dilutions of the original suspension,

and X410 the independent variable, is the ith dilution factor. The
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regression model for this experiment takes the form

f(xi,e) = elxil i= 1,.00, N » (40201)

and the observations are obtained by making n, parallel counts

at each dilution. Table 4.2 contains data from an experiment of this
type that was originally presented by Berg et al. (1963), and further
discussed by Roberts and Coote (1965, Table 3). Then using (2.1.4)

we obtain

N
2 nixi = 127.31 .

i=ml

A ég n,
6, = >ty .l
1 {el j=1 1]

The simple linear regression model is inadequate -~as was pointed out
by Berg et al.. They attributed the deviations from the model to
'overcrowding and/or clumping’'. Roberts and Coote proposeda method
for dealing with the problem that uses sequential orthogonal compari-
sons to establish a region where (4.2,1) is adequate. An alternative
approach proposed by Gart (1964) is to formulate a regression model
with an additional quadratic term, i.e.,

2
f(xi,e) = 6yx,q + 92x12 » where x = x.,” . (4.2.2)

Although (4.2.2) is linear, it is not possible to obtain the ML
estimates of 61 and 02 without using the iterative estimation procedure
that was described in Chapter 2., Using the method of scoring to

solve the likelihood equations (see Section 2.3) and the results
established in Section 2.4.1, the ML estimates are found to be

61 = 162,12 and @2 a «92,08. The covariance matrix of the estimated

parameters is obtained using (2.4.5) and (2.5.1) and is
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74.89  +169.7
V(@) =
' -169.7 432.7 .

The regression sum of squares is

ny

s 2
Q = 2 m (yi. - £(X,,0))7] = 14.05 ,

with 9 d.f.. The average of the observed counts for each value of
i, and the expected values obtained using the linear and quadratic
regression models are shown in Figure 4.1,

The purpose of this example has been to demonstrate the flexi-
bility of the regression approach «i.e., various alternative models
may be evaluated=- provided a computer is available to do the arith-
metic. For example, we could just as well consider a model which
allows for a nonzero intercept, i.e.,

f(Xi,e) =0;x,, +8; ,

or, more generally, both an intercept and a quadratic term

f(Xi,ﬂ) = 0%, + e

1% 8%+ 93
where Xin = Xiq o
4,3 Nonlinear Regressione=Survival Curve Analysis
In Section 2.4 a general survival curve model was defined
as follows:

f(xi,e) = elxils(x 8 , (4.3.1)

12’
and several examples were discussed. In this section ML estimates of

the parameters in the survival curve model are obtained. In each of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

)
0
o Po'
(@]
\
-
¢ ]
D
=
R ==
o
i——
n D
R o
0 =
- ol
= iz
(> —- 8
" T
© TEN 5
W « o
3 ) ol o N ey
C Lza G
> =5
T cubd
2 §=C
(75 JE R
L oaca =4
o P00 i
r—
@ | | 1
S 04+
\ o
\ &
00°09 00°Sh 00°0¢ 00°S1 oo oF
SBINQ‘IOD 30 H3BHNAN 3AY
L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LINEAR REGRESSION

!

o !

FIGURE 4




46

TABLE 4,2

Plaque Counts¥*

Obs., Expected
i n, X1 Xi9 ?i- Linear Quad
1 4 .05 .0025 6 6.4 7.9
2 5 .10 .0100 18 12.7 15.3
3 5 .15 .0225 22 19.1 22.2
4 5 .20 .0400 32 25.5 28.7
5 5 .25 .0625 33 21.8 34,8
6 5 R0 .0900 Lb 38,2 40.3
7 5 .35 L1225 3a L4 6 45,8
R 4 40 .1A00 49 50,9 50.1
9 5 .45 ,2025 L) 57.3 54,2
10 3 .50 .2500 59 R3.7 5R.0
11 3 .60 .3600 68 76.4 64.1

SOURCE: Berg et al, 1963, Table 3,

NOTE: Symbols wsed in column heading are defined as fol-
1ows:

n,.= number of 'parallel! counts for ith dilution

xi1= ith dilntion factor

Xi9™ *11?

.= total plaques counted / ny
The expected counts are calcnlated nsing (see eqs. 4.2.1
and 4.3.3):

Expected Linear = élxil = 127.31 L

Expected Quad = élxil + éZXiZ = 162,12 L

*Plaque coints obtained at different dilution levels for
Coxsackie A9 virus.

- 92,08 Xy

2 .
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these examples the observations are colony counts, and the CFU's are

exposed to some type of ionizing radiation (x,,). In these situations
i2

:the parameter 91 represents the concentration of CFU's/unit volume of

' suspension when no radiation is present (i.e., X;9® ()X S(xiz.é)

represents the fraction of CFU's ==per unit volume of suspensiones

. surviving radiation dose Xi9e Interpretation of the parameters

B= (92,...,9p)' will depend upon the particular model being considered,
' The parameters are intended to be descriptive of the effect of radia-
“tion of the CFU (i.e., bacteria or stem cell) that is being studied.,
4.3.1 Exponential Survival Curve %

The exponential survival curve is obtained by letting

)

S(xiz,ﬁ) = exp(-ezx12

so that ;
f(xi,e) = lenexp(-ezxiz) y i= 1,000, N, (4.3,2)
We now consider an example presented by Lellouch and Wambersie
;(1966) in which E. Coli W i485 were exposed to radiation doses (xiZ)
which are given in Table 4.3. For each radiation dose n, dilutions
(x11 is the concentration for xiZ) of the irradiated suspension
are 'plated’ on a petri dish, and yij is the number of colonies
that result (see Table 4,3). In this situation the parameter 92
describes the radiosensitivity of the cell and its" reciprocal is
the dose at which 37% survival occurs. Now using the notation of
Section 3 we calculate 2= :ijij,ni and then plot ln(zilxil) V8. X,
(see Figure 4.2a), Initial estimates of the parameters are 9?— 271.0

and 9;- «5, where 6;- zi/xil and 6; is obtained graphically as
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TABLE 4.3

Fxponential Srrvival Crrve Data

connts/unit vol

& OBS  EXP

o Yo Yis
11 0 6 299 283 280 246 264 254
[ 1 1 2 169 184
3 2 2 5 179 224 188 202 194
4 4 3 5 233 261 229 286 264
510 4 & 401 410 356 388

6 4 4 5 157 146 134 161 159

271.0  271.0 271.3
176.5 176.5 166.,5
197.4 98.7 102.2
25,6 63.6 62.8
388.75 38.9  38.5
151.4 37.8 38,5

?SOURCE: Lellonch and Wambersie 1966, Table 1
i NOTE: Column headings are defined as follows:
Xq= concentration of srspension plated

0= radiation dose (x4000 rads)

n, = nmber of conts made for the ith experimental condition
Xy= Oxgqaxg)
V.= rimher of ecnlonies cornted on the ith replication of Xi
n:
7=T" /1‘1

‘e . ".a .
i Ss=1749

F(Xia) = Glxilexp(-ezxiz)

TARLE 4.4
Chi-Sauare Valnes for Exponential Model
Source Aaf X2
Deviation from Model 4 Qr= 3.03
Within 21 Qw= 30.24
TOTAL 25 Qt= 33.27

NOTE: The chi-sanare valves are calcilatad neing equations (2.5.%)
and (2.5.4) and the data from Tahle 4.3
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indicated in Figure 4.2. Then using the partial derivatives that
were given in {2.4.7) and the iterative procedure that was described
in Section 2.3 (see Section 4.4) the ML estimates are obtained after

oY

three iterations: 61= 271.26, éz= .4879,
The chi~-square statistics are calculated (see Section 2.5) and
are displayed in Table 4.4. The elements of the covariance matrix

are estimated using (2.5.1), and. are available from the last iteration

(1.e., V(B)= ¢y and

. 35,79 .03852
V(o) = [ 16064 x 10"‘] .

The observed and expected number of counts/unit volume are plotted
against radiation dose in Figure 4.2b., From Table 4.4 we conclude
that both the exponential survival curve and the Poisson distribution
are acceptable =~—as indicated by the nonsignificant chiesquare valueg==
for this example. The estimated parameter values and variances are
in close agreement with those obtained by Lellouch and Wambersie
(1966, p.677) using a different iterative procedure which requires
less computation but is only suitable for this particular model.
4,3.2 Target Survival Curve

In some quantitative studies of cell survival the exponential
model is inadequate, and the more general target model is required
to describe the relation between radiation dose and the response of
the biological system. We now consider a situation in which the
target model adequately describes the survival curve data. In this

example the CFU's are bone marrow stem cells. The bone marrow stem
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cells are irradiated (x12) and then injected into recipient animals.
The injected cells locate in the spleen where the viable stem cells
divide and produce clonal colonies. The recipient animal is sacri=-
ficed after sufficient time has elapsed for the colonies to grow to
macroscopic size. The colonies in the excised spleen are then counted.
Since the stem cells constitute a small portion of the bone
marrow cells, it is necessary to inject large numbers of bone marrow
cells in order to produce colonies. It is convenient to define a unit
concentration as 105 bone marrow cells. Then the ith experfmental

condition is given by Xin (xil’xiz)’ where x o™ radiation dose and

i
x1= concentration of cells injected into the recipient animals.

The expected count is then

£(X, ,8) = elxil[i - b - exp(-ezxiz))e3] , (4.3.3)

and yij’ i= lyeaey Ny j= 1,40, n,, are the observed counts., The

number of spleens that are counted for each X, is denoted by n

i 1°

61 is the concentration of stem cells in the bone marrow under normal

conditions (i.e., xiZ-O). The expression
5(x,918) = 1 = [1 = exp(-,x,)) %3
12° PR=Y2*s2

represents the fraction of stem cells surviving radiation dose X590
The parameter 92 describes the radiosensitivity of the cell, and 93
represents a threshold level or injury required for cell death., The
parameter 63 was originally supposed to represent the number of
'targets' per cell and is also referred to as the 'extrapolation

number', Further discussion of the target model and the biological
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TABILE 4.5

Tareet Survival Crrve Datak

Yo Yy M Tyi's 75 5
1 1.25 0.0 6 11 10 11 11 9 8 10.00 1.000
2 1.75 .96 7 12 8 9 9 &8 9 11 9,43 .673
3 3.00 1.92 4 11 10 11 1& 11.50 479
4 7.20 2.88 9 8 8 9 12 6 10 13 9.11 .158
10 6
524,0 4,32 11 12 12 14 10 7 10 8 9.55 048
11 8 7 6
6 75.0 5.76 15 7 5 9 4 9 10 7 8.20 014
8 9 7 12 7 11 7
11
7 120.0 6.72 4 2 3 3 4 3.00 .003

SOURCE: Till and McCnlloch 1961 Table 3
NOTE: Column headings are defined as follows:
X:1= concentration of cells injected
X o= radiation dose (rad x 10-2)
n, = nimber of spleens for ith experimental condition (Xi)

y11= n''mber of colonies cointed on jth replication of X

2y = 24%44/™

i

o . X ;
s, = zi/(elxil), i.e.y fraction snrviving

*Bone marrow suspensions (from C57Bl mice) were irradiated in vitro
with Co®’ gamma-rays and data wereobtained using spleen colony
connting method.
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significance of the parameters have been given by Fowler (1964), .::
Krebs (1967), and Frome and Beauchamp (1968).

The data in Table 4,5 are from an experiment of this type.
An initial estimate of Bl is obtained using the counts at X o= 0;
9;= zllxil= 8.0, Initigl estimates of 92 and 63 are obtained
graphically by plotting ln(zilxil) versus Xx,, (see Figure 4.3) and
are 9;: 1.0 and 6§= 3.1. Using the partial derivatives given in
(2.4.11) the ML estimates are obtained after six iterations using
the method of scoring (see Section 4.4). They are §1= 7.636,
8

= 9341, and 8.= 2.892. The estimated covariance matrix is
2 3

R .8211 -.0124 -.5017
v(e) = .0016 .0254
»5589 .
The approximate chi-square tests (see Table 4.6) indicate that the
regression model and the Poisson assumption are acceptable for this
set of data. Further applications have been presented by Comas (1970).
4.,3.3 Weibull Survival Curve
The target model of Section 4.3.2 was originally obtained as
a special case of a more general model derived from the 'target-hit’
statistical theory of radiation damage when the number of hits is one.
The same general equation has also been obtained from a kinetic model
of radiation damage by Dines (1966). Although the target=hit theory
remains in doubt as a representation of the lethal process in the cell,
most mammalian cell survival curves resemble the target model and can

be represented‘by the same parameters. That is to say, the target
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?model is accepted because experimentally obtained data 'fit the model'l
as was demonstrated in Section 4.3,3. We now consider the Weibull i

Imodel |
0
£(X,,0) = 8;x,,5(x,,,0) = Bx  exp (-e?_xi2 3) , (6.3.4)

~as an alternative to the target model, and use the stem cell survival
:curve data to illustrate how the ML es’imates are obtained. First we |
suggest a possible interpretation of the parameters, 91 is the expectJ
ed number of stem cells/unit concentration (i.e., has the same inter= %
tpretation as 6, in the target model)., Since S(x2,§) represents the

fraction of cells surviving radiation dose x, we consider the following

fdestruction rate!

0.1 ?
= 3 . |
r(xz) 6293x2 , 62,93 >0. (4.3.5) !

The solution of the firsteorder differential equation

dS(xZ)/dx2 a -r(xz)S(xz)

8,
S(xz) = exp(-ezx2 ) .

If 0‘103<~1, r(xz) is a montonically decreasing function of Xy if
93> 1 r(xz) is a montonically increasing function of Xy3 and if 83= 1,
r(xz)- 62 (i.e., a constant) and the exponential survival curve results.
When X,= 1 then 92 is the natural logarithm of the fraction of cells
surviving at unit dose, i.e., S(1)= exp(-Bz).

Initial estimates are obtained by first calculating 9;— zllxu,
and then plotting 1n1n(1/si) vS. 1n(xi2) vwhere s, = zi/(egxil) (i.e.,

8y is the observed fraction surviving/unit concentration). Initial
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. estimates of 62 and 93 are then found graphically as shown in Figure

: o o
4.4, and are 62= +43 and 03= l.3. The ML estimates are obtained

- after four iterations and are él= 8.134, §2= .4206, and .= 1,341,

3
© The estimated covariance matrix is

R « 7954 0512 -.0573
V(e) = 00052 "00064
.008L( .

; The regression sum of squares is 7,105 as compared with 7,595

; obtained for the target model. The expected number of counts for
the Weibull model and for the target model are given in Table 4.7.
Figure 4.5 shows the original data and the fitted curves. Since
§3>].the destruction rate is an increasing function of radiation
dose, and 1n§2=.657 is the expected fraction surviving a dose of
100 rads. It is also possible to develop a stochastic version of
the Weibull model in which the 'destruction rate! is interpreted as
the *face of mortality' in a pure death process (see Chiang 1968,
p.60).
4.4 Computations

In Chapter 2 and 3 it was shown that under certain conditions

ML, LS, and MCS estimates were equivalent in the sense that they
result in the same iterative procedure, The computational procedure
that we have used will now be described in the general context of

nonlinear LS. That is, we wish to minimize

N 2
S(8) = El v,z f(xi,e)) (4.4.1)
n

i
" with respect to Sr, rm 1,00e, po In (4.4,1) 21- Zj_l yij,ni'
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TABLE 4.6
Chi-Square Values for Target Model

Source df X2
Deviation from Model 4 7.595
Within 49 24,442
Total 53 32.037

TABLE 4.7

Observed and Expected Values*

——
Number of colonies per unit volume
Xin Observed Target Weibull
0. 8.0 7.64 8,13
.96 5.39 5.96 5.46
1.92 3.84 3,13 2.97
2.88 1.27 1.40 1.43
4,32 «398 384 408
5,76 «109 .101 .100
6.72 025 041 036

NOTE: Radiation dose= x12°100 rads
% Observed values are obtained from Table 4.5 (zi,xil)' The expected -
values are calculated using (4.3.3) and (4.3.4) and estimated

values of the parameters (see Sections 4.3.2 and 4.3.3).
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;f(Xi,G) is the regression function, and LA is the weight associated
~with the ith observation (see Section 3.2). The procedure used to
minimize (4.4.1) is iterative, that is, if ek is the value of 8 on the

1= ek+ Dko

' kth iteration, we compute a search vector Dk and set Ok+
The procedure is repeated until a stable solution, @, is reached
according to some convergence criterion., Various approaches to the

. numerical problem based on gradient methods have been discussed by

. Smith and Shanno (1971).

The gradient of S is written in matrix notation as
vS = 2(WP)' [z-F(8)] (46.2)
Ewhere We ding(wl,.-.,wN), YAl (Zl,...,zN)', F(9)=[f(xl,e),.oo‘

f(XN,O)]' and P= [Pij] a[af(xi,e)/aej] . A gradient method for

minimizing S is one which calculates a search vector, D= (dl,....dp)‘,‘

defined by
D = AWP)* [2-F(8)] (4e443)

where A is a pxp matrix., When A = (P'WP)'I, D is the Gauss-Newton
vector, and if the starting value, 60, is good this procedure wiil
have desirable convergence properties. If gcod initial estimates
are not available, then some other search procedure such asMarquardt's
(1963) may be useful. Marquardt's vector combines the best features
of steepest descent and the Gauss-Newton method, avoiding einguleri-
ties that may occur when P'WP {s ill=conditioned.

Another approach to function optimization that does not use a

gradient method has been developed by Bremermann (1970) using a
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random search technique so that only the function being minimized
need be evaluated and no derivatives are required., Bremermann's
method may prove to be of considerable value in large scale problems
. (i.e., many parameters) when no starting values are available. A
‘method for generating (pseudo random) normal deviates wwwhich are
Erequired in Bremermann's programe~ on 32=bit«word computers has been
tdiscussed by Chen (1971).

In the applications in Sections 4.2 and 4.3 methods for finding
starting values were given for the particular problem being considered:
and the Gauss=Newton method was used to minimize S(6). In the examples

- considered the starting values, final estimates of the parameters, |
number of iterations to convergence, and estimated covariance matrix
were given. Convergence was defimed to have occurred when the rela=
tive change in all of the parameters was less than 10-5. The compu=

tations were carried out in single precision arithmetic, and the
Gauss-Jordan method was used for matrix inversion.

In general if a stable solution, é, is found, it will be the ML
estimate of O when the observations are counts that follow the Poisson;

distribution. When the number of parameters is large double precision

arithmetic and special care in matrix inversion are advisable. In
such situations Marquardt's algorithm would be desirable unless good
inittal estimates of the parameters are available. The following is

a sumary of the steps in the computational procedure:

1. ﬁnpui] Ny my Py Xis 200 Oy (1= 1,..., N) as defined

in Section 3.2; Br, re 1l,e0., p, starting values for
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parameters; convergence criteria (€), and maximum

number of iterations,

@efine regression function and derivatives] The regression

function (see Section 2.2) and partial derivatives with

respect to the parameters are defined by £ = f(xi,e),

i
P;,= af(xi,e)/aer, r= 1,000y Do

@efine weights] Under the Poisson assumption weights
are defined iteratively by W= ni/fi’ or as described
in Section 3,2,

[Calculate C and G] C is pxp (symmetric) matrix and G

is the pxl vector both of which appear in the system of

equations defined in (3.,2.6). They are defined by

C= [ziwipirpis]’ G= [21‘7’1”11»(’1' fi)]’ for r,e= Lyeeey by

and the subscript i assumes the values 1,2,400, No

{solve 1inear equations] Obtain the 'correction' vector

De (dl,..., dp)', where De C-IG. This is the most important

step in the program and requires considerable care in

large problems. If the matrix C is nearly singular

Marquardt's algorithm or some other procedure may be used.

[check for convergence] If the (\drlllerl,<€ for r= 1,44, p,j

or the maximum number of iterations has been reached,
go to step 8.

[update estimates] Put Gr- (9r+ dr)’ r= 1,..., p, then
return to step 2.

[Output] Output should include all input data, final



parameter values, number of iterations, estimated variance=-

|

} covariance matrix (C-l), minimum value of sum of squares

ii in (4.4.1) and maximum value of logarithm of the likelihood

1, function ==which is given by (2.3.3) when yij's are
independent Poisson courts,

A Fortran IV implementation of this computational procedure will

be given in the Appendix.
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5. SPECTRUM ANALYSIS

The primary purpose of this chapter is to summarize the computa-
|
tional procedures and statistical considerations of numerical spectrum}

analysis. Most of the results presented here have been discussed in ?

%detail in Spectral Analysis and Its' Application by Jenkins and Watts

- (1968). Jenkins and Watts were primarily concerned with engineering |
éapplications of spectral analysis, where the methods have a rather
;natural appeal as an extension of Fourier transform techniques, In
a biomedical context, spectral analysis has been extensively used in
. electroencephalography (Brazier 1965), and in electrocardiography
;(Hurthy, et al., 1971)., Randall (1958) developed an approach to the
analysis of pulsatile pressure and flow (in the fermeral artery of |
the dog) using cross-spectral analysis. Tick and Woodbury (1965) have
Zsuggested that an important function of spectral techniques in biomed-‘|
ical signal processing is in the development of data reduction systems.
In the applications to be presented we hope to demonstrate the poten=
"tial value of spectrum analysis, not only as a method of data reduce
tion, but also as an intermediate step in the development of patient
monitoring techniques and in furthering the understanding of the
biological phenomena being considered. The inherent nonlinearity and
nonstationarity of many biological processes makes a formal mathema-
tical treatment virtually impossible. In Chapter 6 a simple mechanical
model of the respiratory system will be developed which serves to

illustrate this point. The model will be considered primarily as a
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5conceptua1 aid in the interpretation of the spectrum analysis. When
the frequency domain has a natural interpretation the nonparametric |
:spectral approach has great intuitive appeal,

Other methods of time series analysis that follow a parametric
“time domain approach have been developed by Box and Jenkins (1970).
iTheir approach is based on a mixed autoregressive-moving average
; model where estimation is accomplished via nonlinear regression
methods similar to those described in Chapter 3. Harnan (1969) has

~also considered this type of model and has developed an estimation

~procedure based upon a Fourier transformation of the data. This

|
. approach will be most useful if the purpose of the analysis is to
| !
predict future values of the series, However, it appears to be rather

i
difficult to attach any biological meaning to the parameters in this

{

kind of model. Jones et al, (1970) has preasented. an applicationof thia}

approach to multivariate biological time series analysis,

In Section 5.1 of this chapter a review of the basic theory
of bivariate time series analysis will be presented. In discussing
the theory only the discrete time case will be considered. It will
be assumed that the data is obtained by sampling continuocus signals
at equi-spaced intervals of time. Practical considerations and
problems encountered in analog to digital conversion are discussed
in detail by Bendat and Piersol (1971, chap 7), and in biological
applications by Macy (1965). The choice of an appropriate sampling

rate is of great practical importance since it determines the Nyquist
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;frequency. If the sampling interval is too large aliasing will
~occur in the sample spectrum.

The method of estimation that will be used in the applications
. 1s based on the periodogram and is outlined in Section 5.2, The '
periodogram is computed from the finite Fourier transform (FT) of
%a realization of a time series., If viewed as a linear transformation
! the finite FT can be used to develop a heurigtic treatment of the sta-
tistical properties of spectrum estimators. The development of the :
ECooley-Tukey fast FT algorithm has had a dramatic effect on spectrum
‘analysis and digital signal processing. The calculations of spectrum
ianalysis will be reviewed in Section 5.3,
§5.1 Spectrum Analysis of a Bivariate Stationary Time Series

Consider the sequences X(t), Y(t), of real-valued random vari~
ables, where the indexing variable t is integer valued and denotes
time. It is assumed that X(t) and ¥(t) are weakly stationary time
series with EX(t) = EY(t) = u for all values of t, and for notational
convenience we assume pu=0., The avtocovariance and cross-covariance
functions are defined by

R (K) = E[K(e)X(t+k)]
R, (k) = E[Y()¥(tek)]
R (0= EROV)] k= 0,11,22, oo v (5.1.1)

The spectra of X and Y are defined to be the Fourier transforms of

their autocovariance functions and are given by
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s.(£) = 3 R (Kexp(-2Tifk) , -k<f<}

kmaos

5,(£) = S R (exp(-2Tifk) , -h<f<h (5.1.2)

koo

éThe crosg=spectrum is defined to be the Fourier transform of the

. cross=covariance function and is given by

5,6 = 3 R (exp(-2Tifk) ,  h=f<k . (5.1.3)

ka-m

Both Sx(f) and Sy(f) will be real-valued and symmetric about zero
since they are Fourier transforms of real even functions, The crosse
covariance function is not necessarily symmetric about the origin
so the cross-spectrum will in general be complex-valued.

Since the spectrum and the autocovariance function form a

“transform pair it follows that

%
Rx(k) = :2 exp(21T1fk)Sx(f)df . (5.1.4)

-If we set k=0 in the above equation we see that

2 2
Rx(O) = E[X (tj} = o; =

e e

S (£f)af . (5.1,5)
X

Consequently, Sx(f) is interpreted as representing the distribution
of the process variance with respect to frequency. In a similar

manner we may invert (5.1.3) to obtain
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%
Ryx(k) = .{5 exp(2 ‘Frikf)syx(f)df , (5.1.6)

~and letting k=0 in (5.1.6) we find that
%

R_(0) = [ s__(f)df = EX(t)¥(t) . (5.1,7) [
‘ yx U £
If X(t) represents the potential difference across a two terminal
device, and Y(t) the resulting current then (5.1.7) is the expected !
value of the power delivered to the device (see Papoulis 1965,
chap. 10).

To gain some further insight into equations (5.1.2) and (5.1.3)
it is useful to consider the spectral representations of the processes
X(t) and Y(t) which are given by (see e.g. Cox and Miller 1965,
chap. 8)

%
X(¢) = [ exp(277ift)dz (f) , and

!

%
Y(t) = j; exp(2'ﬂ1ft)d2y(f) y (5.1.8)

where de(f) and dZy(f) are complex-valued processes of orthogonal
increments and are also cross-orthogonal. Using (5.1.8) in (5.1.1)

and comparing the result with (5.1.4) and (5.1.6) we find that

2
5 (£)df = ellaz () 7] ,
2
Sy(f)df - E[Idzy(f)l ] , and

*
Sy E)dE = E [dZy(f)de(f)] , (5.1.9)
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.where * indicates complex conjugate. The cross=spectrum may be

‘written in terms of its real (cospectrum) and imaginary (quadrature i
t ] \J i

spectrum or 'quadspectrum') components as Syx(f) = ny(f) + 1ny(f)-

‘where i is the complex number (0,1). From the cross~-spectrum we

obtain the amplitude spectrum

2 2 2
|syx(f)| = cyx(f) + ny(f) , (5.1.10) !

'and the phase spectrum

|

¢yx(f) = arctan[pyx(f)/ny(fﬂ . (5.1.11)

Then following Priestly (1971), we write
dz_(£) = |dz_(£)] exp(ie (£)), dz (£) = |dZy(f)|exp(i¢y(f)),

-and suppose that lex(f)l is independent of ¢x(f) and thatldzy(f)| is

“independent of ¢y(f). Then the cross-spectrum is given by
| *
> s._(f) expip__ = E[dZ (£)dZ_(f

(8D EPLEyy = E 107, (042,00 (5.1.12)

= E[1dz (£)1+ 14z (0] E[gxp1(¢y(f).¢x(f)} .

‘Consequently, the phase spectrum ¢yx(f) may be interpreted as the
average value of the phase shift ¢Y(f)-¢*(f) between the components
X(t) and Y(t) at frequency f. The squared coherency spectrum between

X(t) and Y(t) is defined by

2 2
p(£) = |syx(f)| /Sx(f)sy(f) , (5.1.13)

"and the coherency may be interpreted as a correlation coefficient

defined at each frequency.
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'5,2 Spectral Estimation

.dent normal random variables with mean zero and variance o

69

The use of the smoothed periodogram in spectral analysis was

reviewed by Jones (1965) who pointed out the advantages of this

approach, and suggested that its' apparent neglect was attributable

to computational considerations. In the same year the now famous

fast FT algorithm was published by Cooley and Tukey (1965), and as

a consequence any computational limitations imposed by the periodogram

‘were eliminateds In this section the univariate case is reviewed, and
"in Section 5.3 we will deal with smoothing techniques and crosse
.spectrum analysis, The purpose of this discussion is to describe the
.computational procedure that will be used in the following chapters,
‘and to provide some insight into the statistical aspects of this type

‘of data analysis. A general treatment of the mathematical aspects of

multiple time series analysis, and in particular the finite FT and

‘spectral analysis has been presented by Hannan (1970).

The periodogram of a finite realization of a time series X(t)

t= 0,1,..., N~1, is obtained by computing

N-1
1) = L5 x(r) exp(2TifL/N) , f£= 0,..., n,
JN  t=0
. (5.2.1)
and then calculating
1G6) = |3CEN2 , f2lyeae,n , (5.2.2)

where n equals N/2 if N is even and (N/2)-1/2 if N is odd. It is

well known (Bartlett 1966, chap. 9) that when the X(t)'s are indepen-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

? then the random variable 2I(f), 0<f <n, has an exponential distrie
. bution. Consequently, the fluctuations in the I(f)'s are on the
| same order of magnitude as their expectations. It can be further
shown that a similar result holds for linear processes in general,
i.e., the I(£f)'s have asymptotically independent exponential d;stri-
butions with means equal to the spectral density function at the i
frequencies f/N. A heuristic demonstration of this result is pre-
- sented at the end of this section. When the I(f)'s are plotted
“against f (as is usually dome in this type of analysis), the resulting
erratic behavior of the graph suggests that a smoothing operation
would be desirable. A method first suggested by Daniell (1946) is 3
to average the periodogram over adjacent frequencies., An alternative
method proposed by Bartlett (1966) is to divide the original series
into m subseries each of length N/m, and average the estimates obtained
from each subseries, More generally, smoothed spectral estimators may
be calculated from
N-1
S(E) = 5 w(k)R(iki)exp(=2 Tifk/N)

: k=l=N |
where !

jl - ki [ (N/m) , k<N/m
w(k) =
0 otherwise ,

and
-1 Nek=1
R(k) = (N=K)™" 5 X(t+k)X(t) . (5.2.3)
t=0
The w(k)'s are referred to as the 'lag window', and their Fourier

transform is called the 'spectral window'. When m is large this

approach has an obvious computational advantage. It also produces
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consistent estimators of the spectrum., Further investigation of the

above mentioned methods of spectrum smoothing has been provided by ?
Jenkins and Watts (1968, chap. 6). If in (5.2,3) we take m=l it is

possible to show that

. Nel lN-k-l
S(f) = 2 [ = 2 X(t+k)X(t)) exp(=-2 ﬁifk/N)] = I(f), ;
k=1l«N N t=0

(5.2.4)
where I(f) is the periodogram as defined in (5.2.2). The development ;
+of the fast FT has renewed interest in direct computation of the
:periodogram followed by smoothing in the frequency domain. Bartlett
'(1967) has reviewed the advantages of this approach as well as the
.effects of nonnormality and nonstationarity on spectrum analysis, It
is also possible to use the periodogram to develop hypothesis testing
procedures which are useful when a parametric representation of a
linear process is being considered ==see Davis (1968) and Durbin
(1969).

To gain some insight into how the finite FT occurs in a natural
way in time series analysis we consider the case of a circularly
defined stationary time series with EX(t)= O for all t (Hannan 1960,

chap 1). Here, the stationarity assumption implies that

R(k) = E Q(t+k)X(t)] = E [X(s+tsk)X(set)]
for k= 0,ees, N=1 , (5.2.5)
where s takes on the values 0, t1, *2.... . If the X(t)'s are
Gaussian then a realization of the process will have a multivariate

normal distribution with mean vector zero and covariance matrix
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R(0) R(1) R(2) ... R(N-2) R(N-1)]
R(-1) R(0) R(1) ... R(N=3) R(N-2)
R(-2) R(~l) R(0) ... R(N-4) R(N-3)

R = S - :

R(2-N) eee R(0) R(1)
R(1-N) R(2-N) ees R(=1) R(0) |. (5.2.6)

L.
-

From (5.2.5) it follows that R is a circulix siﬁce it satisfies
(see Bellman 1960, p.242)

R(j,k) = R(j+1,k+1) , (5.2.7)
.where j and k are integer valued indexing variables and are reduced

‘mod N, and R is an N x N matrix of complex numbers. The eigenvalues

.of R are
N-l
'Bj e 3 R()exp(2TTijk/N) , j= 0,ee., N=l , {5.2.8)
k=0

"and the corresponding eigenvectors are
1 '
B, = f: [exp(2T13k/N)} - , k= Oyuue, Nel ,
N j‘ 0”"’ N-l . (502.9)

Then observing that for j= 0,s.., Nel,

a’j".u/m)[exp(-zmjkm)] . ke 0,eus, Nol (5.2.10)

it follows that B-la B*' where B is the N x N matrix with columns
Bj’ and B*' is the N x N matrix with rows Bg'. Further it follows
that

B.IR B= diag(Bo,u., ﬁjgcoo, BN-I) ’ (5-2.11)

and that B is a unitary matrix eince B¥'B = I, where I is the N x N

identity matrix. Consequently we see that the eigenvectors of a
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13

“circulix are independent of the circulix and are given by the columns

of the matrix B, The above results and other interesting properties
of matrices of this type have been discussed by Good (1950). He
further notes that when R is real and symmetric the eigenvalues are

~real and that }Sjs 'BN-j vhere

n=l .
R(0) + 2 3 R(k)cos(27Tik/N) + (1) (N even) %
kel
/Bj = :
n |
R(0) + 2 2 R(k)cos(2TTik/N) (N odd) . (5.2.12) |
kel

. Now consider the linear transformation J= HX, where

B! [x(0) |

A ) |
Ha= 83 , and X = |Xx(t) '

B;I X(N=1)| (5.2.13)

The rows of H are the transposed eigenvectors defined in (5.2.9)
and n wae defined in (5.2.2). Since X is multivariate normal with
mean zero and covariance matrix R, it follows that E(J)= 0 and that

Var(J) = E(JJ%') = E(HXX'H*') = HRH*' = diag(3;,..., B ) .

(5.2.14)
Then recalling the definition of the periodogram (5.2.2), i.e.,

I(f) = |J(f)|2
and using (5.2.14) it follows that I(f)l3f, fm 1,040, n, will be

mutually independent chi-square random variables with 2 d.f..

:

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

In general if X(t), t= 0, ¥1, t2, ..., is a noncircularized
' discrete Gaussian time series with mean zero and covariance sequence
®
R(k), k= 0, ¥1, +2, ..o, where Y |R(K)I< o , (5.2.15) !
k=moo |
then the joint distribution of the J(f)'s f= 0,..., n, where

N-1

J(f) = J% Eo X(t)exp(2 TTift/N) (5.2.16)

7can be approximated (as N—o) by the distribution of n complex normale
%ly distributed random variables. The J{(f)'s are mutually independent
with zero mean and Var J(f)::Sx(f). Since I(f)= |J(f)|2 it follows
that the joint distribution of the I(f)'s can be approximated by
‘that of independent scaled chi=-square variables, Further discussion
of the above results and investigation of the asymptotic distributionaf
_properties of the periodogram have been given by Davis (1968).
‘5.3 Computations

A historical introduction to the computations of numerical
spectrum analysis has been given by Tukey (1967). The development
of the fast Fourier transform (FT) algorithm (Cooley and Tukey, 1965)
has dramatically reduced the computational effort of spectrum analysis,
It has also stimulated interest in the theory of the finite FT.
Cooley, lewis, and Welch (1969) have used the finite FT to develop
a very simple and illuminating derivation of the fast FT algorithm.
They also derived a number of other widely used results (e.g.,
Parseval's Theorem) and we use their definition of the finite FT in

this section. The finite FT of . N finite valued complex numbers
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X(t), t= 0,.00, N-1, is given by
5 p N 1 N g
2 () =§ 2 X(t)exp(«2TTift/N) = & 2, X(ew
i t=0 t=0

f= 0,.00, N"l Y (5.3.1)
_where W= exp(2 TTi/N). The sequence X(t) can be expressed as the

inverse finite FT of Zx(f)’ i.e4,

N-1 tf
X(t) iad fzo Zx(f)wN , t= 0,-00, Nel o (5.3.2)

‘The sequences X(t) and Zx(f) are referred to as a transform pair.
;For mathematical purposes the finite sequences are extended periodi-
ically to all the integers as follows:

X(t) = X(kN + t) ,

X X

‘and k= 0, ¥1, ¥2, ... in (5.3.3). 'The #inive sequences are always
recovered by considering the valuesof the infinite sequence at the

points 0, 1, ssey N-lo

It is possible to compute the transform by using equation (5.3.1).

This requires N2 operations (an operation being a complex multiplica-

tion and addition). When N is an integer power of two the Cooley-Tukey

algorithm requires NlogN operations. In the applications that will

be presented N will be an integer power of two. The fast FT algorithm

for arbitrary N (mixed radix) has been discussed by Singleton (1969),
who has developed a Fortran subroutine to carry out the computations.

Singleton (1969) has also provided a bibliography of the fast FT. It
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' ghould be noted that when the sequence being transformed is real-

~valued an additional step is required for efficient use of the
:Cooley-Tukey algorithm. When transforms are being computed for two i
‘real—valued sequences (as will be the case in Chapter 6) the Cooley- |
:Tukey algorithm is efficiently used by defining a new series as
ifollows: %
W(t) = X(t) + i¥(e) , t= 0,000, N1
'where X(t) and Y(t) are real-valued. The transform of W(t), namely

Zw(f), is then computed and the transforms of X(t)and Y(t) are recove

ered by using the complex conjugate symmetry of real-valued series.

. That is, since

*

% R

Z2 (f) = 2 (N-f) ,
/

<

|
|
2. (£) = Z (N-£) , §
|

we may use the linearity of the finite FT to obtain

2 (6) = [2,(6) + Zi(n-£)] /2

*
2,(9) = [z (6) - Zn-p)) 121 . (5.3.4)

One method of estimating the spectra and cross=spectrum for two

real-valued data sets is now summarized. Let X(t) and Y(t),
te O ees, N=1, denote the data. First we compute Zx(f) and Zy(f).
Then we compute

2 1 2

Sx(f) -3 % sz(k)l ’

& 1 2

s (f =

J 0 = § Tlzel?

1 %*
Syx(f)-ﬁ % Zy(k)zx(k) ’ (5.3.5)
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Twhere f= 1,000y N', and N'= HNIZ] - mIM]. (A ] denotes the 1argest .

. positive integer that is not greater than A, and m= (M«1)/2 where M

‘is taken to be a positive odd integer. For fixed f the index k in
(5.3.5) takes on the integer values (Mefe m),ee., Mef+ m)o When fm0 i
in (5.3.5) then k=l,..., m, and M is replaced by m. Wheﬁ

iM': ((ﬁ/i] -~ m)modM is not equal to zero an additional estimate is

éobtained for fe N'+ 1, and is given as
| ‘ |
| A 1 2
Sx(N'+1) = % ‘zx(k)l ’ i
5.1 = &, S iz (k)2
b MY Y

5 o(eD= L vz (025
yx y X

M' ll.z ’ (5.3.6)

where k= M*N'+ 1,..., (N/2]. If N is even then Zx(NIZ) and Zy(N/Z)

are each multiplied by %.

Estimates of the cospectrum and the quadspectrum are obtained
|
from the real and imaginary components of Syx(f)’ i.e.,

€ (£) = Real S__(f) ,
yx yx
éyx(f) = Imag Syx(f) , f=0,e0ey N' . (5.3.7)

‘Estimates of the phase spectrum and ccherency are then given by
A A
ayx = arctan(ny(f)/ny(f)) , (5.3.8)

and

a2 A 2 A
BoylE) = 18,8 Isy(f)gx(f) . (5.3.9)

To clarify the above procedure -=which will be referred to as
method D (since it is similar to the method first proposed by P.J.

Daniell)== we consider the univariate case. From Panseval's Theorem
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e e

|

. K

iwe have '

. 1 Nel 2 Nel 2 [

' ; Zo x(t)° = Zolzx(f)l . (5.3.10)
t= f=

‘ !
iSince Z(0)= (X,0) we write (5.3.10) as i

1 N-l 2 N-1l 2 E
var(X) = = 2 (X(t)=X)"= 2 [z.(£)° . (5.3.11)
N =0 f£=1 ¥ :

1
i *
Since X(t) is real-valued, Zx(f) = Zx(N-f) so we may write (5.3,11) as

{
i
|
)
|
i
|
!

Nl
2

22z, N odd
f=l * !

var(X) =
5-1

2 2 |2 (£)| 2 + |2 (NIZ)I2 s, Neven . (5.3.12) |
fel ¥ X ;‘

‘Recalling the definition of the periodogram (5.2.2) we see that
1(f)= NIZx(f)| 2. To illustrate how method D works we take N= 32 and

M= 5 and obtain N'= 2, m= 2, M'= 4, and
2
A 1 2
Sx(o) =5 k{jlazx(m ,

7
A 1 2
S =% Tz,
X 5k=3 x

R 1 12 2
Sx(Z) =< kggl Zx(k)l ’

15
5 1 2.1 2
53) =3 k“2I313|zx(k)| + 32, (16) 7| .
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From (5.3.12) we see that

‘N"
%var(x) e me8(o) + M f§1 §.(E) + Me§ (w41 (5.3.13)

. so that Sx(f) is the proportion of the var(X) in the fth frequency

"band.

In (5.3.5) through (5.3.9) the scale factor was chosen to

‘maintain the identity given in (5.3.,13), and the sampling interval

'was assumed to be unity. In a particular problem the appropriate

scaling may be introduced by indicating a scale factor for the ordi-

nate when the estimated quantities are plotted against frequency in

“cycles/unit time,

Another straight forward smoothing procedure that utilizes the

computational advantage of the fast FT we call method B (since it is

.essentially the method that was first proposed by Bartlett). Let

Xk(t), Yk(t), denote the N data values obtained on the kth realization

of a bivariate time series; t=0,¢.., N-1, and k=l,..., M. Then
for each k we compute the finite FT's Zx(k,f), Zy(k,f) which are
then used to obtainm

§ (£) 1 S 2 (k,£)) 2
x = ﬁ.ééi | x ! | ’

§(f)--1-§ 1Z_(k,£)] 2
y Mknl y ? y

§ (md S 2,02k, (5.3.14)
yx = " 2 y ’ x' . eJe
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iThe cospectrum, quadspectrum, phase, and coherency may then be calcue
“lated as in (5.3.6) - (5.3.8). From (5.3.14) we see that method B
:consists of averaging at a fixed frequency over M realizations of the
'process. In method D we average over M adjacent frequencies of a

' single realization.

‘ It has been pointed out by Tick (1967) that the estimation of
functions of the cross-spectrum (i.e., coherency) presents problems
i(e:g., badly biased estimates). Further discussion concerning bias
iand variability of phase and coherency estimates and metheds for
obtaining confidence intervals has been given by Jenkins and Watts
(1968, chap 9). More recently results concerning the estimation of

coherency have been obtained by Jones (1969) and Hannan and Thompson

@97).
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6. POWER SPECTRUM OF THE RESPIRATORY SYSTEM

In the discussion of respiration that follows, many important
factors will not be explicitly represented in the model that is
developed. An accurate biophysical model of the respiratory process
would necessarily be complicated. One attempt at such a model of the
human respiratory system (RS) has been presented by Milhorn (1966,
chap. 16). The model is based on chemical factors in the blood (C02,
H+ Ion, and O2 concentrations) that affect aveolar ventilation. A
three compartment'model of the respiratory system and a number of other
assumptions are made to obtain a 'steady-state' model. It would appear
that the prirary motivation for the assumptions is the resulting system
of first-order linear differential equations, which are convenient for
analog similation,

Milhorn's analog computer model does not directly include the
dynamic aspect of respiration, namely breathing. Although ventilation
is eventually affected by chemical factors in the blood, the direct
effect of these and other factors will be on the transpilmonary pressure
via the respiratory muscles, If an individual's ability to maintain
homeostasis under stress is of interest, then the physical character-
istics of the pulmonary system are of obvious importance. These
characteristics include lung elasticity, airway resistance, and the
diffusing capacity of the lung. Consequently, any attempt to describe

respiration should consider the mechanical properties of the respira-
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tory system (RS), as well as the chemical factors in the blood which
are indirectly controlling the process. Further discuseion of these
ideas and their clinical application (i.e., diagnosis of pulmonary
disease) can be found in The Lung (Comroegﬁ;&l;,lQGﬂ.An intraductory
discussion of respiration e=which emphasizes the application of res-
piratory physiology to normal man exposed to stress— has been
presented by Dejours (1966).

The use of the concept of feedback control systems in representing
the human body was originally proposed over a centuryago by the French
physiologist, Cla'de Bernard. Bernard's idea of a constant 'internal
environment' was later developed by the American physiologist Walter
Cannon, and a new concept -—homeostatic mechanism- emerged, The
concept of homeostasis is currently u:sed in experimental medicine.

One can think of disedse in terms of the failure of homeostatic mechan-
isms which lead to the instability of the controlling system. The
prineiple of feedback control in simple mechaﬁical systems and instrue
ments has been traced back over two thousand years by Mayr (1970).

In recent years feedback control theory has been successfully

ugsed to solve many practical engineering problems. Norbert Wiener
(1949) developed the mathematics thaf is the basis of modern comrunie
cations and control theory. His theory is based on a statistical
characterization of the response of a system to nondeterministic
inputs. The system is represented by its transfer f{unction and the
input by its spectral density function. Wiener's contributions

~—e.g. the design of optimum linear systemse- to communication and
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control engineering have been reviewed by Lee (1964). Wiener (1951)
also suggested that the concept of feedback control may be useful in
the design of biomechanical control systems. One example of such a
system is a mechanical anesthetist that would regulate the depth of
anesthesia., Continuously monitored physiological variables —=that
reflect the current level of anesthesia~ would be uséd to control the
administration of anesthetic.

Although the concept of homeostasis is a very appealing one,
recent research indicates that biological rhythms may be important in
maintaining the health of an individual, and understanding disease

~5ee e.g., Volume 2 (1971), Number 2 and 3 of the Journal of Inter-

disciplinary Cycle Research. In a review of chronobiology Halberg

(1969) has dealt with various quantitative methods that have been used
in the analysis of biological time series. Frrther discussions of the
methodological considerations involved in a parametric approach to
the analysis of bioperiodicity have been presented by Bliss (1970,
chap. 17) and Sollberger (1970).

In the preceding discussion we have attempted to summarize
some of the important concepts that have influenced the method of
data analysis that will now be developed. In the rest of this chapter
we will primarily be concerned with a mechanical model of the RS.
We have pointed out that there are many important factors that will
not be explicitly represented in the RS model. Their influence is,
however, present at all times through their control of the transpulmo=-

nary pressure which is the 'driving force' of the RS. In Section 6.1
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a differential equation model of the RS will be discussed. In Section
6.2 we will propose crossespectrum analysis of pressure and flow time
series recordings. as a data analytic technique that is useful in
surmarizing and describing this kind of data. The model developed
in Section 6.1 will be used to motivate the definition of the power
spectrum that will be proposed in Section 6.2. An example will be
presented with the intention of illustrating the implementation of
the compu;ational procedure that was described in Chapter 5, and to
demonstrate how graphical methods may be used to summarize the reéults
of the analysis,
6.1 Mechanical Model of the Respiratory System

As a first step in obtaining a model of the RS consider Figure
6.1. Here we represent V(t) ==the volume of the lungs at time tee as
the output of the RS which is being driven by P(t) - the transpulmon-
ary pressure, How we proceed from here depends upon the purpose of the

analysis and the variables that may be conveniently measured.

Respiratory |me—~
p(t) —> System v(t)

Figure 6.1
A general mechanical model of the pressure-volume relation in
the RS has been presented b Mead (1961). According to Mead, the RS

may be described using Newton's third law of motion, i.c., in terms
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of its position (volume), velocity (air flow), and acceleration.

The transpulmonary pressure is the force applied to the system, and
the opposing forces which develop ma; be attributed to physical
properties of the RS which are elasticity (Fl)’ resistance (FZ) and
inertia (F3). Although it may not be possible to specify how these
properties are distributed through the system, they are represented
in the 'equation of motion' of the RS. In its most general form this

equation is given by
F, V()] F, [av(e) fac]« NERTCTEI B JOO I (6.1.1)

In equation (6.1.1) P is the pressure difference between the pleural
space and the mouth or nose. It is equal to the sum of the opposing
pressures developed by the RS which are represented by Fl, FZ’ and
F3. A detailed discussion of the assumptions made to obtain this
model and further restrictions which will specify the form of the
funetions Fl’ FZ’ and F3 has been given by Mead (1961). One simpler
form of the model is obtained by letting

F, V(0] = B V() - V),
F,[V'(0)] = B,v!(t) + B3[V'(t)]2 ,

and F3[v"(t)] = Bav"(t) . (6.1.2)

In (6.1.2) Vo represents end expiratory volume, and the B's are
parameters that characterize the system. In Mead's notation Bls 1/C
(C is the 'compliance'); By= K;, By= Ky vhere Kl_and K, describe the

resistive property of the system; and Ba‘ I is an inertial parameter.
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During quiet breathing it is assumed that flow resistance is

nearly linear and the inertial pressure is negligible which leads to
! =
B V(t) + B,V (t) = P(t) + BV, - (6.1.3)

In (6.1.3) B, is the reciprocal of the compliance and BZ is the
resistance (i.e., B,= 1/C and B,= R). A detailed discussion of the
clinical measurement and interpretation of these parameters, their
range of values in healthy individuals, and their use in diagnosing
respiratory disease and.evaluating a patient's response to treatment
have been given by Comroe et al. (1962).

Although the model defined by (6.1.3) is only a first approxima-
tion, it can be used to describe the RS. Stacy and Peters (1965) have
developed a method that can be used to calculate lung compliance and
airway resistance using transpulmonary pressure and air flow recordings
They also calculate the mechanical 'work' of respiration which is
defined by

work = JR(LIV'(t)dt . (6.1.4)
It should be noted that this definition does not depend on the
assumptions that were made to obtain (6.1.3). Since it is easily
calculated by either analog or digital methods, the work concept
may be very useful in detecting changes in a particular individual,
which is an important .practical problem when a patient is being
continuously monitored in an intensive care unit. This of éourse
requires the measurement of both air flow and transpulmonary pressure,

which may not be practically possible.

»
|
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The second-order differential equation given in (6.1.2) may

be written as a two dimensional system of differential equatioms
AN Gl(v,v' ,t)
Vit = GZ(V,V',t) R (6.1.5)

which describes the behavior of the system when no external disturbe
ances (i.e., forcing function = P(t)) are present. McShane (1969)

has presented some general mathematical results for systems governed
by differential equations of this type for a wide class of forcing
functions (which includes both Lipschitzian and Brownian-motion
processes). The forcing function P(t) is stochastic in nature and

any mechanical model of the RS based on differential equations can

be considered as a special case of (6.1.5).

6.2 Spectral Analysis of the Respiratory System

In this section we assume that the pressure difference between
the mouth and alveoli and the rate of air flow into the lungs are

the variables of interest. We let X(t) denote the pressure difference
in em H)0 and Y(t) the flow rate in liters/minute-. The product of
pressure and flow has the physical dimension of power. Since a centi=
meter of water (4°C) is (approximately) equal to 98.1 newton/meter2
we obtain the power at time t in units of .0981 joules/minute. The

quantity

T
L f X(£)Y(t)de | (6.2.1)
T (o]

then represents the mechanical energy required to overcome the resistive
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component of the RS per unit time (i.e., we may think of X(t)Y(t)

as the power dissipated in overcoming the resistance to air flow).

We now consider an example in wﬂich time recordings were obtained
from an adult male. The pressure difference was calculated by sub-
tracting csophageal pressure from airway preseure ==which are measured
with pressure transdicers. A Fisher«Porter flowmeter was used to
calibrate the air flow measurements which are obtained with a differen~
tial pressure flowmeter. The data were originally recorded on two
channels of an FM data tape at the Anesthesia Research Laboratory,
Emory University Medical Scheool, The continuous pressure and flow
time series were then sampled using the A/D conversion facilities

at the Emory University Computing Center, Following the procedure
described in Chapter 5 we let X(t), Y(t), t= 0,..., Nl denote the
values obtained in the A/D conversion. In this example N= 1028 and
the sampling rate is 240 points/minute. The first two minutes of the
pressure and flow time series are shown in Figure 6.2, The auto and
cross-covariance functions were defined in (5.1.1) and Figures 6.3 a=c
show the sample estimates obtained for the pressure-flow data.

The pressure spectrum, flow spectrum, and pressure-flow cross-
spectrum are estimated using Method D of Section 5.3 (see eq. 5.3.5)
with a smoothing span of M= 15, The spectral window has a band width
of approximately.3.5 (cycles/min). The spectrum estimates have 30
degrees of freedom (except for f=0 and faN'+1) and are uncorrelated.

The pressure and flow spectra are plotted versus frequency in

igure 6.4, The estimated cospectrum and qiadspectrum are plotted
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versus frequency in Figures 6.5 a&b. The phase spectrum is then ob-
tained using (5.3.7) and is shown in Figure 6.5c. The coherency
function is then estimated using (5.5.8) and is displayed in Figure
6.5d.

The results obtained in this analysis indicate that the two
signals are highly correlated in the frequency range where normal
breathing occurs =-i.e., 10-30 cyc/min (sec Figure 6,5d). Figure

6.5¢c shous a negative phase shift over this range, indicating that
pressure is 'leading' flow. The cross-covariance function at lag zero
-Ryx(O) = 7.1(cmH20)(L/min) = o7 joules/mine- represents the
mechanical work done in overcoming the resistive component of the RS.
The cospectrum in Figure 6.4 shows how the power is distributed with
respect to frequency (see Section 5.1). Comparing Figure €.5a with
the estimated spectra in Fignure 6.4 we see that aside from a scale
factor the graphs are quite similar. All of this leads us to hypothe-
size that the pressure-flow relation is approximately linear =-the
constant of proportionality being the parameter R in (6.1.3). 1If this
assumption is made the flow spectrum will be a 'power' spectrum.

In practice the linearity assumption will only be a crude approximation,
~=in fact we would expect R to be frequency dependent. Whether the
pressure-flow relation is linear or not the flow spectrim does provide
a useful quantitative method for describing the RS. This suggests that
the flow variance -1.e.,~% %:Y(t)z- should be an important statistic
to consider when relative changes in the RS are of interest. It may,

for example, be desirable to detect changes in human respiratory
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function that portend the onset of fatigue or other symptoms that
are of clinical importance., Such a s_ituation will be encountered
in Chapter 7 when we consider spectrum analysis of the pulmonary

impedance pneumograph.
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FIGURE 6.4a PRESSURE SPECTRUM
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7. SPECTRAL ANALYSIS OF THE PULMONARY IMPEDANCE PNEUMOGRAPH

The pulmonary impedance pneumograph (PIP) is a bioimpedance
recorder that is used for the indirect measurement of respiration.
Pacela (1966) has reviewed the development of impedance pneumography
and the various instrumentation techniques that have been developed.
If a base line calibration is made the thoracic impedance can be
related to respiratory volume. While this calibration is important
in the study of respiratory physiology it is not essential when the
pulmonary impedance pneumograph is used to monitor the respiratory
function of remotely located persons over extended periods of time,
The latter situation occurs, for example, during theraputic exposure
to total-body radiation at low dose rates or during manned-space
flights. In these situations clinically nseful information can be
obtained from the PIP tracings by counting the number of respiratory
cycles per minute and observing their amplitude and regularity.

In Section 7.1 a statistical method (spectrum analysis) for
analyzing the analog tracings that are obtained in impedance pneumo-
graphy will be reviewed. This PIP spectrum has been .sed as part of
a computerized data reduction system (see Ricks et al, 1972). In this
situation the PIP spectrim reflects the onset and course of gastro-
intestinal distress iAduced pharmacologically or by total-body irradia-
tion. This method for quantitating respiratory effort also appears to
provide a useful method for evaluating the decrease in exercise capabil-

ity which reflects increased fatigue occuring during bicycle ergometry.
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In Section 7.2 we will use the results of Chapter 6 to propose
a modification of the PIP spectrum analysis. The new analysis will
utilize the first difference of the PIP tracing which provides a
meagure of flow rather than volume. We claim that the spectrum obtain-
ed will be a 'power' spectrum. Examples will be provided,

7.1 Pulmonary Impedance Pneumograph Spectrum

The electronic physiologic monitoring system used to obtain the
pulmonary impedance data that are analyzed here (and in Section 7.2)
has been described by Morris, Barclay and Lushbaugh (1967). Briefly,
the pulmonary impedance coupler (Beckman) produces an analog signal
which is obtained from surface electrodes attached to the subject.

The signal can be analyzed in real time or recorded on tape for retro-
gpective analysis. The analog signal is sampled at a rate of 256
points per minute by an IBM-1800 computer. Four-minute data segments
are then analyzed using method B of Chapter 6 (i.c., N= 256, M= 4)

to comp:te the PIP spectrum.

We now consider an example using data obtained from a patient who
received rapidly-delivered fractionated exposures of 30R/day (1.5R/min)
on each of 5 consecutive days. Figure 7.la shows portions of the
pre- and postexposure pulmonary impedance strip chart recordings that
were obtained each day. The spectra obtained {rom the corresponding
time periods are shown in Figure 7.1b, The increasing irreg larity
of the postexposure tracings is apparent in the speceotra (gee Figure

7.1b) which reflect the changes in the depth and freguency of breathing.
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The patient reported increasingly severe levels of gastrointestinal
distress followingAtreatment on days l-4, (n ths last day of treat-
ment 20 mg of chlorpromazine was administered prior to exposure to
prevent radiation sickness, The apparent affect of the chlorpfomazine
can be seen on day 5 since the patient's postexposure symptoms were
greatly reduced. Further discussion of this example and other appli-
cations of spectrum analysis of the PIP as a method of detecting and
quantifying the effect of stress on human respiratory function have
been presented by Ricks et al. (1972). They also discuss how the
analysis may be used to detect changes in an individual's ability to
perform under controlled exercise conditions. It is concluded that
the PIP variance =—i.e. the area under the PIP spectrum=- is of primary
interest in this regard. In the rest of this chapter we propose that
the first difference of the PIP (FDPIP) should be used to obtain a
quantitative measurement of respiratory effort.
7;2. PIP First Difference Spectrum

In dealing with spectrum analysis of the PIP we originally
described (see Lushbaugh, et al, 1969) the PIP spectrum as a power
spectrum, The adjective 'power' was used in the general semnse —i.e.,
to describe the method of analysis (see Blackman and Tukey 1958, p.8).
It was stated that no implication of a relation to the energy invalved
in the respiratory effort that produces the impedance traces was
intended. We now propose a situation in which the energy concept is
specified physically. In this situation the spectrum obtained may be

interpreted as reflecting the mechanical work done in overcoming the
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flowe-resistive component of the respiratory system.

We let V(t), t= O,..., N, denote the values obtained (in volts)
by sampling the PIP. If a base-line calibration has been made by
sirmltaneously recording pulmonary impedance and réspiratory volume
(as measured by a spirometer) then p:lmonary impedance can be cone
verted into respiratory volume. Then if we let

Y(t) = [V(e) - v(e-1)] Jar (7.2.1)

Y(t) measures the change in the volume of the RS per unit time.

If (7.2.1) is multiplied by the scale factor K (that converts volts
to liters), then K+¥(t) will have units of L/min. Consequently, the
spectrum obtained using ¥(t), t= 0,..., Nl will be in (L/min)z. 1f
we further assume that the pressure developed by the flow-resistive
component of the RS is proportional to flow (see Section 6.2) the
spectrum is truly a power spectrum as defined in Chapter 6. Further

we see that

N-1 2
S (RY(t))” = work . (7.2.2)
t=0

4 b

Then if R is known, ==see eq. (6.1.3)=~ the quantity defined in
(7.2.2) is an estimate of the energy expended per unit time in over-
coming the floweresistive component of the respiratory system.

In the practicallmonitoring situation the assumptions given above
are only first approximations. The impedance-volume relation will
depend on the subject's bodily position and may be affected by 'motion
artifacts'. Other factors that cause changes in the thorax impedance

will also prod:ce 'noise' in the PIP recording. These factors must
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be taken into account if meaningful comparisons of spectra obtained
from the PIP are to be made. The noise artifacts mentioned above are
often of a low frequency nature —i.e.,they affect the spectrum in the
frequency range below about 10 cycles/min. This points to anoihér
advantage of the first difference specirum. The difference operator
(1-B) «=where BX(t)= X(t-1)= has a transfer function of the form
sin(2T£/Ot), so that the low frequencies are selectively filtered

by the differencing operation. To illustrate this point comsider
Figure 7.2a which shows a sampled PIP tracing (N= 512, sampling

rate= 240/minute). The spectra obtained from the PIP data and the
first difference data are displayed in Figure 7.2b and 7.2c. It was
pointed out by Lushbaugh et al. (1969) that yawning and sighing produce
dramatic changes in pulmonary impedance that appear as high amplitude
low frequency components in the PIP tracings. Use of the FDPIP clearly
eliminates this low frequency noise. In calculating the spectra we
used method D with M« 7. The PIP data were adjusted for the mean (i.e.,
the DC component is subtracted from the signal) before the spectrum
was caleulated.

In summary we conclude that the statistic

1 N-1
Ww(k) = X z Yk(t)
t=0

2 (7.2.3)
may be used to deoccrils respiratory effort. When Y(t) is proportional
to air flow, then W(k) will be proportional to the mechanical effort

expended in overcoming the flow-resistive component of the RS. In this
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aituation the spectrum of Y(t) is a power spectrum. In any case the
statistic W(k) may be useful in assessing the direction and relative
magnitude of changes in the 'mechanical’ activity of the RS. In
(7.2.3) the index k is used to indicate the time at which W(k) is
calculated relative to some arbitrary origin (i.e., the time at which
monitoring began)., If, for example, we choose N-At = one minute, then
W(k) describes the kth minute from the beginning of monitoring. Thus
we have reduced the continuous record to a single statistic which is
easily calculated and appears to provide clinically useful information.
W(k) may then be used ~—along with other variables (e.g., heart rate)—
to describe the 'state' of the patient. This approach is being used
in retrospective studies and is of potential val.e in the real time

monitoring situation.
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APPENDIX

¢ VERSION A 7/10/72
C THIS PROGRAM PERF(ORMS THE COMPUTATIONS THAT WERE
C SUMMARIZED IN SECTION 4,4, THE FINAL SUMMARY pUTPUT
¢ IS FDR THE SURVIVAL CURVE MODELS, THE ONLY SUBR{UTINE
C THAT 1S NOT INCLUDED IN THIS LISTING IS GAUSJl-= ANY
C SUBROUTINEF THAT INVERTS AN NP X NP REAL SYMMETRIC
€ MATRIX MAY BE USED IN ITS PLACE., THE VARIABLES IN THIS
¢ PROGRAM ARE DEFINED AS FOLLOWS?
C X(Isd)s J=1»M 1S THE ITH SET OF VALUES DF THE M INCEP~
C ENDENT VARTARLES ( I= lpeqgeoN )
C FN(I)= NUMBER OF REPLICATIONS OF THE ITH EXPERIMENTAL
C COMDITION,
C Y(I)s Im1s,94oN 1S THE DOBSERVED AVERAGE RESPONSE FOR
C THE ITH CONDITIUN,
€C T(1)s I=1s,eesNP ARE THE PARAMETERS TO BE ESTIMATED IN
C THE REGRESSINN MODEL WHERE THE EXPECTATION OF THE JTH
C REPLICATION OF THE ITH EXPERIMENTAL CONDITION IS GIVEN
c gy F(O X{1s )aT),
C P(1), 1ml,,,,oNP DENNTES THE PARTIAL DERIVATIVE DF F(X,T)
c WITH RESPECT TD T(1).
C C IS THE NP X NP MATRIX THAT WAS DEFINED IN SEC 4,4
c G 11 " ” VECTUR " " " " ”
C WEIGHT DPTION IWF=0 FOR ITERATIVE (ML) WEIGHTS
¢ 31 FOR FIXED WEIGHTS
¢ EPSs CONVERGENCE CRITERION
C THIS PRNGRAM WAS WRITTEN AT THE EMQRY UNIVERSITY
c COMPUTING CENTER, THE PRDOGRAM WAS TESTED USING
C THE WATFQOR COMPILER ON THE UNIVAC SERIES 70
C MODEL 46 COMPUTER,
DIMENSION X(5052)2Y(50)sFN(50)sWF(50)sNAME(15)
DIMENSION T(5)sG(5),D0(5),P(5),C(5,5)
WRITE(629)
c > READ IN DATA AND INITIAL ESTIMATES OF PARMETERS
READ(5s19)NAME
READ(5,20)M,MyNP, IWF, IMAX
READ(5221)(T(1)a1=1,NP)
DO 66 1s]l,N
66 READ(5,21)Y{1)sFN(I)»(X(1sd)sd=lsM)
1F(IMAX,EQ,Q) IMAX=®10

c > WRITE OUT INPUT DATA
WRITE(6,8)NAME
WRITE(6526)NsMsNPy IWF
D0 67 Ilal,N
67 WRITE(6,24)1oY(D)sFN(D)»(X(Isd)pJ=1sM)
c> DEFINE WEIGHTS IF OTHER THAN ML
IF(IWF)80,804+85

85 0O 82 Is1,N
82 WF([)=FN(I)/Y(I)
B0 CONTINUE - ‘

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105

ITER=Q
cC >» BEGIN ITERATIVE PROCEDURE
100 ITERsITER+]
c >» INITIALIZE C & G
N0 25 J=l,NP
G{J)=0,0
DO 25 lsl,Np
25 C(1,J)=0,0
SUS=0.0
FL=0.0
c » DEFINE C € G FOR THIS ITERATION
Nno0 50 I=1,N
CALL FND(I,FsPsX,T)
IF(IWF)95,95,90 :
90 WsWF(D)
GO TO 96
95 WaFN(I)/F
96 FBAR=Y(])
FLaFL+FN(I)%( Y(1)%ALDG(F) =F)
SOS=SOS+Wk(FBAR=F ) %x%2
D0 45 Js1,NP
DO 40 K=ml,Np
40 C(JaKISCCJsKI+P(J)%P(K) %W
45 GLJ)=RG(JY+WkP(J)*(FBAR~F)
50 CONTINUE
c > SOLVE LINEAR SYSTEM 0OF EQUATIONS
CALL GAUSJL1(NPsNP»C»0,0,DET)
CALL MVEC(D,CrGyNP)
¢ x%kk¥k OUTPUT SNS T & D FOR EACH ITER kkkkk
WRITE(6,11)]TER,SOS,FL
WRITE(6012)
DO 150 L=1,NP
AP=ABS(D(L))/T(L)
150 WRITE(6210)LaT(L)2D(L)sAP
C >> UPDATE T +s¢ CHECK FOR CONVERGENCE
CALL UPDAT(TsDsNPLEPS,»IND)
IF(IND)200,200,310
200 IF(ITER=«IMAX)100,300,300
300 WRITE(6,220)ITER
60 TO 315
310 WRITE(6,230)ITER
C kxkdokkokk WRITE QUT VAR=COV MATRIX dokdkkk
WRITE(6s8)NAME
WRITE(6,210)
315 DO 260 I=l,NP
260 WRITE(62215)1,(Ct1sJd)sdm1yoNP)
€ Aokkkk OUTPUT YBAR AND YHAT sk
WRITE(62405)
¢ THE FOLLOWING QUTPUT 1S FOR SURVIVAL CURVE DATA
DD 400 Isl,N 2
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CALL FND(I,FsPsXyT)
YisY(])/X(1s1)
Y2=F/X(I,1)
Fl=Y1/T(1)
F2=Y2/T(1)
CHI=(FN(I)*(Y(1)=-F)*%2)/F
400 WRITE(60410)X(1,2)5Y1sY2sF1)F2,CHI
( wm=ce———= FORMAT ====r==ccomce~= DIOOOIDIO5>
8 FORMAT(1H1,5X»15A4/)
9 FORMAT(1HLl, ' NLLSP.,1 1)

10 FORMAT(1X»14,3F20,10)

11 FORMAT{LX,//10Xs" ITER=1,]3,' SOS=1,E15,6,
1t | F= 1,E15,6/)

12 FDRMAT(LX,»' 1 Lpl1Xs 'TCI) o 11X, 'D(L)'5Xs YABS(D)/TY/)

19 FORMAT(15A4)
20 FORMAT(514)
21 FORMAT(7F10,5)

24 FORMAT(1X»1545F12,4)

26 FORMAT(1X»//20Xs! INPUT DATA FDR THIS PROBLEM seo!/
110X," Nz ',14/)10Xs" M= 1,14/,10X,"' NP= 1514/
2,10Xs ' WEIGHT OPTION= ',14//5
31X, T1,TXs 0 YCI) 1 7Xe ! NUDLD) 1S TX
"’ X(l)J)) J;l,l'.M'/)

210 FORMAT(1X,/10X,' VARIANCE COVARTANCE MATRIX'/)

215 FORMAT(LX,»/' ROW '512,4E)15,7//)
220 FORMAT(5X,! NUJ CONVERGENCE AFTER t,13,'ITREATIONS!/
230 FORMAT(5X,' CONVERGENCE AFTER 1,13,! ITERATIONS !/ /)
405 FORMAT(//s5X%»' RADIATION COLONIES/UNIT CONC!,
13X, FRACTION SURVIVAL CHI-SQUARE!',
2/8X," DOSE',4Xs'NBSERVED EXPECTED!',
33X, 'OBSERVED EXPECTED',»/1X)
410 FQORMAT(5X,6F10.5)
STOP
END
C <¢<<¢<< SUBROUTINES FOR NLLSP,1A >>>>>
SUBROUTINE MVEC(D,A»BsN)
DIMENSION D(1)»AC1,1)0B(1)
C D=zA%*B
00 10 K=1,N
D(K)=0,0
DO 10 Isi,N
10 D(K)sD(K)+A(K, I1)*%B(1)
RETURN
END
SUBRCUTINE FNDLIN(I,F,P,XsTsNP)
DIMENSION P(1)aX(1,1),T(1)
¢ THIS SUBRDUTINE iS FOR MULTIPLE LINFAR REGRESIOM
F=20,0
D0 10 J=1,NP
FaFeT(J)%X(1,4)
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10 P(J)sX(1,4)
RETURN
END
SUBRDOUTINE UPDAT(T,D,NP,EPS,IND)
DIMENSION D(1)»T(1)
C DETERMINE IF ABS(D(])) LT EPS®T(I)
C SET T(I)sT(1)+ SL*D(1)
EPS=,00001
SL=1.,0
IND=1
DO 20 1=l ,NP
CK=zEPS~ ABS(D(I1))/ABS(T(1))
IFICK)19,20,20
19 IND=0
20 T(I)=T(I)+SL%D(1)
RETURN
END
SUBROUTINE FNDEX(I,F,PsXaT)
DIMENSION P(1)sX(1,1)sT(1)

C SUB FOR SINGLE EXPONETIAL F(XsT)=T1kEXP(~-T2%X)
P(L)sX(I,1)REXP(=T(2)%X(1,2))
F=T(1)%P (1)

P(2)m=X{1,2)%F

RETURN

END

SUBRODUTINE FNDW(IsFsPsXsT)

¢ THIS SUBROUTINE 1S FOR 3 PARAMETER WEIBUL MODEL
DIMENSION P(Ll)sX{1ls1)0T(1)
TF(X(122))10210,8

5 Az=T(2)%X(1,2)%%T(3)
B=EXP(A)
P(1)=X(1,1)%B
FaT(1)%P(1)
P(2)m=T(1)kx(],1)%R%X(1,2)%%T(3)
P(3)uF*A*ALOG(X(1,2))
RETURN

10 P(l)sX(I,1)
FaT(1)*x(1,1)
P(2)=0,0
P(3)=0,0
RETURN
END
SUBROUTINE FND(IsFsPs»XoT)
DIMENSIOM P(1),X(1,1),T(1)

€ EVALUATE F(X,T) AND FIRST PARTIALS AT ITH VALUE OF X

C FOR TARGETYT SURVIVAL CURVE MODEL
EXsEXP(=T(2)%*X(1s2))

Agl .O-EX
FuT(1)%X(1,1)%(1,0-A%%T(3) )
P(1)=sF/T(1) o
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10

20
500
S A

1

IF(X(122))10210,20

P(2)=0,0

P(3)=0,0

60 D 500

P(2)a=T(L)RX(ToLIRT(3)kARK(T(3)al, 0)%X(1s2)%EX
P(3)==T(1)%kX{1s1)%A%RX(T(3))*ALOG(A)

RETURN

END

MPLE RUN INPUT DATA

NLLSP,TM TILL & MCH (RAD, RESEARCH 161)-TARGET

7 2 3 0 10

840 1,0 3,1
10,0000 640 1,25 0.0
9.4286 7.0 1475 096
11.5000 4.0 3,0 1,920
9.,1111 9.0 742 2,880
9.5455 11,0 24.0 4,320
3.0000 460 120.,0 6,720

S AMPLE R UN ¢oo PARTIAL DUTPUT

ITER= 5 SOS= 0,759514E 01 LFs= 04590639E 03

T nen ABS(D)/T
746364900000 ~0,0000558684 040000073
0,%9341030000 =-0,0000010532 0,0000011
2,8922830000 090000276566 0,0000095

CONVERGENCE AFTER 5 1TERATIONS

VARTANCE COVARTANCE MATRIX.

0.8206457E 00 =0,1238492E~01 =0,5017006F 00

2 =0,1238476E=01 0,41590302E#02 (,2543351Em0]

3 =0.,5016983E 00 0,2543397E-01 0,5588594F 00

RADIATION COALNNIES/UNIT CNANC FRACTION SURVIVAL
DOSE NBSERVED EXPECTED  NBSERVED EXPECTED

000000 8,00000 7,63643 1404761 1,00000
096000 5.3R777 5:,95921 0e70553 0,78037
1,92000 3,83333  3,)2511 0,50198 0,40924
2.88000 1,26543 1,40466  0,16571 0.18394
4432000 0439773 0438400 0.05208 0,05029
5:76000 0,10933  0.10129 0.01432 0,01326
6472000 0,02500 0.04142 0400327 0,00542

CHI=-S

0.12982
0467126
192602
089423
0:¢12960
0¢71929
3,12467
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