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In vitro dose-response curves are used to describe the relation between chromosome aberrations and 
radiation dose for human lymphocytes. The lymphocytes are exposed to low-LET radiation, and the 
resulting dicentric chromosome aberrations follow the Poisson distribution. The expected yield 
depends on both the magnitude and the temporal distribution of the dose. A general dose-response 
model that describes this relation has been presented by Kellerer and Rossi (1972, Current Topics on 
Radiation Research Quarterly 8, 85-1 58; 1978, Radiation Research 75,47 1-488) using the theory of 
dual radiation action. Two special cases of practical interest are split-dose and continuous exposure 
experiments, and the resulting dose-time-response models are intrinsically nonlinear in the param- 
eters. A general-purpose maximum likelihood estimation procedure is described, and estimation for 
the nonlinear models is illustrated with numerical examples from both experimental designs. Poisson 
regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are 
discussed in the context of exposure assessment procedures for both acute and chronic human 
radiation exposure. 

1. Introduction 

In recent years there has been considerable interest in evaluating the influence of the 
magnitude and temporal distribution of low linear energy transfer (LET) radiation on 
biological systems. An extensive review of studies on a wide spectrum of species and 
experimental systems is given in NCRP Report No. 64-Influence of Dose and Its 
Distribution in Time on Dose-Response Relationships for Low-LET Radiations ( 1 980). 
Throughout the report the linear-quadratic (LQ) model 

is used to describe the effect of absorbed dose d on a specific biologic endpoint. The LQ 
model and its more general form (1.2) are also discussed in the latest report of the Committee 
on the Biological Effects of Ionizing Radiations of the National Academy of Science (BEIR 
111, 1980, Chap. 2). It is pointed out that the LQ model is a convenient empirical model 
for complicated endpoints in complex systems. For "simple" cellular systems the LQ model 
has been extensively used in the evaluation of radiobiologic data. 

We will consider studies that focus on specific lesions in the chromosomes of somatic 
cells as the endpoint of interest. Most of the early quantitative studies of chromosome 
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aberrations used plant cells [see Savage (1975) for a recent review], but starting in the 1960s 
and continuing on to the present, this line of research has shifted more to the use of animal 
cells. Recent work in human cytogenetic dosimetry used cultured peripheral blood lym- 
phocytes to quantitatively assess the effect of low-LET radiation on chromosome damage. 
This approach provides an effective method for the evaluation of one type of radiation 
damage in man. Numerous studies have demonstrated that chromosome alterations in- 
duced in lymphocytes after in vitro exposure to low-LET radiation are both qualitatively 
and quantitatively similar to alterations observed after in vivo exposure. Dose-response 
curves obtained from carefully controlled in vitro studies are used to estimate the dose for 
exposed individuals. This is the basis for the indirect evaluation of the effects of both acute 
and chronic human radiation exposure. These methods are currently used to provide dose 
estimates for radiation accident management (see DuFrain et al., 1980; Frome and DuFrain, 
1978). It has also been proposed that they be used for the indirect assessment of the long- 
term biologic effects of chronic exposure to radiation and other clastogens in human 
populations-see Evans et al. (1979), Savage (1979), and Holden (1982). 

In Section 2 we will describe a maximum likelihood (ML) estimation procedure that can 
be used to estimate the parameters from an in vitro experiment. We assume that (i) the 
dependent variable y (the number of chromosome aberrations) follows the Poisson 
distribution and (ii) that a regression function that describes the relation between the 
expected value of y and the radiation exposure is specified. The role of the Poisson 
distribution in describing the dispersion of the number of dicentric chromosome aberrations 
has been discussed by Edwards, Lloyd, and Purrott (1 979) and by Merkle (198 1). The index 
of dispersion can be used as a monitoring test for Poisson variation-see Fisher (1950) and 
Frome (1982). Frome, Kutner, and Beauchamp (1973) have discussed testing for hetero- 
geneity of variance and goodness of fit in a regression context. 

Two examples are presented to illustrate both linear and nonlinear analysis, using both 
empirically and theoretically derived models. In the first example we present results that 
were obtained using a "linear model" approach to evaluate the effect of dose and dose rate 
on aberration yield. This initial analysis is straightforward and was designed to test the 
hypothesis that the coefficient of the d2 term "depends" on dose rate. Although this initial 
analysis is technically correct, we were led to reject this approach as being both inappropriate 
and misleading on biologic grounds (see Section 4). We then present a more appropriate 
analysis that uses a nonlinear regression function. The nonlinear model is derived from the 
theory of dual radiation action (DRA) described by Kellerer and Rossi (1972), hereinafter 
referred to as KR. A second example is presented using data obtained from a dose- 
fractionation experiment and a nonlinear regression function predicted by the DRA theory. 

The DRA theory uses concepts from microdosimetry to provide a quantitative charac- 
terization of the effect of various temporal distributions of absorbed dose on the production 
of chromosome aberrations (CAs). It is postulated that elementary lesions are produced at 
a rate that is proportional to the square of the specific energy that is deposited in certain 
"critical sites." The general form of the dose-effect model that is appropriate here (see KR, 
$5.4) is 

Ud, t) = K [yd + g(t, 7)d21, (1.2) 

where d denotes dose, t is time, and X(d, t) is the yield of elementary lesions. The parameter 
K is a biophysical proportionality constant that reflects the target sensitivity for the biologic 
system (lymphocyte). The parameter y depends on the radiation quality and can be related 
to the specific energy transferred from the radiation field to the critical site. Kellerer and 
Rossi (1978) interpret y as an average of specific energy produced in individual events in 
the site. The linear and quadratic terms in (1.2) are often interpreted as intratrack and 
intertrack effects, respectively (Edwards and Lloyd, 1980). The coefficient of the d2  term 
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in (1.2) is referred to by KR as the "reduction function," and describes the "interactions" 
between dose elements given at different times. If irradiation takes place over an interval 
of time, say 0 to t, at a constant rate (dlt), then the reduction function is 

If the dose d is given in two parts (dl and d2) separated by a time interval t, then 

g(t, T )  = 1 - 2f (1 -f )(1 - e-'/7, ( 1.4) 

wheref= dl/d. Substitution of (1.3) and (1.4) into (1.2) gives the appropriate dose-response 
curve for the continuous exposure and split-dose experiments, respectively. In both situa- 
tions, the parameter T represents the average "recovery time" and (1.3) and (1.4) were 
derived under the assumption that recovery takes place at a constant rate over the interval 
0 to t. The resulting models are intrinsically nonlinear in the parameters, and the appropriate 
statistical analysis is based on the general maximum likelihood estimation procedure 
described in Section 2. Note that as t + 0 in both (1.3) and (1.4), g(t, T )  + 1. Consequently, 
for the limiting acute exposure situation, X(d) = ~ ( y d+ d2), which is equivalent to the LQ 
model (1.1). The parametrization in (1.1) has traditionally been used as a matter of 
computational convenience, and consequently the estimates of a and /3 can be viewed as 
"computational artifacts." Note that for the continuous exposure, split-dose, and acute 
exposure experiments, the parameters of interest are the same, i.e., K, y, and T. In the acute 
exposure experiments, one assumes that t << T,SO that g(t, T)  = 1 for all values of d, and T 

cannot be estimated. 
In summary, current biologic knowledge (obtained from theory and experimental studies) 

predicts that dicentric CA yields will follow the Poisson distribution, and that dose-time- 
response relations for acute, chronic, and fractionated exposures can be described by the 
regression functions (1.1)-(1.4). The statistical methods presented in this paper are con- 
cerned with analytic procedures for rejecting these conjecture-based regression functions. 
Thus, the goodness-of-fit test provides a probabilistic basis for evaluating the falsifiability 
of these proposed models (see Dolby, 1982). When the regression function cannot be 
rejected, the ML estimation procedure can be used for inference on the parameters of 
biologic interest. This, at the very least, provides an effective means for summarizing data 
from two different experimental designs over a wide range of experimental conditions. We 
have analyzed most of the available data from both split-dose and continuous exposure 
experiments that have been reported in the cytogenetic literature. Our evaluation of results 
of these analyses (Frome and DuFrain, work as yet unpublished) indicate that these data 
are consistent with the regression functions obtained from the DRA theory. The results 
presented here illustrate how nonlinear regression functions (that are derived from global 
conjectures) can be used to summarize data obtained in cytogenetic studies. Poisson 
regression provides a useful and effective methodology for an in-depth evaluation of results 
from individual experiments, and also provides a basis for combining the results from 
different studies. Whatever the true nature of the biophysical events that cause damage and 
repair of material in the chromosomes, it appears that the regression functions (1.3) and 
(1.4) provide a useful way of describing experimental data. Equivalent expressions have 
been obtained by Thames (1985) using another theoretical approach to modeling the 
biological effects of protracted and fractionated radiation exposure. He considered a kinetic 
repair-misrepair model (Tobias et al., 1980) and showed that it is equivalent to an empirical 
model (Oliver, 1964) that has been developed to describe experimental data from cell 
survival studies. These results can be related to those presented in this paper by noting that 
the probability that a cell will be undamaged (i.e., have no chromosome aberrations) is 
equal to exp[-X(d, t)]. 
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2. Maximum Likelihood Estimation 

Let yi denote the number of dicentric CAs observed at the ith set of experimental conditions, 
i.e., dose di and time ti for i = 1, . . . , n. The yts are assumed to be independent and to 
follow the Poisson distribution with expectation 

where ci denotes the total number of cells scored (in units of 100 cells). The regression 
function X(X, 8 )  describes the relation between the expected CA yield, the ith set of 
predictor variables Xi = (xil, xi2, . . . , xi,), and the p-dimensional vector of unknown 
parameters 8 .  The kernel of the log-likelihood function is 

A convenient computational approach to ML estimation is obtained by using iteratively 
reweighted least squares (IRLS). Let PI = yi/ci denote the observed CA yield per 100 cells 
scored and consider the following weighted sum of squares: 

where wi denotes a weight that is inversely proportional to the variance of pi. Since 
X(Xi, 8) is, in general, nonlinear in the parameters, an iterative procedure is required to 
obtain an estimate of8. The equivalence of the resulting IRLS procedure and ML estimation 
for general Poisson regression models was demonstrated by Frome et al. (1973). Further 
details required for the analysis in Section 3 are given in the ~ ~ ~ e n d i x .  The results of the 
IRLS are an ML estimate 8 ,  the estimated parameter covariance matrix, the deviance, and 
the basic "building blocks" required for regression diagnostics [see Pregibon (198 1) and 
Frome (1983)l. The deviance, D(y, ji) = C d:, is used to construct an ANOVA table for 
Poisson regression models, where the "deviance residuals" are (i = I, . . . ,n) 

and ii= ciX(Xi, 8). This measure of residual variation was proposed by Nelder and 
Wedderburn ( 1972) and is minus twice the ratio of the log-likelihood function of the model 
defined by h(Xi, 0 )  relative to the complete model in which there is one parameter for each 
value of i. The simplest (or minimal) model of interest in this situation is given by 
Xi = px;, where xi is the radiation dose. The ML estimate of 0 is 8 = Ci yi/Ci xici, and the 
deviance for the minimal model is 

Following the approach described by Efron (1978) for the binomial distribution, we then 
fit an increasing sequence of models for the explanatory vector p, and the value of the 
deviance for each model is recorded in the Poisson ANOVA table. The procedure is illustrated 
in the next section for a sequence of models that are linear in the parameters. 

3. Examples 

3.1 Continuous Exposure Experiment-Example 1 

The data in Table 1 (Purrott and Reeder, 1976) were obtained from an experiment (using 
gamma radiation from a cesium-137 source) that was designed to investigate the effect of 
dose rate on CA yield. According to theoretical predictions from microdosimetry, the LQ 
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Table ,1 
Number of dicentrics (y )  and cells scored for continuous exposure experiment 

Dose (Grays) 
1.O 2.5 5.0Dose rate 

G ~ / h r  Cells Y Cells Y Cells Y 
0.1 478 2 5 328 5 2 210 100 
0.25 1907 102 185 51 138 113 
0.5 2258 149 342 100 160 144 
1.O 2329 160 310 100 120 106 
1.5 1238 7 5 278 107 90 111 
2.0 1491 100 259 107 100 132 
2.5 1518 99 249 102 313 419 
3.0 764 50 298 110 182 225 
4.0 1367 100 243 107 144 206 

Source: Purrott and Reeder ( 1976). 

Table 2 
Poisson ANOVA for the data in Table 1 

Regression Number of 
model parameters Deviance df 

1. adi 1 1075.30 26 
2. ad, + (3df 2 228.00 25 
3. ad, + P,d: 10 21.52 17 
4. a,di + P,df 18 11.10 9 
5. Complete 27 0.00 0 

model (1.1) should be appropriate for this situation. The coefficient a of the linear term 
describes the formation of dicentrics from a single track, and /3 describes the induction of 
dicentrics by two tracks. Thus, the two-break asymmetric exchange (dicentric) is believed 
to be the result of these two phenomena, and the frequency of dicentrics is described by a 
second-degree polynomial in dose. The validity of the LQ model is based on the assumption 
that the absorbed dose is delivered to a "critical site" in a short period of time, i.e., at a 
high dose rate. The purpose of the study by Purrott and Reeder was to test the hypothesis 
that the effect of decreasing the dose rate would be to decrease the contribution of the dose- 
squared term, without changing the linear term. Model 4 (see Table 2) corresponds to the 
most general case in which both the linear and quadratic coefficients are allowed to vary 
with dose rate, i.e., XJk = a,dk + PJd2, where j identifies the dose rate group. For each of the 
models in Table 2 the regression function is linear in the parameters, and the procedure 
described in Section 2 was used to obtain the Poisson ANOVA. 

A test statistic for the hypothesis PI = pz = . . . = P9 is obtained using the difference of 
the deviance, D[y, ji(2)] - D[y, ji(3)] = 206.48. This test statistic has an asymptotic chi- 
square distribution with 8 degrees of freedom (do if the more restrictive hypothesis is true. 
Consequently, we reject the hypothesis that the coefficient of the quadratic term is 
independent of dose rate. An alternative approach is to test the goodness of fit of Model 3. 
The deviance for this model is 2 1.52 with 17 df, indicating that Model 3 cannot be rejected. 

Ad hoc model for Example 1 If the ML estimates of the quadratic coefficients obtained 
from Model 3 are plotted against the log of the dose rate, it appears that the b,'s increase 
linearly with log dose rate, and this can be described by the following regression function: 
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Table 3 
Results for the ad hoc regression function for the data in Table 1 

Parameter Estimate Standard deviation 
CY 2.86 0.305 
01 3.80 0.141 
02 2.26 0.144 

Table 4 
Results for the DRA model for the data in Table 1 

Parameter Estimate Standard deviation 

The ith row of the model matrix for this ad hoc model is Xi= (di, dj?, dj? log ri), where ri is 
the dose rate (column 1 of Table 1) and di is the dose for the ith set of experimental 
conditions. The ML estimates and estimated standard errors for this model are given in 
Table 3. The value of the deviance is 29.95 with 24 df, indicating that this ad hoc model 
cannot be rejected for these data. This model provides a good description of the effect of 
dose rate on dicentric yield, i.e., the quadratic component increases with the log of dose 
rate, and the linear component is independent of dose rate. 

Dual radiation action model The ad hoc model described in the previous section can be 
used as an empirical description of cytogenetic dose-response curves for this experiment. 
The parameters in this model do not have a clear interpretation in terms of the quantitative 
effects of ionizing radiation. The DRA theory (see Section 1) leads to the dose effect model 
(1.2), and for a continuous exposure experiment the function g(t, T)-originally proposed 
by Lea (1955)-is given by (1.3). Using (1.3) in (1.2), we obtain 

where d is the absorbed dose and t is the duration of exposure at a constant dose rate. The 
parameters y,K, and T can be related to the radiation quality, target sensitivity, and the 
recovery process (see Sections 1 and 4). 

The ML estimates of the parameters in (3.1) for the data in Table 1 were obtained using 
the IRLS procedure described in Section 2. Since the DRA model is nonlinear in the 
parameters, the partial derivatives of (3.1) with respect to the parameters are needed (see 
the Appendix). The ML estimates and their standard deviations are given in Table 4. The 
deviance for this model is 28.58 with 24 df (P = .236), indicating that the DRA model 
cannot be rejected. The standardized residuals in Table 5a are used to identify outlying 
observations, and in this example there is one large negative residual. The diagonal terms 
from the H matrix (see the Appendix) in Table 5b are used to identify extreme points in 
the model (design) space. There are several large h-values (greater than 2pln = 0.22) in 
Column 3, and two of these are in the first two rows, i.e., at the highest dose and the lowest 
dose rate (see Section 4). 
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Table 5 
Regression diagnostics for data in Table 1 using the nonlinear model (3.1) 
(a)Standardized residuals (b)Diagonal terms from the H 


M i  = ( ~ i- ki)/(kz)"2 matrix (p in= 0.11 1 )  


3.2 Split-dose Experiment-Example 2 

Schmid, Bauchinger, and Mergenthaler (1976) undertook a study to investigate the time- 
dependent quadratic component of the LQ model using a split-dose technique. Two 
experiments were carried out using 250 kV X-rays for the in vitro exposure of human 
peripheral lymphocytes. The purpose of the first experiment was to determine the coeffi- 
cients for the LQ model (see Table 6a). In the second experiment the lymphocytes were 
irradiated with a dose of 3.4 grays split into two equal fractions separated by intervals of 
from 50 minutes up to 6 hours-see Table 6b. They assumed that the primary damage 
induced by the first dose fraction decreases at a constant rate and obtained the following 
for the "interval-dependent" yield: 

The interval-dependent yield was estimated by subtracting the yield at d = 1.7 with t = 0 
from the observed yield obtained for each value of t  with d = 3.4. The resulting values were 
then used to estimate the parameter 7.  

The DRA theory predicts that the coefficient of the d2term will be given by (1.4) for this 
split-dose experiment (see KR, 95). Using (1.4) with f = ;in (1.2), we obtain the dose- 
time-response function 

where X, = (d,, ti) and @ = (K,y,7)'. Consequently, we can combine the data in Tables 6a 
and 6b and use (3.2) to obtain ML estimates of K, y, and 7. The ML estimates and their 
standard deviations are given in Table 7a. The corresponding estimates of K, 7,and 7 

obtained using the results given by Schmid et al. (1976) are 5.4, 1.5, and 1.8, respectively. 
Using their estimates in (3.2) gives 22.56 for the deviance (the deviance for the ML estimates 
is 18.45). The Poisson ANOVA table for the data in Table 6 is given in Table 7b. The 
difference in the deviance values on rows 2 and 3 is 96.7 with 1 df. This is a test statistic 
for the hypothesis 7 = 0; i.e., the simple LQ model is rejected. The next-to-last line in Table 
7b corresponds to the "pure error" sum of squares in the usual ANOVA table (note that there 
are two replications for each value of d in Table 6a). A goodness-of-fit test for the nonlinear 
model (3.2) is obtained from the deviance values on lines 3 and 4 in Table 7b, and the 
value of the resulting likelihood ratio statistic is 15.8 with 22 df, indicating that (3.2) cannot 
be rejected. 
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Table 6 
(a) Dicentric yields for acute exposure experiment (t = 0 and c = 1) 

d, dose (Grays) 
.25 .50 1.O 1.5 2.0 2.5 3.0 3.5 4.0 

3 5 9 30 3 7 54 74 77 128 

(b) Dicentric yield for split-dose experiment (d = 3.4 Gy)" 

Interval (hours) Cells Dicentrics 

" Dose = 3.4 Gy for all except the first row, where d = I .7 Gy. 
Source: Schmid et al. (1976). 

Table 7 
Results for split-dose data in Table 6 

(a) ML Estimates 

Acute only 5.49 1.37 -
Acute and split-dose 6.23 0.88 2.15 
(Standard deviation) (0.49) (0.28) (0.42) 

(b) Poisson ANOVA 

Regression function d f Deviance 

a d  3 3 162.2 
a d  + @d2 3 2 115.2 
D M  (3.2) 3 1 18.45 
Each (d, t) 9 2.6 
Complete 0 0.0 

4. Discussion 

The results in Section 3 show how Poisson regression methods can be used in the analysis 
of cytogenetic dose-response curves. In our original analysis of the data in Table 1 (Frome 
and DuFrain, unpublished work), our objective was to show how to use linear regression 
(with Poisson weights) to obtain a Poisson ANOVA table. The deviance values were then 
used to construct a likelihood ratio test statistic for the hypothesis of interest as specified 
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Table 8 
Additional data for continuous exposure experiment in Table 1 


Dose Dose rate (Gy/hr) Cells Dicentrics 


Table 9 
Values of  the deviancefor continuous exposure study 

Table 1, Table I + Table 8, 
Regression model n = 27 n = 33 

d + d2+ d2 log t 24.54 35.00 
d + d2+ d2log r 29.95 41.96 
DRA (3.1) 28.58 50.37 

by Purrott and Reeder (1976). In order to simplify the analysis, only those data with three 
doses at each dose rate were included. There were six additional data points at the low dose 
rates (see Table 8), and these data were also excluded from our later analysis using the 
DRA model (see Frome and DuFrain, 1982). This was done partially to ensure compara- 
bility with the earlier analysis and partly on biological grounds since the stability of the 
unstimulated Go lymphocyte maintained in culture for long time intervals can be ques- 
tioned. The values of the deviance for the ad hoc model, the DRA model, and a third 
model, 

Vx;,B)  = Pld + P2d2 + Pg(d210g t), 

are given in Table 9. When all of the data are included, both of the empirical linear models 
provide better fits for the complete set of data. Both of these models can be rejected, 
however, on biological grounds since they do not lead to reasonable results in the limiting 
situations of interest, i.e., as t -,0 and as t + m. Much of the lack of fit for the DRA model 
comes from the data at the lowest dose rates, and, as we noted earlier, there are reasons to 
question these data. Further support for the DRA paradigm is indicated in the second 
example. The nonlinear dose-time-response function (3.2) for the split-dose experiment is 
also predicted by the DRA theory. The important point is that both local regression 
functions are deduced from the DRA paradigm. The experimental data are used to challenge 
these models, not to generate them. The goodness-of-fit test statistic can be used to attempt 
to reject the dose-time-response functions and thereby show that the theory is false. 

It is apparent that both of these studies were motivated by the DRA theory, and 
consequently we feel that the use of the appropriate model for these and related experiments 
is of prime importance in furthering our understanding of the effects of the temporal 
distribution of low-LET radiation on the yield of dicentric aberrations. Under similar 
experimental conditions the results from both continuous exposure and split-dose experi- 
ments should be comparable for the human lymphocyte data. The parameter y is related 
to radiation quality but the values of K and 7 should be the same for normal human 
lymphocytes. We propose that future research efforts should focus on experiments that are 
designed to test for lack of fit of the regression function (1.2), with particular emphasis on 
the time-dependent component. If either (3.1) or (3.2) can be rejected, then a more complex 
model could be obtained, for example, by assuming a more general form for the recovery 
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process. This would provide evidence against the DRA theory or any other theory that 
leads to the same dose-response models. The purpose of this paper is to describe the M L  
estimation, hypothesis testing, and regression diagnostic procedures that can be used for 
any appropriate regression functions for CAs that follow the Poisson distribution. The two 
examples illustrate the effectiveness of Poisson regression methods in cytogenetic data 
analysis. 
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Des courbes de riponses in vitro sont utiliskes pour dicrire la relation entre aberrations chromoso- 
miques et doses d'irradiations dans le cas de lymphocytes humains. 

Les lymphocytes sont exposks h de faibles radiations L.E.T. Les aberrations chromosomiques 
dicentriques qui en risultent obiissent a une loi de Poisson. L'espirance de leur nombre dkpend i la 
fois de l'amplitude et de la rkpartition de la dose dans le temps. 

Un modkle giniral de riponses aux doses dicrivant cette relation a kti proposk par Kellerer et 
Rossi (1972, Current Topics on Radiation Research Quarterly 8, 85-158; 1978, Radiation Research 
75,47 1-488) a l'aide de la thkorie de l'effet dual de radiation. Deux cas particuliers d'intkrct pratique 
sont d'une part celui des expirimentations en doses fragmenties et d'autre part celui des expkrimen- 
tations en expositions continues. Les modiles correspondants de rkponses aux doses sont intrinsttque- 
ment non linkaires. 

Une procidure gknirale d'estimation par maximum de vraisemblance est dicrite, et des exemples 
d'estimations dans le cas de modkles non liniaires sont prksentks a partir des deux plans d'expiriences 
prkcidents. La rigression poissonienne est utilisie pour l'estimation, les tests d'hypoth2ses et toutes 
les interpritations. 

Les risultats sont discutis dans le contexte de prockdures de ripartition d'expositions dans les cas 
d'irradiations intenses et d'irradiations chroniques chez des humains. 
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Maximum Likelihood Estimation Using Weighted Least Squares 

Frome et al. (1973) have shown that for the general Poisson regression model the ML estimate of the 
parameter vector B can be obtained using a properly weighted iterative least squares procedure. The 
resulting iterative procedure is equivalent to using the method of scoring to obtain a root of the 
likelihood equations. On iteration k + 1, this leads to the following system of p linear equations: 

(P'WP)bk = PfW[? - Xk], ('4.1) 

where W is diagonal with wi = cJX(Xi, Bk), P is an n by p matrix of partial derivatives, and 7 and X k  
are n-dimensional vectors with elements yi and X(Xi, Bk), respectively. The elements of the ith row 
of the matrix P are aX(Xi, @)/dBj, j = 1, . . . ,p. Each of the quantities in (A. 1) that involves B is 
evaluated at the current value, Bk, and an estimate of the "correction vector" 6k is obtained and used 
to compute a revised estimate Bk+' = Bk + bk. This iterative procedure (Gauss-Newton method) 
continues until some convergence criteria are satisfied. This can be viewed (on each iteration) as a 
weighted linear regression of the residuals ji- -(Xi, Bk) on the p-dimensional row vector of "predictor 
variables" Pi evaluated at Bk (see Frome, 1983, 1984). Consequently, any statistical package that 
supports IRLS can be used to obtain ML estimates ofthe pi.The estimate ofthe asymptotic covariance 
is obtained by inverting the matrix P 'WP evaluated at B. The basic "building blocks" that are required 
for regression diagnostics are standardized residuals and the diagonal terms from the matrix 

H = W112p(P'WP)-'P'W'IZ 

evaluated at the ML estimate 6 (see Frome, 1983). 
A special situation of considerable practical interest occurs when the regression function is a 

generalized linear function (GLF); i.e., X(Xi, B) = g(Ci Pixij), where g is a nonnegative monotonic 
differentiable function. The statistical package GLIM (Baker and Nelder, 1978) is especially suited 
for this situation. When X(X, 8 )  is a GLF, the IRLS computations can be easily done using standard 
options in GLIM. This is done by specifying the "link function" (which is the inverse of the regression 
function) and the predictor variables of interest. GLIM can also be used when the regression function 
is intrinsically nonlinear in the parameters. This requires the partial derivatives of X(X, B) with respect 
to the Pj. As an example, consider the nonlinear regression function for the split-dose experiment- 
see (1.2) and (l.4), 

X(d, t) = ~ ( y d+ [ I  - 2f (1 -f)( l  - e-'/r)Jd2). 

To obtain ML estimates of the parameters using GLIM, we wrote a GLIM macro named fitnl. A 
listing of the GLIM driver program, the macro fitnl, and detailed computational results for the split- 
dose experiment in Section 3.2 can be obtained from the authors. 

Identical results can also be obtained, for example, by using a FORTRAN program PREG (Frome, 
1981), the system S (Becker and Chambers, 1984), or the statistical program SAS (Goodnight and 
Sall, 1982; see also Frome and MaClain, 1984). Each of these approaches requires the partial 
derivatives, initial estimates of the parameters, and some convergence criteria. Additional examples 
of Poisson regression with nonlinear models are given in Frome and Beauchamp (1968), Frome 
(1983), and Frome and Checkoway (1985). Further note that the computational approach described 
here can be extended to situations where the response variable y is in the regular exponential family 
for a general nonlinear regression function (Charnes, Frome, and Yu, 1976). If the regression function 
is a GLF (see Nelder and Wedderburn, 1972) then the analysis can be done using standard options 
in GLIM. An excellent account of GLF for the exponential family is given by McCullagh and 
Nelder (1983), and application of these regression methods to discrete data has been reviewed by 
Frome (1985). 


