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Models are considered in which the underlying rate at which events occur can be represented by a 
regression function that describes the relation between the predictor variables and the unknown 
parameters. Estimates of the parameters can be obtained by means of iteratively reweighted least 
squares (IRLS). When the events of interest follow the Poisson distribution, the IRLS algorithm is 
equivalent to using the method of scoring to obtain maximum likelihood (ML) estimates. The general 
Poisson regression models include log-linear, quasilinear and intrinsically nonlinear models. The 
approach considered enables one to concentrate on describing the relation between the dependent 
variable and the predictor variables through the regression model. Standard statistical packages that 
support IRLS can then be used to obtain ML estimates, their asymptotic covariance matrix, and 
diagnostic measures that can be used to aid the analyst in detecting outlying responses and extreme 
points in the model space. Applications of these methods to epidemiologic follow-up studies with the 
data organized into a life-table type of format are discussed. The method is illustrated by using a 
nonlinear model, derived from the multistage theory of carcinogenesis, to analyze lung cancer death 
rates among British physicians who were regular cigarette smokers. 

1. Introduction 

Data are often obtained in medical and epidemiologic studies in which the dependent variable 
is a count (e.g. number of cancer deaths) obtained in each of a number of subgroups that are 
described by a set of predictor variables. Let y, denote the number of failures and ci the total 
follow-up time for Subgroup i, i = 1, . . . , n. The expected number of failures in the ith 
subgroup is 

where Xi = (xil, . . . ,xi,) is an m-dimensional row vector of predictor variables that describe 
the ith subgroup, /3 = (PI, . . . , P,)' is a p-dimensional vector of unknown parameters, and 
h(X,, /3) is the expected rate for the ith subgroup. The rate function X(Xi,P ) can be viewed 
as a regression function that relates the expected number of failures to the predictor variables 
and the parameters. 

If we assume that the rate function has a log-linear form, we obtain 

Holford (1980) has presented an excellent review of the multiplicative model for rates and 
has described its relationship to methods for analyzing categorical data and censored survival 
data. Laird and Olivier (1981) have discussed in detail the fitting of count data from survival 
studies by log-linear models, and the use of iterative scaling algorithms for analysis. In some 
situations (see, for example, Osborn, 1975), investigators have proposed that one or more 
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factors affect the failure rate in an additive way. Freeman and Holford (1980) have discussed 
the importance of linear and log-linear models in smoothing rates, and their relationship to 
the usual approaches to standardization (direct and indirect). A third possibility is a mixture 
of additive and multiplicative effects, and a general 'quasilinear' hazard-rate model has been 
proposed by Taulbee (1979). Another model that we consider in §3 is given by (3.2) and 
provides an example of a nonlinear regression model. Further examples of situations in the 
biological sciences, where the response variable is a count that follows the Poisson distribution, 
and the regression function is intrinsically nonlinear in the parameters, have been given by 
Frome and Beauchamp (1968), Hasselblad (1981) and Frome and DuFrain (1982). 

A situation of special interest occurs in epidemiologic follow-up studies where data are 
organized into a format similar to that of a life table. One dimension of the table corresponds 
to the levels of one or more factors that may affect the survival experience of the cohort 
under study. These could include categorical variables (e.g. race, sex) or grouped values of 
exposure variables. The other dimension of the table is age; we let t, = (j- +)At denote 
the midpoint of the j th  age (or time) interval and we let yjh be the number of failures in 
Subgroup k with person-years cjh and covariates ZJk Let h(t, Z, a ,  8 )  denote the hazard 
function at Time t, and assuming that h(t, Z, a ,  8 )  = ho(t, a )exp(Z8), we obtain Cox's 
proportional-hazards model, where Xo(t, a ) denotes the hazard at the standard set of 
conditions Z = 0. If we let ho(t, a )  = exp(aJ) and consider only those values of t, where at 
least one failure has occurred, i.e. yJ. = C h  yjk > 0, then the rate function takes the log-linear 
form h(t, Z, a ,  8 )  = exp(o(i + Zj&) proposed by Cox. In particular, if cjh is the number of 
individuals 'in view' at the start of the j th interval with covariate values Zjh, and if there are 
no ties (i.e. if yj. = 1 for all j), then the maximum likelihood (ML) estimates obtained by 
using the iteratively reweighted least squares (IRLS) procedure (see $2) are equivalent to 
those obtained by maximizing Cox's partial likelihood. Whitehead (1980) further showed that 
when ties are present in the data (i.e. when yjh > 1 for some j), ML estimates under the 
Poisson assumption yield estimates of 8 that maximize the generalized partial likelihood 
function based on Peto's approximation (Peto, 1972). This leads one to conclude that 
algorithms for fitting generalized linear models can be used to analyze censored survival data 
(see Holford, 1980; Whitehead, 1980; Aitkin and Clayton, 1980). In this note, we show that 
this type of analysis can be viewed as a weighted least squares regression and that the results 
can be extended to apply to any reasonable regression function-i.e. h(X,/3) is a differentiable 
function of p .  

2. Estimation 

Let ri =yilc, denote the failure rate in the ith subgroup and consider the following weighted 
sum of squares 

where wi denotes a weight inversely proportional to the variance of ri. Since X(X,P ) is, in 
general, nonlinear in the parameters, we replace it with the linear terms in a Taylor series 
expansion about an initial estimate, /3 O, 

where P? denotes the ith row of the n x p matrix of partial derivatives pi, = ah(Xi, /3)/a,8; 
evaluated at the initial estimate Po,  and 6' = (601, . . . , 6;)'. Using (2.2) in (2.1) and the least 
squares principle, we can obtain estimates of the 67 by solving the following system of p 
linear equations: 

where R = (rl, . . . , r,)', W = diag(w1, . . . , w,), and A(/3 O) denotes A@?)= { X(X1 ,P  ), . . . , 
X(X,, P)}' evaluated at P = Po.We then obtain a revised estimatep1 = Po+ 6 ', replace the 



667 Poisson Regression Models for Rates 

superscripts of 0 in (2.3) with superscripts of 1, and solve for8 '. The iterative process (Gauss- 
Newton method) continues until some convergence criteria are satisfied. 

In many situations of interest, it is reasonable to assume that the yi are independent and 
follow the Poisson distribution (see, for example, Armitage, 1966; Breslow and Day, 1975; 
Osborn, 1975; Gail, 1978; Holford, 1980) with expectation given by (1.1). The kernel of the 
log likelihood function is 

and the ML equations are given by 

Since the ML equations will generally be nonlinear with respect to the unknown parameters, 
the method of scoring is used to develop an iterative algorithm to find a root of (2.5). This 
leads to the following system of equations on Iteration k + 1: 

where A(Pk) is the information matrix with elements 

evaluated at P = Pk,  and G(Pk).is (2.5) evaluated at /? = /3 ', i.e. 

If the weights in (2.3) on Iteration k + 1 are chosen to be wi = ci/h(Xi, P k )  then 
A(Pk) = P ( P ~ ) ' w P ( / ~ ~ )and G(Pk) = P ( P k ) ' w { ~- A(Pk)}, i.e. the IRLS procedure is 
equivalent to using the method of scoring to obtain a root of the likelihood equations. 
This result was discussed in detail by Frome and Beauchamp (1968), Frome, Kutner and 
Beauchamp (1973) and E. L. Frome (in a Ph.D. Dissertation at Emory University, 1972). 

This result was also reached by Nelder and Wedderburn (1972) for generalized linear 
models when the dependent variable is from exponential family. Extension of this result to 
nonlinear models, and conditions under which a solution of the likelihood equations will 
yield a global maximum of the likelihood function, were given by Charnes, Frome and Yu 
(1976). For linear and log-linear models, a solution to (2.5) will be the unique ML estimate, 
and a solution will exist if the columns of the X matrix are linearly independent when the 
rows with yi = 0 are excluded (see Nelder and Wedderburn, 1972). An algorithm for obtaining 
the ML estimate of P that is coded in ANSI Standard FORTRAN was given by Frome, 
(1981, and in his 1972 dissertation). The log-linear models with Poisson 'errors' can also be 
fitted as a standard option in the statistical package GLIM (Baker and Nelder, 1978). It is 
also possible to fit nonlinear models in GLIM by using the IRLS approach to develop model- 
specific procedures that can be implemented by using GLIM macros. 

Pregibon (1981) has proposed that when regression methods are used in observational 
studies, diagnostic procedures (similar to those developed for the standard linear model) 
should be used to check for outlying y-values and extreme points in the 'model' space. The 
basic 'building blocks' that are required for various diagnostic measures are standardized 
residual of some type and the diagonal terms, h,, from the matrix 

where all quantities that depend on are evaluated at the ML estimateb. The diagonal 
terms of this matrix are useful in detecting extreme points in the model space that may have 
a substantial influence on the fitted model. Recall that for the standard linear model H = 
X (XfX)-'X', I - H is the projection matrix, and large values of hi denote extreme points in 
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the model (design) space. For generalized linear models X(X,,P) = g(vi), where 11, = CJPJxlJ, 
and H can be written as 

where V is diagonal with u, = { ~ , ( d g ~ / @ ~  p and that large values of hi )2) /gl. Note thatz ,  h, = 

(say, greater than 2 p / n )  indicate extreme points in the model space. If ui denotes a 
standardized residual [e.g. (yi  - i,)/i:], the variance of u, is approximately 1 - h,, and 
'adjusted residuals' are given by ui/(l - h,): (see Haberman, 1974, Ch. 4). Another standard- 
ized residual that is useful for Poisson data is u, = y j  + (y,+ 1)+ -(46, + 1): which is known 
as the Freeman-Tukey (FT) residual (Freeman and Tukey, 1950). A third alternative, the 
'signed deviance', and various approaches to using these basic building blocks were discussed 
in detail by Pregibon (1981). 

3. Example 

The best dose-response data for human cancer are those obtained by Doll and Hi11 (1966) in 
a study of cigarette smoking in British physicians (see, particularly, Doll, 197 1). Whittemore 
and Altshuler (1976) have presented a more refined analysis of Doll's data on the lung cancer 
mortality of cigarette smokers in several age and dose groups, and this is shown in Table 1. 
In addition to these data on continuing cigarette smokers whose cigarette consumption was 
constant, data for nonsmokers obtained from Doll and Hi11 (1966, Appendix, Table 5) have 
been added to Table 1. These data will be used to illustrate the Poisson regression methods 
using both log-linear and nonlinear regression models. 

One approach to analyzing the lung cancer death rates in Table 1 is to use the iterative 
indirect standardization technique (see Mantel and Stark, 1968; Breslow and Day, 1975). This 
technique is equivalent to fitting a log-linear model in which the rows in the model matrix 
correspond to the rows in a full-rank design matrix for a two-factor fixed-effects analysis-of- 
variance (ANOVA) model, i.e. 

Maximum likelihood estimates of the parameters are obtained by using the IRLS procedure 
and are used to compute estimates of the 'age fit', i.e. exp(t + which are given in the last 
column of Table 1, and estimates of the 'smoking effects', exp(Sl2), which are shown at the 
bottom of Table 1. 

It is evident from the results in Table 1 that the lung cancer death rate is related to the dose 
rate (cigarettes per day) and the duration of smoking. It would be possible to use thz 
quantitative values associated with the row and column factors to develop a parsimonious 
description of the relation between age-specific lung cancer incidence rates and smoking rates 
by using empirical log-linear models. An alternative approach is to use some mathematical 
theory of carcinogenesis that has been proposed to describe this relation. Whittemore and 
Keller (1978) have pointed out that theoretical models play an important role since they 
provide a bridge between animal experiments and epidemiologic studies, and also because 
they provide a basis for extrapolating dose-response relations downward (see Crump et al., 
1976). One such model that has been applied to data obtained in both animal (see, for 
example, Carlborg, 1981) and epidemiologic studies (Whittemore and Keller, 1978) is given 

by 

where d is the amount of carcinogen applied per unit of time at a constant rate, and t denotes 
time from the start of exposure. For the data in Table 1. d is smoking rate (cigarettes per day) 



-- - 

Table 1 
Man-years at risk, number of cases of l u n ~  cancer (in parentheses), and fitted values obtained under the product model 

Years of '-u
Age fit* 

smoking Cigarettes/day: Nonsmokers 1-9 10-14 15-19 20-24 25-34 35 + (per 100 000 2.O, 

(age minus 0 5.2 11.2 15.9 20.4 27.4 40.8 man years) 
01 

3
20 vears), , -

15-19 10366 (1) 3121 3577 4317 5683 3042 670 .3 

20-24 8162 2937 3286 (1) 4214 6385 (1) 4050 ( 1) 1166 .9 

25-29 5969 2288 2546 (1) 3185 5483 (1) 4290 (4) 1482 1.9 

30-34 4496 2015 22 19 (2) 2560 (4) 4687 (6) 4268 (9) 1580 (4) 8.5 

35-39 35 12 1648 (1) 1826 1893 3646 (5) 3529 (9) 1336 (6) 8.8 

40-44 220 1 13 10 (2) 1386 (1) 1334(2) 2411(12) 2424(11) 924 (1 0) 23.2 

45-49 1421 9 27 988 (2) 849 (2) 1567 (9) 1409 (10) 556 (7) 29.4 

50-54 1121 710 (3) 684 (4) 470 (2) 857 (7) 663 (5) 255 (4) 46.5 

55 59 826 (2) 606 449 (3) 280 (5) 416 (7) 284 (3) 104 (1) 77.3 


Smoking effect? 1 .0 3.39 8.16 10.1 18.2 22.6 36.8 
-- .--

* Age fit = expG + &,), where f i and & are ML estimates defined by the product model. 

t Smoking effect = exp(&), where 8 is an ML estimate defined by the product model. 

The estimated lung cancer deaths per 100 000 man-years in Row j and Column k are given by Fit = Age fit x Smoking effect = exp(ji + &, + ). 
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and t = years of smoking/42.5. Doll (1971) suggested that the hazard rate is approximately 
proportional to d and to the fourth power of the duration of smoking (i.e. 8 = 1 and /3 = 4). 
This is a Weibull hazard function with one parameter ,O independent of d and t and the other 
parameter a function of dose rate: y + ads, where y represents the background (nonsmoker) 
incidence at age 62.5 and a d s  describes the effect of smoking on lung cancer death rates. The 
model (3.2) with y = 0 is equivalent to Equation (2.3) of Whittemore and Altshuler (1976) 
and can easily be expressed in a log-linear form, 

where Xi = (1, log ti, log di). Columns 3 and 2, respectively, of Table 3, give ML estimates, 
and their standard deviations and eye estimates, obtained by Whittemore and Altshuler for 
this model. When the nonsmoker data (i.e. d = 0) in Column 2 are included in the analysis, 
we require y > 0, and for estimation purposes we use 

where XI = (log ti, log di) and P' = (P, log a,8, log y). This model is nonlinear in the 
parameters, and consequently the computational procedures designed for generalized linear 
models cannot be used. However, with the IRLS procedure, ML estimates can be obtained by 
using any program that provides the ability to solve a weighted least squares problem with 
weights that change on each iteration (see $4). 

The ML estimates of the parameters for Model (3.4), using all of the data in Table 1, are 
given in the last column of Table 3. The diagonal terms from the H matrix (2.6) are easily 
computed by using hi = wiPiCPI, where C = (P'WP)-I denotes the asymptotic variance- 
covariance matrix of b, and the elements of P and W are evaluated at the ML estimate 8, 
and are given in Table 2a. Inspection of the hi values in Table 2a indicates that the data in the 
first and last columns are relatively more important with respect to Model (3.4). This 
emphasizes the importance of (i) the assignment of individuals to the correct dose-rate group 

Table 2 
Recression diacnostics for the data in Table 1, obtained with the nonlinear model (3.2) 

Years of Cigarettes per day 
smoking 

(midpoint) 0.00 5.20 1 1.20 15.90 20.40 27.40 40.80 

(a) Diagonal terms from the H matrix ( p / n  = 0.0635) 
.006 ,012 ,019 ,032 .024 
,012 .02 1 ,033 .06 1 .054 
.018 ,025 .035 .069 ,076 
.026 ,032 .035 ,066 ,085 
.036 ,038 ,032 ,057 ,078 
.047 .045 .033 .051 .077 
.055 ,055 ,038 .065 .089 
,070 ,068 ,042 .079 ,093 
,096 .079 ,050 ,083 .086 

(b) 	Freeman-Tukey residuals 
-0.19 -0.33 -0.54 

0.93 -0.82 0.02 
0.60 -1.30 -0.89 
0.87 1.36 0.75 

-1.74 -2.34 -0.54 
-0.69 -0.53 1.46 
-0.19 -0.6 1 0.37 

0.78 -0.36 0.11 
0.30 1.35 0.87 
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Table 3 
Estimates of parameters for data in Table 1 

Smokers +Smokers nonsmokers 
Parameter 

Whittemore-
Altshuler 

P 4.68 4.50 4.50 
(0.34) (0.34) 

log a 2.46 2.20 2.15 
(0.53) (1.45) 

0 1.10 1.18 1.20 
(0.17) (0.40) 

log Y - - 0.96 
(25.4) 

and (ii) the value of dh that is associated with each group (especially the last group). The FT 
residuals in Table 2b are used to identify outlying observations, and in this example only one 
FT residual exceeds 2 in absolute value. Freeman-Tukey residuals are recommended in this 
situation since the estimated number of deaths is small in a number of cells (24 of thebi 
values are less than 1). The results in Table 2 do not indicate any problems for this example, 
but do emphasize the importance of the data on nonsmokers. These results are presented to 
demonstrate that the basic building blocks (see §2) required for regression diagnostics are 
readily available in standard statistical packages that support the IRLS procedure. 

The deviance 

(see Nelder and Wedderburn, 1972), where L(y) denotes the value of the log likelihood 
function (2.4) evaluated at pi = yi, i = 1, . . . , n, provides an absolute measure of residual 
variation and is asymptotically distributed as a chi square with n - p  degrees of freedom (df). 
The deviance for Model (3.4) is 59.58 with 59 df (see the Poisson ANOVA in Table 4). The 
difference of the deviance between Rows 3 and 4 is used to obtain a likelihood ratio test of 
the hypothesis that lung cancer risk is proportional to dose rate, i.e. Ho: 8 = 1, and we 
conclude that this hypothesis cannot be rejected at the .05 significance level. The ML estimate 
of y, the background lung cancer death rate at age 62.5, is 7 = exp(& = 18.9 cases per lo5 
man-years, and an approximate 95% interval estimate is (6.1, 59). The hypothesis y = 0 is 
clearly not acceptable since the deviance goes to + co [see (2.4)] as h goes to 0 for the two age 
groups in Column 1 of Table 1, where yi >O and d, = 0. The results of fitting Model (3.4) 
when the data on nonsmokers are excluded from the analysis are given in Column 4 of 
Table 3, and the deviance for this model is 48.2666 with 50 df. The deviance obtained by 

Table 4 
Poisson ANOVA for data in Table 1 

Number of ResidualModel dfparameters variation 

The deviance D@) = 2Ci {yilog(yL/Pi) - (yi - Pi)) is used as a 
measure of residual variation. 
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using (3.3) is 48.2682 with 51 df, which indicates that the background parameter cannot be 
reliably estimated without the control group (note that the estimated standard deviation for 
log y is 25.4). The ML estimate of the background rate is 2.6 deaths per lo5 man-years, which 
is seven times lower than the estimate obtained when the data for nonsmokers are included. 
Whittemore and Altshuler (1976, p. 806) stated that nonsmokers experience a background 
smoking rate of 0.3 cigarettes per day, which also leads to age-specific estimates that are 
lower by a factor of six than those obtained when the data for nonsmokers are included. 

4. Discussion 

In this paper, we have shown that the analysis of failure rates can be viewed as a regression 
problem and that well-known procedures for describing, fitting and evaluating goodness of 
fit of models (both linear and nonlinear) can be used in the analysis of this type of data. 
When the dependent variable follows the Poisson distribution, the IRLS algorithm yields ML 
estimates of the parameters, provided that the weights are defined as described in 92 and that 
the convergence criteria used are equivalent to those used in the method of scoring. The 
deviance can be used as a measure of residual variation to develop an ANOVA-like table (see 
Table 4) for Poisson distributed data, but considerable care is needed when interpreting the 
deviance (or other measure of residual variation). First, it should be noted that the reduction 
in the deviance due to adding one parameter (or a group of parameters) is order dependent. 
Second, when the fitted values in a number of cells are small, the appropriateness of using 
n -p as the number of degrees of freedom for a chi square test of goodness of fit is in doubt. 
Further, it should be noted that in observational studies with three or more explanatory 
variables the occurrence of cells with ci = 0 (as well as cells with ci > 0 but yi = 0) will create 
problems when attempting to fit factorial-type generalized linear models with interaction 
terms. One should proceed with caution both when fitting these models and when constructing 
and interpreting the resulting ANOVA table. 

Log-linear models can be easily fitted to Poisson distributed data by using standard options 
in statistical packages such as GLIM. For models that are nonlinear in the parameters the 
IRLS procedure can be used to obtain ML estimates by using any program that provides the 
ability to solve a weighted least squares problem with weights that change on each iteration. 
This can be done with GLIM, for example, by disregarding the standard options and writing 
macros that implement the IRLS procedure described in $2. Identical results can be obtained 
by using the computer program PREG (Frome, 1981) which requires a user-supplied 
FORTRAN function for nonlinear models. In both cases the additional input required 
consists of the model-specific partial derivatives Pi [see (2.2)] which play the role of the 
predicator variables on each iteration, and initial estimates of the parameters. Listings of the 
FORTRAN function and the GLIM program that were used in this analysis are available. 

One important area of application of Poisson regression models is the analysis of survival- 
time data. Poisson rate analysis can be used to analyze censored survival time data when the 
survival time is discrete and the explanatory variables are categorical or obtained by grouping 
continuous variables (which can be time-dependent). This approach is especially useful in 
long-term follow-up studies with large numbers of individuals, as was illustrated in 53. In this 
type of study, variable entry time, lost to view, and censoring are handled by using 'person- 
years'. An alternative approach to the problem is to assume that c j h  is the number of 
individuals at risk (rather than person-years) at the beginning of the j th time interval, and 
that y,,, follows the binomial distribution (see Prentice and Gloeckler, 1978; Pierce, Stewart 
and Kopecky, 1979). This leads to a partial binomial likelihood function (see Cox, 1975) with 
a failure probability h(Xi ,P ) , and the IRLS can be used to obtain the ML estimates of p by 
using binomial weights on each iteration. Thompson (1981) has noted that models of this 
type can easily be fitted with GLIM when the failure probabilities can be represented with a 
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complementary log-log link function, i.e. h(X, , /3) = 1 - exp{-expX, 8 ) ) .T h e  I R L S  
procedure c a n  be  used t o  extend this capability to  an arbitrary (nonlinear) regression model. 

The  author  would like to  thank  D r  C .  C .  Lushbaugh for  his cont inuing support  in this effort. 
Comments  by  the  Associate Editor  a n d  the  referees o n  a n  earlier draf t  were appreciated a n d  
taken into account  i n  the revision of  this pager. All of  the  computat ions were d o n e  using 
the D O E  computer  resources operated by  Computer  Sciences a t  O a k  Ridge National  
Laboratory. This  research was supported i n  part  by  Contract  N o .  DE-ACOS-
76R00033 between the U.S. Depar tment  o f  Energy, Office o f  Heal th a n d  Environmental  
Research, and O a k  Ridge Associated Universities, a n d  by contract W-7405-eng-26 between 
the U.S. Depar tment  o f  Energy a n d  Union  Carbide Corporat ion.  

On considere des modeles dans lesquels la vitesse a laquelle apparaissent les evenements peut Ctre 
representee a l'aide d'une fonction de regression qui decrit la liaison entre les variables predictives et les 
parametres inconnus. Des estimations des parametres peuvent Ctre obtenues par une methode des 
moindres carres ponderes iterative (IRLS). Quand les evenements qui interessent suivent une distribution 
de Poisson, l'utilisation de l'algorithme IRLS est equivalente a celle de la methode des scores pour 
obtenir les estimations du maximum de vraisemblance (ML). Le modele de regression de Poisson 
general inclut des modeles log lineaires, quasi-lineaire et des modeles intrinsequement non lineaires. 
L'approche presentee permet de se concentrer sur la description de la liaison entre la variable dependante 
et les variables independantes a travers le modele de regression. Les logiciels statistiques standards qui 
permettent IRLS peuvent Ctre utilises pour obtenir les estimations du maximum de vraisemblance, leur 
matrice de variances-covariances asymptotiques et les aides a l'interpretation qui peuvent Ctre utilisees 
pour detecter les reponses aberrantes et les points extrtmes dans l'espace du modele. Des applications 
de ces methodes a des etudes epidemiologiques, les donnees etant organisees en forme de table de 
survie, sont discutees. La methode est illustree avec un modele non lineaire, derive de la theorie de la 
genese du cancer en plusieurs etapes, pour analyser la mortalite par cancer du poumon parmi les 
medecins anglais fumant regulierement la cigarette. 
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