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SUMMARY 

A maximum likelihood procedure is presented for the estimation of the parameters 
in a survival curve which is used in the quantitative investigation of cytological 
damage resulting from ionizing radiation. This estimation procedure is developed 
under the assumption that the observations are distributed as independent Poisson 
random variables. In addition, a weighted least squares procedure, which gives es- 
timates equivalent to the maximum likelihood estimates, is presented. Tests of the 
model and of the assumed distribution of the observations are given. Two illustra- 
tive examples are included. 

1. INTRODUCTION 

In the quantitative investigation of cytological damage resulting 
from ionizing radiation, the survival curve has been extensively used 
in attempts to establish relations between the radiation dose and the 
response of the biological system. Statistical methods in common use 
today for obtaining estimates of survival curve parameters and their 
standard errors were first presented by Kimball [1953] who employed 
a least squares procedure. Gurian [1956] extended Kimball's procedure 
by proposing appropriate weights for the least squares estimation. 
The purposes of this paper are to obtain estimates of these parameters 
with the help of the maximum likelihood principle, to show that equiv- 
alent estimates can be obtained with a properly weighted least squares 
approach, and to propose a procedure for testing the adequacy of the 
model being used. 

In determining the effect of radiation on bone marrow stem cells, 
bone marrow cells from irradiated animals are injected into recipient 
irradiated animals (Till and McCulloch [1961]). The injected cells 
locate in the spleen where the viable stem cells divide and produce 
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clonal colonies. The recipient animal is sacrificed after sufficient time 
has elapsed for the colony to grow to macroscopic size. The colonies 
in the excised spleen are then counted. It is assumed that each surviving 
stem cell that reaches the spleen has produced one colony. Although 
this discussion is restricted to in vivo mammalian cell survival, the 
same method of estimation is clearly applicable to in vitro survival 
studies of microorganisms that use the culture plate method. 

Since the stem cells constitute a small portion of the bone marrow 
cells, it is necessary to inject large numbers of bone marrow cells in 
order to produce colonies. It will be convenient to consider 105 cells 
as a unit concentration of bone marrow cells. Then, if there are 4 
stem cells/unit concentration of bone marrow cells, and some concentra- 
tion say, m, of bone marrow cells is injected into a recipient animal, the 
number of colonies is assumed to be distributed as a Poisson variable 
with mean = mu. The parameter g can be estimated by a dilution 
assay, and under appropriate conditions described by Roberts and Coote 
[1965] the maximum likelihood estimate of g is given by p = total 
number of colonies/total concentration of cells injected. 

A further assumption is that the fraction of stem cells surviving 
radiation dose X is of the form 

f = 1 - (1 -e-:X)>1 

This model was originally obtained as a special case of a more general 
model derived from the 'target-hit' statistical theory of radiation damage 
when the number of 'hits' is one (Atwood and Norman [1949]). The 
same general equation has also been obtained from a kinetic model of 
radiation damage by Dienes [1966]. 

Although the target-hit theory remains in doubt as a representation 
of the lethal process in the cell, most mammalian cell survival curves 
resemble the target model and can be represented by the same pa- 
rameters (Krebs [1967]). Krebs states that D0(f = 1/Do , where Do 
is the dose at which 37% survival occurs) describes the radiosensitivity 
of the cell, and that v represents a threshold level of injury required 
for cell death. The parameter v was originally supposed to represent 
the number of targets per cell, and has also been referred to as the 
'extrapolation number' (Alper et al. [1960]). The biological significance 
of this parameter and the appropriateness of the model have also been 
discussed by Fowler [1964]. 

2. ESTIMATION 

Assuming that equation (1) is the appropriate model, various 
methods have been used to estimate the parameters. These have been 
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discussed by Lellouch and Wambersie [1966], who proposed a maximum 
likelihood estimation procedure. Their method uses the approximation 

1 - (1 - e ) ve o 

which requires that only that portion of the data be used for which X 
is sufficiently large. The following development does not require 
this assumption. Consequently, a 'goodness of fit' test over the entire 
dose range is possible, and the decision as to what dose is sufficiently 
large is not required. 

For a given radiation dose Xi , (i = 1, * , N) the mean number 
of surviving stem cells per 105 bone marrow cells is given by 

Pi-=,p~l - (1 - eX)]. (2) 
If 

mij = concentration of cells injected into jth animal, 

ns = number of animals at dose Xi, 

yii = number of colonies observed in jth animal at dose X;, 

then it follows from the assumption of a Poisson distribution of colonies 
that the likelihood function is 

N nI e-miiPi(mip )vi i L = H H - ~~~~~~~~~~~(3) i=1 i=1 Yii! 
The log of the likelihood function is given by 

In L = - Zmi;Pi + Yii In (miP- in (yi!) (4) 
* i i 1 i i 

which may be written as 

lnL= -MiP+ ZYinPi +C, (5) 
i i 

where Mi = , Y= Ei yii , and C is independent of the pa- 
rameters. 

Let 01 = A, 026=j 03 = v, and 0 equal the vector of parameters, 
then the vector of first partial derivatives of in L with respect tothe 
elements of 0 is given by 

[ainL] [ I {?i?M}] (6) 

for 1 = 12 2, 3, and the matrix of second partial derivatives is given by 

a2InL] - 
A - Mi) a2]? -z ap. ___ (7) 
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for 1, 1' = 1, 2, 3. Let A = (1 - CeX); then P = u(l - A") and the 
partial derivatives in equations (6) and (7) are as follows: 

_P _ 
P V a2p a2p 

ae1 a = 1 02 a= 2 02 

aP _ P av?-l x a2P a2P 
a = 

-02vA2Xe X, = 

= ,ivX2e- xAv-2(l - PC-ox) 

(8) 

--P = P =u A In A, d2p d 2 = -yA`(1n A)2, ao3 av ~~~~~~~ao2 aV 
a2 = a2p -V Av lXecx a2d _ aP dA In A, 
-90 a92oY 9 91 a903 aO a ( 

aP9 9 a3 - gXe-0xA`l(1 + vln A), 

where the subscript i has been eliminated for notational convenience. 
In what follows it will be shown that the maximum likelihood estimates 
can be obtained by an iterative procedure using graphical estimates of 
A and v as starting values and the control group (X = 0) as initial 
estimates of y. 

Let 00 be the vector of initial estimates of the parameters, Ok the 
vector of estimates on the kth iteration, and 

A; ok+1 _k 
AO = 0 - 0. (9) 

Then the equations to be solved for AO0 are: 

a O] + a[ ao j () =00' 0 1 = 1 2 3. (10) 

In place of this system we shall solve the equations 

[a In LO] + [E a In L0)] A = , (11) 

where from (7) 

LE~aozaoIn L id )] = (aO1AoJ (12) 

This substitution of expected for empirical values in the second-order 
derivatives of In L (sometimes called the 'method of scoring') has been 
discussed by e.g. Finney ([1952] appendix II) and Rao ([1965] pp. 302-5). 
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The system of equations (12) is now solved for AO' and then the new 
vector 01 = 00 + A00 is substituted for 00 in (12). This iterative 
procedure is continued until the elements of AOk become sufficiently 
small. 

It is possible to show that equivalent estimators may be found by 
a weighted least squares approach. Consider the following weighted 
sum of squares to be minimized: 

N 
o = E Wi(00)(Pi -pi)2 (13) 

where Pi = YiMi Wi(O?) = Mi/Pi(O), and Pj(00) is equal to 
Pi evaluated at 00. Since Pi is a nonlinear function of the parameters, 
it is expanded about 00 in a Taylor series through the linear terms and 
approximated by 

P (00) + Ld (O J) A00. (14) 

This is substituted into (13) and the partials of the resulting expression 
with respect to the elements of 0 are set equal to zero. The resulting 
set of equations can be shown to be equivalent to those given in (12). 
Again the system of equations given in (12) is solved for AO0 and the 
new vector 01 = 00 + AO0 is substituted for 00 in Wi(00) and Pi(0?). 
This iterative procedure is continued until the elements of AOk become 
sufficiently small. Hence it has been demonstrated that the weighted 
least squares procedure described above is equivalent to the solution 
of the likelihood equations discussed earlier. 

The asymptotic variance covariance matrix of the estimators found 
by the procedures described above is given by the inverse of the matrix 

a b c 

[ E( l l )] d e 

-c e 
where 

a=ZEX 
2 

a 'H ~yp ZPi (a/,u)(cl) Pi (, (15) 

b = A, i (dPi dPi) e =E -31i (9Pi (9P i) (15) 
P M9 laP \/P i M. /9p. 
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In practice, tz, j, and v are replaced in the above expressions by their 
estimates in order to obtain estimates of the elements of this matrix. 

For the case when ma is independent of j for all i, which is denoted 
by using mi instead of mit , it is possible to test the assumptions of 
Poisson variation and the form of the model as expressed by equation 
(2). Let 

Pi = p[1 - (1 - e Ai) ] 

be the estimated mean number of surviving stem cells per unit con- 
centration of bone marrow cells at dose Xi . Then the statistic 

AT nil 

Z > (yii-Mi_)2/Mii (16) 

is distributed approximately as X2 with Ecl ni-3 D.F. This statistic 
would allow for a test of the goodness of fit of the model under the 
assumption of Poisson variation. The expression in equation (16) may 
be partitioned into two independent components as shown by 

IV ni 
(Yi, M )2 

I 
i(vYi, 

_ 
gi.)2 

IV 
ni(9y _ Mi i)2 

E 

- 
= 

N 

nE 

- 

=li=1 Mi i i=1 ijl MAn ill MAfi (17) 

= T, + T2, 

where y. = 1 ytj/n. T1 is distributed approximately as x2 with 
l = 2N= ni - N D.F. and may be used to test the assumption of 

Poisson variation. If this statistic is not significant then T2 is distributed 
approximately as X2 with f2 = N - 3 D.F. and may be used to test 
the model as given by equation (2). If the magnitude of T1 indicates 
some variation additional to the Poisson variation, then, following a 
testing procedure similar to that presented by Roberts and Coote 
[1965], the appropriateness of the model may be tested by the ratio 
(T2/f2)/( T1/f1) which is distributed approximately as a F-statistic 
with (f2 , f ) D.F. when the model is correct. If the F-statistic is not 
significant, then the variance-covariance matrix is multiplied by the 
heterogeneity factor h.f. = T1/f, in order to obtain a more appropriate 
estimate. 

3. EXAMPLES 

In this section the estimation procedure is illustrated with two 
examples. In the first example some data obtained from Dr. F. Comas 
of Oak Ridge Associated Universities is used. In this experiment, the 
bone-marrow donors and the recipients were Fischer-334 rats. The 



ESTIMATION OF SURVIVAL CURVE PARAMETERS 601 

donors were irradiated with doses ranging from 100 to 500 rads and 
there was also a non-irradiated control group. The bone-marrow was 
removed from the femora and cell suspensions of the desired concentra- 
tion obtained. The bone-marrow cells were then injected into the 
irradiated recipient animals, and on the 12th post-injection day, the 
recipients were killed, and the number of spleen colonies in each was 
counted. The results of the experiment are summarized in Table 1. 

Initial estimates yu ,, Oo, Po of the survival curve parameters are 
obtained by plotting the doses (Xi) against the observed spleen colonies 
per concentration on semilogarithmic paper (see Figure 1). From 
Figure 1, point B, which is observed from the control, provides the 
initial estimate of g. From the slope of the hand-drawn line through the 
last seven points on this graph an initial estimate of : is obtained. 
Finally the initial estimate of v is found by the ratio of point A to 
point B. The maximum likelihood estimates are then obtained by the 
iterative procedure discussed earlier and are as follows: 

= 5.38 , = 0.00997 v = 3.28. 

Figure 2 shows the original data with the fitted curve. The last column 
of Table 1 gives the predicted values of Pi using the calculated estimates 
of yu, A, and v. The estimated variance-covariance matrix is 

0.508 -0.145 X 10-3 -0.522 

V = 0.161 X 10- 0.279 X 10-3 

L 0.696 
The values of the x2's are given in Table 2. The first x2, T, , is 

significant at the 0.02 level. This indicates that there is some additional 
variation within dose groups additional to Poisson variation. Hetero- 
geneity may occur as a result of differences in the animals, or errors 
in the experimental technique. The second x2, T2, is clearly not sig- 
nificant, indicating that the data fit the nrulti-target model well. 
Hence the elements of the estimated variance-covariance matrix are 
multiplied by the heterogeneity factor, h.f. = Tlf, = 68.07/45 = 1.513. 
The new estimated variance-covariance matrix is then 

0.769 -0.219 X i0-3 -0.790 

0.244 X 10- 0.422 X 10-3 

1.053 ] 

By use of the asymptotic normality of maximum likelihood estimators 
approximate confidence intervals for the survival curve parameters 
mav be calculated. 
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FIGURE 1 
INITIAL ESTIMATES FOR TIHE FIRST EXAMPLE 

In the second example similar data were obtained from Till and 
McCulloch [1961]. The maximum likelihood estimates of the parameters 
are ,& = 7.64, = 0.00934, and v = 2.89. The x2 values did not indicate 
that either the assumption of a Poisson distribution of colonies or the 
model should be rejected. 
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FIGURE 2 
ORIGINAL DATA AND FITTED CURVE FOR THE FIRST EXAMPLE 

TABLE 2 

CHI-SQUARE VALUES FOR FIRST EXAMPLE 

Source D. F. X2 

Between 6T2 = 6.612 
Within 4T = 68.07 

Total 51 h i E ;(yi;- niPi)2/miPi = 74.682 
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ESTIMATION DES PARAMETRES DE COURBES DE SURVIE PAR 
LA METHODE DU MAXIMUM DE VRAISEMBLANCE 

RESUME 

Une methode du maximum de vraisemblance est presentee pour l'estimation 
des parametres d'une courbe de survie qui est utilisee dans l'investigation quantita- 
tive des dommages cytologiques provoques par des radiations ionisantes. Cette 
procedure d'estirmation est developpee sous l'hypothe'se que les observations sont 
distributes comme des variables aleatoires de Poisson independantes. De plus, une 
procedure des moindres carries ponderes qui donne des estimations 6quivalentes 
aux estimations du maximum de vraisemblance est presentee. Des tests du module 
et de la distribution presumee des observations sont egalement donnes ainsi que deux 
exemples illustratifs. 
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