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Relative and absolute risk models are often used in epide- 
miologic studies to describe the effect of exposure on age- 
specific mortality rates. Poisson regression analysis is used 
to obtain maximum likelihood estimates of unknown pa- 
rameters and to assess goodness of fit of the models. It is 
common practice to base both estimation and the evaluation 
of goodness of fit on certain marginal totals. This approach 
is potentially misleading for relative risk models and is 
totally inappropriate for absolute risk models. To illustrate 
the situation, we present an example using data on smoking 
and lung cancer. In the example, the goodness-of-fit tests 
based on the marginal totals indicate that neither the absolute 
risk nor the relative risk model can be rejected, whereas the 
age-specific test statistics strongly reject both models. The 
validity of the marginal test is based on an assumption (i.e., 
of no exposure by age interaction) that is not satisfied in 
the example. We describe a more general approach to model 
evaluation that provides the analyst with summary infor- 
mation for various models of interest and provides guidance 
on how to identify good descriptive models. 

KEY WORDS: Absolute risk models; Epidemiologic fol- 
low-up study; Relative risk model. 

1. INTRODUCTION 

The analysis of censored failure time data is widely used 
to evaluate the potential adverse health effects of protracted 
exposure to risk factors. In epidemiologic follow-up studies, 
large groups of individuals are assembled and followed for- 
ward in time. The age at entry, calendar year of entry, and 
the intensity and duration of exposure to one or more risk 
factors are typical variables that are determined for each 
individual. The dependent variable is the time to failure, 
and this is often taken to be death from a disease of interest 
(e.g., lung cancer). The fundamental measure of disease 
occurrences is the hazard or failure rate (i.e., the incidence 
rate or force of mortality). For the ith individual, the rate 
A(t, zi(t), ,) at age t depends on an m-dimensional vector 
of known covariates zi(t) whose components summarize that 
individual's exposure history up to age t and the unknown 
parameter vector P. The covariate vector may also include 
demographic and personal characteristics that should be con- 
sidered as potential confounding factors. In principle, it is 
possible to use statistical methods that have been developed 

for the analysis of censored survival data with time-depen- 
dent covariates to analyze large cohort studies. A closely 
related approach that is widely used in practice is to treat 
all covariates as discrete variables with a small number of 
levels and partition age into J disjoint intervals. The data 
are then summarized into a multidimensional table that con- 
tains the number of failures (Yjk), the "person-years" (Cjk), 

and the value of the covariate vector Zjk for the jth age 
interval and the kth state. There will be a separate state for 
each combination of discrete covariate levels in this "grouped 
data" approach to survival analysis. The general procedure 
that is used for the person-years calculations when one or 
more of the covariates is time dependent was described by 
Clayton (1982) and Breslow, Lubin, Lubin, Marek, and 
Langholz (1983). The Cjk are assumed to be known constants 
and the Yj-k are treated as if they were the observed values 
of independent Poisson variates with means yjk =I Ck A(zjk, 

,); see Holford (1980), Laird and Olivier (1981), Breslow 
et al. (1983), and Whittemore (1985). The rate function 
A(z, 1) is used to model the effect of the covariates on the 
age-specific mortality rates and plays the role of the reges- 
sion function in standard regression analysis. Poisson 
regression analysis is used for estimation, hypothesis test- 
ing, and regression diagnostics (Frome 1983; Frome and 
Checkoway 1985). In many situations, it is convenient to 
assume that A(z, 1) can be expressed as the product of a 
baseline rate Aj? and a relative risk function; that is, 

Ak(Zjk, ) =Aj P(Zik, ) 

where the relative risk function p is nonnegative and satisfies 
p(O, ,) = 1 and z is defined so that z = 0 corresponds to 
the baseline population. Two special cases of general in- 
terest are p(z, ,) = 1 + z, (additive relative risk) and 
p(z, ,) = exp(z,) (multiplicative relative risk), where z, 
denotes inner product. 

In the example that follows, we will consider only the 
situation described by Crump and Allen (1985), where there 
is a single covariate with a linear dose-response function 
that is expressed in an absolute or relative form with respect 
to Aj?, the baseline rates (usually obtained from an external 
control group, e.g., national vital statistics). In this situa- 
tion, the mean of the Poisson variate VYk is then given by 

Iyjk = Cj]kAk + I, ZJk] = ,?k + a Cjk ZJk (1) 

for the absolute risk model and 

ytjk = 
Cik Aj(1 + fr Zjk) = ,?k(l + fr Zik) (2) 

for the relative risk model. 

2. EXAMPLE 

The data in Table I provide an interesting example of a 
typical situation in which the absolute risk (1) and relative 
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Table 1. Lung Cancer Mortality Data From Study of British Physicians 

Cigarettes per day 
(median value) 

0 1-9 10-14 15-19 20-24 25-34 35+ 
Age group (0) (5.2) (11.2) (15.9) (20.4) (27.4) (40.8) 

35-40 y 1 0 0 0 0 0 0 
1-?0 .091 .028 .032 .038 .050 .027 .006 
c 10,366 3,121 3,577 4,317 5,683 3,042 670 

40-45 y 0 0 1 0 1 1 0 
1-? .218 .078 .088 .113 .171 .108 .031 
c 8,162 2,937 3,286 4,214 6,385 4,050 1,166 

45-50 y 0 0 1 0 1 4 0 
A? .332 .127 .142 .177 .305 .239 .082 
c 5,969 2,288 2,546 3,185 5,483 4,290 1,482 

50-55 y 0 0 2 4 6 9 4 
AO .407 .182 .201 .232 .424 .386 .143 
c 4,496 2,015 2,219 2,560 4,687 4,268 1,580 

55-60 y 0 1 0 0 5 -9 6 
1-? .453 .213 .236 .244 .470 .455 .172 
c 3,512 1,648 1,826 1,893 3,646 3,529 1,336 

60-65 y 0 2 1 2 12 11 10 
1-? .385 .229 .243 .233 .422 .424 .162 
c 2,201 1,310 1,386 1,334 2,411 2,424 924 

65-70 y 0 0 2 2 9 10 7 
1-?0 .201 .197 .210 .180 .332 .299 .118 
c 1,421 927 988 849 1,567 1,409 556 

70-75 y 0 3 4 2 7 5 4 
1-?0 .237 .150 .144 .099 .181 .140 .054 
c 1,121 710 684 470 857 663 255 

75-80 y 2 0 3 5 7 3 1 
1-? .405 .297 .220 .137 .204 .139 .051 
c 826 606 449 280 416 284 104 

Y-k 3 6 14 15 48 52 32 
Wk 2.829 1.501 1.513 1.453 2.559 2.217 .819 
C.k 38,074 15,562 16,916 19,102 31,135 23,959 8,073 

NOTE: y represents lung cancer deaths, ,u? represents expected deaths based on an external control group, and c represents person- 
years at risk. 

risk (2) regression functions are of interest. These data are 
part of a study of the health effects of cigarette smoking in 
British physicians (Doll and Hill 1966) and have been used 
by Frome (1983) to illustrate how Poisson rate analysis can 
be used to model nonlinear dose-response relations. Table 
1 has been restricted to include only those regular smokers 
who started smoking at about age 20 and lifelong non- 
smokers (column 1). 

Smokers were categorized according to their exposure 
rate, expressed as daily cigarette consumption (cigarettes 
per day). The average cigarette consumption, say dk, in 
each of the "dose" groups is given at the top of each column. 
Doll (1971) suggested that the lung cancer data for non- 
smokers reported by Hammond (1966) constitutes an ap- 
propriate external control group. We have used these data 
(Hammond 1966, table 22 and app. table I) to obtain smoothed 
estimates (based on a cubic spline for the log-rates) of the 
age-specific lung cancer death rates that were used to com- 
pute the bjL5k values shown in Table 1. 

Table 2 shows the values of the deviance for the absolute 
risk model (1) and relative risk model (2) for the age-specific 
data in Table 1. The deviance is a likelihood ratio statistic 
used as a measure of unexplained variation similar to the 
residual sum of squares and is related to the log-likelihood 
function by D(") = -2[L(1) - L(y)], where L(") denotes 
the log-likelihood function evaluated at the maximum like- 

lihood (ML) estimate , and L(y) is the log-likelihood for 
the saturated model. If the assumed regression function is 
appropriate, the deviance will be distributed approximately 
as a chi-square with 62 df. The results for the age-specific 
data in Table 2 indicate that both models suffer significant 
lack of fit, but suggest that the relative risk model provides 
a better descriptive summary of these data than the absolute 
risk model. 

A practice often followed in epidemiologic cohort studies 
is to estimate the regression parameters using certain mar- 
ginal totals (see, e.g., Crump and Allen 1985; Howe, Nair, 
Newcombe, Miller, and Abbatt 1986; Land, Boice, Shore, 
Norman, and Tokunaga 1980). This practice will sometimes 
lead to correct estimates (i.e., the ML estimates that would 
be obtained from the stratified data if age is not a confounder 
or an effect modifier, but may not be appropriate if the 
goodness of fit of the model is being evaluated. For each 
of the K exposure groups the total deaths Yk k- jYjk is a 
Poisson variate with mean Wck + pa C.kdk for the absolute 

Table 2. Deviance Values for Table 1 Data 

Age-specific 
Model data Marginal totals 

Absolute risk 289.5 5.96 
Relative risk 95.9 2.83 
Degrees of freedom 62 6 
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Table 3. Hypotheses Tested in Table 2 

Model (a) Using age-specific data (b) Using marginal totals 

Absolute risk Ho: ,uik + IaCjkdk Ho: /u.k + IBaC.kdk 

Ha: P1k Ha: A*k 

Relative risk Ho: pu?k(l + Irdk) Ho: /JPk(1 + I3rdk) 
Ha: /jk Ha: A-k 

risk model and mean /Lk(l + ,3rdk) for the relative risk 
model. Table 2 shows the deviance values for both of these 
models obtained using the marginal totals (see bottom of 
Table 1). Since both of these deviance values are small 
(compared with a chi-square with 6 df), neither the absolute 
nor the relative risk model appears to be inappropriate. 

In summary, the results in Table 2 that were obtained 
using marginal totals would lead us to believe that neither 
the absolute nor relative risk models should be rejected. In 
contrast, when the age-specific rates were used we con- 
cluded that both models are inadequate. The apparent dis- 
crepancy can be better understood in terms of the specific 
hypotheses being compared. These hypotheses are listed in 
Table 3. The null and alternative hypotheses of Table 3b 
are implied by the corresponding hypotheses of Table 3a. 
If the null hypothesis is true in the formulation involving 
the entire table, then the corresponding null hypotheses for 
the marginal test is also true. (This is the basis for the 
"validity" of the marginal tests.) A null hypothesis in Table 
3b can be true, however, while the corresponding null hy- 
pothesis in Table 3a is false. For example, the relative risk 
model stipulates that a linear form in dk describes the pro- 
portional effect of exposure. This may be true overall (where 
age is not considered), but the same linear form may not 
be adequate when applied to each age stratum individually. 
Hence the value of the deviance for the test in Table 3a 
could indicate significant lack of fit, whereas the value of 
the deviance (based on marginal totals) for the correspond- 
ing test in Table 3b does not. On the other hand, suppose 
that the inadequacy is due to a quadratic term in the relative 
risk function that is common to each row; that is, 1+jk = 

A?k( + /3rdk + yrd)2 Then the test of Table 3b should 
be more powerful than the one in Table 3a, since it is based 
upon fewer degrees of freedom. Thus the test in Table 3a 
might indicate no significant lack of fit, whereas the cor- 
responding test in Table 3b might indicate the contrary. 

A less formal, but perhaps more useful, approach to model 
selection can be based upon an extended table that describes 
various models of interest and gives the values of the de- 
viance and degrees of freedom for each model. This ap- 
proach is useful when several possibly nonnested models 
are being considered and will help to explain the apparent 
inconsistency between the age-specific and marginal anal- 
yses that was illustrated in Table 2. The goodness-of-fit 
tests in Table 2 are, in fact, likelihood ratio tests with dif- 
ferent alternative hypotheses. To see this, consider Table 
4, which shows the deviance values for several relative risk 
models of interest. The first line gives the value of the 
deviance for the minimal model in which the excess relative 
risk is constant. Line 2 is the relative risk model (2) with 
Zjk = dk, and on line 3 we assume that Zjk = tjdk, where 
tj is duration of smoking (age minus 20), so Zjk iS the cu- 

mulative exposure. Line 4 corresponds to the model 

IyLjk = k L + Ptfrk], (3) 

where the excess risk is proportional to the baseline rates, 
the exposure rate, and the duration of exposure to the power 
(P. Note that the models on lines 2 and 3 are special cases 
of (3) obtained by setting P = 0 or 1. The fifth and sixth 
lines are factor models for column effects (exposure rate) 
and row effects (age), respectively. The deviance for a two- 
factor model, where the excess risk is represented as the 
product of row and column effects, is given on line 7. Lines 
3, 4, and 7 all represent exposure by age interaction models. 

The deviance values and degrees of freedom in Table 4 
can be used to compute the value of various likelihood ratio 
test statistics of interest (see Table 5). In Tables 4 and 5, 
the models are listed in increasing order of complexity. In 
Table 5, we have computed the significance level for each 
goodness-of-fit test for each model in Table 4. The null 
hypothesis is given at the top of each column, with the 
alternative hypothesis listed on the row. For example, the 
lack-of-fit chi-squared value for the linear exposure rate 
AkJ0k(I + 83dk) model with the unconstrained column effects 
model Pjk(I + 8k) as the alternative is 2.83 with 6 df (see 
lines 2 and 5 in Table 4). This is the same test statistic that 
was obtained using the marginal totals (see Table 2), and 
the significance level (.83) is given in column 1 of row 2 
in Table 5. This is the only alternative model that would 
not cause us to strongly reject the linear exposure rate model. 
Note, however, that when the unconstrained column effects 
model is tested against the alternative -?jOk(l + a1j8k), this 
model [i.e., Ho: aj = 1 (j= 1, . . ., 9)] is strongly 
rejected (see row 3, column 4 of Table 5). 

The simplest model in Table 4 that cannot be rejected for 
at least one alternative model (see column 3 in Table 5) is 

,A)?k(+ f3tJ dk), and consequently we might call this the 
"best" model for these data. Note that when this model is 
used to define the alternative hypothesis both the exposure 
rate model (4) = 0) and the cumulative exposure model 
(4 = 1) are obtained as special cases and are strongly 
rejected (see row 1 of Table 5). 

Another less formal approach that can be used to identify 

Table 4. Deviance Values for Relative Risk Models-Aj?k[1 + ThkI 

Excess risk-Thk df Deviance AIC* 

,q 62 209.56 211.56 
f3dk 62 95.90 97.90 
13t,dk 62 70.73 72.73 
J3tlbdk 61 63.83 67.83 
8k exposure rate 56 93.07 107.07 
aC age 54 170.17 188.17 
a/8k 49 51.01 79.01 

*AIC = deviance + 2(number of parameters); see text. 
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Table 5. Significance Levels for Ukelihood Ratio Tests for 
Relative Risk Model in Table 4 

Alternative Null hypothesis, 
hypothesis I3dk Rtidk 1tl1dk 8k aA Sk 

ptb^dk <.0001 .0086 - 

Ok ..8299 - _ 
aj 8k .0001 .1024 .3923 <.0001 

Pk .0037 .2092 .3773 .0014 .3945 

"good models" is based on the Akaike information criterion 
(AIC), 

AIC = D(,3) + 2m, 

where D(P) is the deviance and m is the number of param- 
eters for the specified model. This expression combines a 
measure of the discrepancy between the fitted values/L1k and 
the data (as measured by the deviance) and the simplicity 
of the model as reflected in the number of parameters (see 
Atkinson 1981; McCullagh and Nelder 1983). Results given 
by Efron (1986) show that using AIC to compare competing 
models with different numbers of parameters amounts to 
selecting the model with the minimum estimate of the mean 
squared error of prediction. The value of AIC for each model 
in Table 4 is shown in the last column. Note that the two 
models in Table 4 that involve duration of exposure and 
intensity of exposure have the smallest AIC values, and 
this, together with the results in Table 5, suggests that Equa- 
tion (3) is the best descriptive model for the data in Table 1. 

In our example, we were unable to identify any absolute 
risk models that provide a good fit and have, therefore, 
limited our presentation in Table 4 to relative risk models. 
In principle, Table 4 could be expanded to include absolute 
risk models, and Muirhead and Darby (1987) have provided 
an approach to defining more general regression functions 
that include absolute risk and relative risk models as special 
cases. It should be noted, however, that for absolute risk 
models, the ML estimates obtained from the marginal tools 
will not agree with those obtained for the stratified data. 
The fact that relative risk models fitted to summary data 
yield correct estimates, whereas additive risk models do not, 
follows immediately upon consideration of the sufficient 
statistics for the full data case. There are also additional 
regression functions (that do not use external rates) that have 
been used to describe the age-specific lung cancer death 
rates for the data in Table 1 and related data sets (see, e.g., 
Breslow 1985; Frome 1983; Whittemore and Altshuler 1976). 

3. CONCLUSION 

The main purpose of this article has been to focus atten- 
tion on the methods that are used to evaluate the goodness 
of fit of dose-response models in epidemiologic follow-up 
studies. This is an important issue, since these models pro- 
vide a basis for evaluating the potential adverse health ef- 
fects of occupational and environmental exposure to hazardous 
substances. In some situations the resulting models are used 
to extrapolate risk estimates or to determine "safe" levels 
of exposure. The example that we presented clearly shows 
that conflicting results can occur when marginal totals are 
used (instead of age-specific mortality rates) to evaluate 

goodness of fit. To illustrate why this happens, we presented 
a more detailed analysis, which shows that the choice of 
the alternative hypothesis is important. When specific mod- 
els can be represented as a special case of a more general 
model, then the well-known Neyman-Pearson theory leads 
to likelihood ratio test statistics. This approach cannot be 
used for nonnested models, and we suggest that the AIC 
can be used to identify good models in this situation. 

[Received March 1988. Revised January 1989.] 
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