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Summarizing relative risk estimates across strata of a covariate is commonly 
done in comparative epidemiologic studies of incidence or mortality. Conventional 
Mantel·Haenszel and rate standardization techniques used for this purpose are 
strictly suitable only when there is no interaction between relative risk and the 
covariate, and tests for interaction typically are limited to examination for depar­
tures from linearity. Poisson regression modeling oIlers an alternative technique 
which can be used for summarizing relative risk and tor evaluating complex 
interactions with covariates. A more general application of Poisson regression is 
its utility in modeling disease rates according to postulated etiologic mechanisms 
of exposures or according to disease expression characteristics in the population. 
The applications of Poisson regression analysis to problems of summarizing 
relative risk and disease rate modeling are illustrated with examples of cancer 
incidence and mortality data, including an example of a nonlinear model predicted 
by the multistage theory of carcinogenesis. 

biometry; epidemiologic methods; Poisson distribution; regression analysis 

Incidence or mortality data obtained 
from epidemiologic follow-up studies are 
often expressed as covariate stratum-spe· 
cific rates, for which the covariate may be 
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age or some other presumed confounding 
factor. Comparative analysis of rates be ­
tween groups characterized according to ex ­
posure level commonly involves computa­
tion of summary relative risk (or rate ratio) 
estimates, wherein stratum·specific rela­
tive risks are condensed into a single 
measure (1). Several methods have been 
proposed for this purpose. The Mantel­
Haenszel summary odds ratio method (2) 
has been adapted for use in cohort studies 
by Rothman and Boice (3) and by Tarone 
(4). Lilienfeld and Pyne (5) have also pro· 
posed summarizing relative risk with a pro ­
cedure which differs from the previous ap­
proaches principally in the choice of 
weights assigned to the stratum·specific 
relative risk estimates. Miettinen (6) has 
discussed this problem in the context of 
standardization as a means of controlling 
confounding. 
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With these relative risk summarizIng 
tech niques, there is the implicit assumption 
that there is no interaction between relative 
risk and levels of the covariates, and as 
such, the comparison of summary esti­
mators is strictly valid only when this con­
dit ion is true (7). Testing for interaction 
typically is limited to examining for depar­
ture~ from lineari ty of relative risk; how­
ever, when there are complex relationships 
between disease rates and the covariate, 
conventional summary estimation tech­
niques are unsuitable. An alternative ap­
proach to this problem is offered by mod­
eling disease rates as a function of covariate 
levels. Modeling disease rates can also be 
used for more general purposes, such as to 
describe the pattern of disease occurrence 
according to postulated etiologic mecha­
nisms of exposure, e.g., initiation and pro­
motion activities of carcinogens, or accord­
ing to disease expression characteristics in 
the population, e.g., bimodal age distribu­
tion. 

In this paper, we present a method for 
obtaining summary relative risk estimates 
by means of Poisson regression modeling. 
Examples are presented to illustrate the 
method of summarizing relative risk and to 
demonstrate how Poisson regression can be 
used to address problems of heterogeneity 
and interaction. An example that uses a 
nonlinear disease rate model derived from 
the multistage theory of carcinogenesis is 
given to illustrate the informativeness of 
the Poisson regression modeling approach. 

The Poisson regression model 

The general framework of the Poisson 
regression model , as applied to situations 
in which the dependent variable is a count 
(e.g., number of incident cases in a cohort 
study), has been described previously by 
Frome et al. (8). The reader is referred to 
reference 9 for a discussion of the applica­
tion of the model for epidemiologic analysis 
of cohort data. To specify a Poisson regres­
sion model, it is assumed that the depend­
ent va riable follows the Poisson distribu­

tion and t hat a rate function A(X, {J) that 
describes the relationship between disease 
rates, the predictor variables (X), and the 
unknown vector of parameters ({J) is given. 

In the context of a cohort study, a pop­
ulation for which incidence or mortality 
data for some disease have been obtained 
can be categorized into J strata of the co­
variate (e.g. , age) for each of K "risk" (ex­
po,ure) groups. The data can be summa­
rized for each level of these two factors as 
shown in table 1, where YJ' denotes the 
number of cases and CJk t he number of 
persons or person-years for risk group kin 
stratum i. The corresponding observed dis­
ease rate is rJ, = YJ'/cJ•. If risk group 1 is 
considered to be the reference, or nonex­
posed, group, the estimated relative risk for 
group k (k = 2, ... , K) for stratum i (i = 

1, ... , J) is T}k/r) 1. 

It is assumed that the YJ' are distributed 
as Poisson variates (10, 11) with expecta­
tion PJ' = cJ,AJ,. The AJ' represent the un­
derlying rate functions which are estimated 
from the data by rJ•• If the covariate stra­
tum -specific relative risks are constant 
within each risk group, then XJ, = Ad'" 
where AJ denotes the rate for the ith stra­
tum level, (Pk is the summary relative risk 
for group k (k > 1), and "', = 1 for group k 
= 1. This is referred to as the product model, 
and for estimation purposes, it can be re­
parameterized as a log- linear model, i.e., 

A}, = exp(O'J + (5,), (1) 

where "J = In(A}) and 0, = In"" (k = 2, ... , 

TABLE 1 

Data layout for analysis of cohort study data 

Risk group 
Stratum 

2 k K 

Cases 
Person-years 

y" 
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y" 
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j Cases 
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Y" 
0,. 

y" 
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J Cases 
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Yn 
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Y•• 
c •• 
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K), The " J correspond to th e natural loga­
rithms of the stratum-specific incidence 
rates in the reference group, while the O. 
represent the natural logarithm of t he sum­
ma ry relative risk for group k (with group 
1 as the reference group), 

Tarone (4) has discussed the special case 
that occurs when there are only two risk 
groups, and the more general case has been 
considered by Miett inen (6), Two of their 
examples will be given to illustrate how 
Poisson regression can be used to imple­
ment and extend their analyses, 

Example 1- Relative risk estimation for 
two risk groups 

This example illustrates how Poisson 
regression can be used when there are only 
two risk groups, In this situation, AJI = AJ 
and XJ2 = XJ</> = exp( aJ + 0), Scotto et al. 
(12) compared skin cancer incidence rates 
among women for two geographic areas, 
Dallas-Fort Worth and Minneapolis-St. 
Paul. Tarone (4) previously derived a sum­
mary relative risk for Dallas-Fort Worth 
from the age -stratified data shown in table 
2, T he formula Tarone used for the sum­
mary relative risk, in notation consistent 
with formulae given here, is 

J I J 
11- '" ('"f.., c ) / ('"f.., ZC 2 YJ I ) , (2)Z Y J2 

TABLE 2 
Number of cases of non melanoma skin cancer and 

population size for women in Dallo.~-Fort Worth and 
Minneapolis·S t. Paul* 

Minneapolis­ Dallas-Fort 

Ago St. Paul 
.____ -

Worth 
__ --­ - -­ Relat ive 

group 
(years ) 

No. 
of 

Population 
s ize 

No. 
01 

Population 
size 

risk1 

cases cases 

15- 24 1 172,675 4 181,343 3,81 

25-34 16 123.065 38 146.207 2.00 
35- 44 30 96 ,216 119 121.374 3. 14 
45- 54 71 92.051 221 111 ,353 2.57 
55- 64 102 72.159 259 83,004 2.21 
65- 74 130 54,722 310 55,932 2.33 
75-84 133 32.185 226 29.007 1.89 

85+ 40 8.328 65 7.538 1.80 
-- - -_. 

>to Adapted from Scotto et a!. (12). 
t With Minneapolis-St. Paul as the reference 

group. 

where Cj . = L , CJk = total number of persons 
in the jth age stratum, summed across K 
risk groups. T arane computed a summary 
relative risk of 2.24 (standard deviation 
(SD) = 0.12) for these data, with a X 2 for 
heterogeneity of 8.22 with 7 df, indicating 
uniformity of relative risk across strata. 

The Poisson regres"ion model for these 
data (see Appendix for a discussion of the 
general case) can be expressed as 

X(X" fJ) = exp(X,tJ ) 

= exp(~ X,J{JJ) = exp("J + 0), (3) 

where X, = (X,l, ... , X,!)) is a row vector and 
{1 = (a" .. . , a"K, b) I. In this example, X, I 

through x,. are indicator variables repre· 
senting terms for each age stratum, and X, 9 

indicates risk group, so that 0 = In( </>), 
where </> denotes the summary relative risk 
for Dallas-Fort Worth with Minneapolis­
St. Paul as the reference group. Note that 
X, is the ith row of the 16 by 9 model 
matrix X. In general, for a J by f{ table, the 
model matrix will be J K by J + K - 1. A 
detailed discussion of a procedure used in 
construct ing a model matrix is given in the 
Appendix. The maximum likelihood esti­
mate iJ of the parameter vector tJ is ob­
tained using the iterat ively reweighted least 
squares method desribed by Frome (9). The 
computations can be performed using the 
Generalized Linear Iterative Models 
(GUM) statistical package (13). (Listings 
of the computer program used for these 
analyses Can be obtained from t he author 
(E. L. F.) on request.) 

The maximum likelihood estimate of 0 is 
&= 0.804 (the unadjusted estimate is 8= 
0.743), fro m which ~ = 2.23 is computed. 
This result agrees closely with that ob­
tained from equation 2 by T arone (4). The 
estimated standard deviation for g is ob ­
tained from the inverse of the info rmation 
matrix, which is readily available following 
the last iteration of the iteratively reo 
weighted least squares procedure. The com­
puted standard deviation is 0.0522, which 
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gives a 95 per cent confidence interval for 
<f, of 2.02- 2.48. Heterogeneity of relative 
risk across strata is evaluated from the 
deviance D (~), which is a measure of unex­
plained variation (see Appendix). In this 
example, D(~) = 8. 17 with 7 df, indicating 
that the product model cannot be rejected, 
i.e. , it is reasonable to assume that the 
relative risk is constant across age strata. 

A plot of the logarithm of the incidence 
rates against the log of age - 15 years 
(where age is the midpoint of the stratum­
specific interval in yea rs) reveals that there 
is additional structure in these data (see 
figure 1). Figure 1 suggests that InA, the 
natural logarithm of the age-specific rate, 
increases linearly with lnt, and the param­
eter e is the slope of the line. This is the 
relationship between incidence and age (t) 
that is predicted by the multistage theory 
of carcinogenesis (14) and is referred to as 
the power law because the age-specific in­
cidence rates are proportional to t". For the 
data in table 2- AI , = Alit" and AI' = Aut"¢, 
which can be wri tten as 

A(X.. {J ) = exp("x" + Ox" + ox"d , (4) 

where XII = 1, X, :! = In(t,), and X, ;I = 1 for 
Dallas-Fort Worth and 0 otherwise. If t = 

10,0 

!fO 
0­

f 
/ 

'.0 0" 
/, 

~ 
~ 

,p' 

§ 0, 10 , 
Jr 

~ / 
CI 

~ )).()J 

• 

0,001 ' ,! 

1 10 00 

AGE - 15 

FIGURE 1. Log·log plot of age-specific incidence 
rates fo r skin cance r data for DaHas-Fort Worth 
(0---0) and Minneapolis·St. Paul (.- . ) (12) . 

(age - 15 years)/3S, then t = 1 for the 45­
54 age stratum, and the "intercept" term in 
equation 4 is the logarithm of the incidence 
rate for Minneapolis-St. Paul, i.e., j = 4 
(ages 45- 54). x,, = x, , = 0, and, from equa­
tion 4, AO = exp(a). For Dallas -Fort Worth, 
when ) = 4 and t = 1. AI' = exp(a + 0) = 

A()¢. The maximum likelihood estimates for 
the parameters in equation 4 are & = 

- 0.168 (SD = 0.048). § = 2.29 (SD = 0.063). 
and S= 0.803 (SD = 0.052). The value for 
deviance. which is asymptotically distrib­
uted as a X 2 (8), is 14.36 with 13 df. indi­
cating a good fit of the power model for 
these data. 

The findings from the analysis described 
above are summarized in a Poisson 
ANOV A (analysis of variance) format in 
table 3. This table is obtained by recording 
the value of the deviance and the degrees 
of freedom for each model considered and 
can be used to evaluate the importance of 
parameters in the model and the goodness 
of fit of different models. The deviance 
provides an absolute measure of residual 
(unexplained) variation and can be com­
pared with the chi-square distribution to 
assess the goodness of fit of a specific 
model. (The mean and variance of a chi­
square statistic are the degrees of freedom 
and two times the degrees of freedom, re­
spectively.) 

As discussed previously, the deviance of 

TABLE 3 
Pois8on ANOVA table lor skin cancer incidence data 

in table 2 

Model In( X) NO.O[ Deviance df 
parame er f! 

Minimal 2,790.3 15" Power law 
(0 ~ 0) <r + Ot 2 272.7 14 

Age alone <', 8 266.9 8 
City alo ne a +h 2 2,569.7 14 
Power law 3 14.4 13(\' + Or +" 
Age and city ("IJ + b 9 8.2 7 
Complete (¥)k 16 0.0 

'" The deviance p rovides an abso lute measure of 
residual (i.e. , unexplained) variation and is asymptot­
ically dist ributed as a chi-square random variable (see 
Appendix) . 

http:2.02-2.48
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8.2 (df = 7) for the product model indicates 
that the relative risk is constant across age 
strata. The deviance of the power law model 
(14.4, df = 13) further suggests a good fit 
of a model predicted by the multistage car­
cinogenesis theory. 

Further inspection of table 3 indicates 
that there is considerable lack of fit for all 
other models considered in that the devi­
ance is considerably larger than the corre­
sponding degrees of freedom for each of 
these models. In this situation, the more 
parsimonious power law model is judged to 
provide a "better" representation of these 
data. A more formal way to make this eval­
uation is to consider the difference of the 
deviances 14.4 - 8.2 = 6.2. This is a likeli­
hood ratio statistic for the model <X} = <X + 
e Int and can be compared with the chi­
square distribution with 13 - 7 = 6 df. 
Comparison of the corresponding differ­
ences in the deviances and associated de­
grees of freedom suggests that the power 
model provides a good fit to the data. 

The importance of the parameter 0 can 
be evaluated by computing the decrease in 
the deviance that occurs when 0 is included 
in the power law model (272.7 - 14.4) which 
is 258.3 with 1 df. This is consistent with 
the information obtained from the point 
estimate and its estimated standard devia­
tion (& '/SDb 2 = 238.5) , i.e., & exceeds the 
null value of zero by more than 15 standard 
deviations. The deviance can also be used 
to construct an R' -type measure of variance 
explained. For example, the first three lines 
of table 3 show that most of the variation , 
100(2,790.3 - 266.9)/2,790.3 = 90.4 per 
cent, in these data is explained by age alone, 
and that the power law model (with 0 = 0) 
accounts for most (90.2 per cent, i.e. , 
100(2,790.3 - 272.7)/2,790.3) of this ex­
plained variation. This example illustrates 
that the relative importance of various pa­
rameters can be assessed in several ways 
using the Poisson ANOV A table and that 
these resulta are consistent with results 
obtained when point and interval estimates 
of summary relat ive risks are used. We 
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emp hasize that this ad hoc analysis of the 
power law model should be interpreted as 
such, and that a formal statistical test of 
the goodness of fit of a model that is ob­
tained after inspecting the data is of limited 
value. The difference ofthe deviance should 
be used to assess the relative importance of 
a specific set of parameter values and is the 
analog of the decrease in sum of squares 
for standard linear models. This implies 
that one should interpret the Poisson 
ANOV A in the same manner as an 
ANOVA table for an unbalanced design , 
and it should be recognized that the results 
are order-dependent. The general proce ­
dure that we recommend is to enter the 
potential confounding factor first and then 
to inspect the decrease in the deviance that 
occurs when the risk factor of interest is 
entered into the model, as well as the de­
viance fo r the model with both factors in­
cluded. 

In summary, the analysis for this exam­
ple indicates that the relative risk for skin 
cancer among women is significantly higher 
in Dallas -Fort Worth than in Minneapolis ­
St. Paul, that the relative risk is constant 
with respect to age, and that the age-spe­
cific incidence rates are proportional to 
age - 15 years raised to the power of 2.3. 

Example 2- Relative risk estimation for K 
risk group 

This next example is presented to dem­
onstrate how Poisson regression modeling 
can be used to estimate the relative risk 
when there are more than two risk groups. 
Miettinen (6) has discussed the general 
problem of summarizing relat ive risk in the 
context of standardization with respect to 
the distribution of a confounder. The 
method of risk ratio standardization that 
Miettinen (6) used was illustrated with data 
from a cohort study by Kahn (15) of lung 
cancer mortality in relationship to cigarette 
smoking. Table 4 shows the lung cancer 
death rates according to the levels of the 
risk factor and age, the potential confoun­
der. 

The crude relative risk (i.e., ignoring age 
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T ARt E 4 
Lung cancer mortality according to cigarette consumption arid a~e for currenl cigarette smolwrs" 

Cigarettes/day Age group Nonsmokers 
(yeArs) Oc.casional 1-9 10-20 21-39 40+ 

;3;)- 44 Deal.hs 
Person -years 
(Rate per lOr, ) 

0 
35, 164 

(0) 

0 
3,657 

(0) 

0 
8 ,063 

(0) 

2 
09,965 
(3.34) 

4 
40,643 
(9.84) 

0 
3,992 

(0) 

45­ 54 Deaths 
P erson-years 
(Rate per lO") 

0 
1 5, 1 ~4 

(0) 

° 1,283 
(0) 

0 
3,129 

(0) 

2 
16,392 
(1 2.20) 

10 
12,839 
(77.89) 

2 
1,928 

(103,73) 

55- 64 Deaths 
Person-years 
(Rate per 1O~') 

::!~l 

213,8"8 
(11.69) 

6 
11,624 
(41.113) 

31 
45,217 
(68.56) 

183 
151,664 
(1 20.66) 

245 
103,020 
(237.82) 

63 
19,649 

(320.63) 

65- 74 Deaths 
Person -yea rs 
(Rate per 10'~) 

49 
171,2 11 
(28.62) 

10 
10,053 
(99 .47) 

44 
37,1 30 

(118.50) 

239 
101,731 
(234.93) 

194 
50,045 

(387.65) 

50 
8,937 

(559.47) 

75+ Deaths 
Person-yea rs 
(Rate per 10'~) 

4 
8,489 

(47.12 ) 

1 
5 12 

(195.3 1) 

5 
1,923 

(260.0l) 

15 
3,867 

(387 .89) 

7 
1,273 

(549.88) 

3 
232 

(1,293.10) 

* Adapted from Kahn (15). 

as a possible confounder) for t hese data can 
be obtained by the Poisson regression prod­
uct model specified in equation 1, by assum­
ing that "'I = '" for j = 1, ... , J, such that 
AI' = A</>k = exp(a + 0,), where the smoking 
categories are indexed by k = 1, ... , K. If 
nonsmokers are considered to be the ref­
erence group, then 01 = °and AI' = exp(/O,), 
where /0. = ex + Ok (k = 2, ... , K). The 
maximum likelihood estimates of the /Ok are 
S, = In( y.,!c.,) , where Y., = L Ylk and C /, 

= I lcl,. The crude risk ratio (CRR) for the 
kth level of the risk factor is then 

CRR, = exp( b,) = y.,/[c ,(y ,!c. ,)]. (5) 

Equation 5 corresponds to equation 1 of 
Miettine n (6), The deviance for the model 
representing the crude risk ratio for smok­
ing is 589.7 with 24 df (table 5), indicating 
that the variation of risk in these data 
cannot be explained by the risk factor 
alone. 

Proceeding under the assumption that 
the risk factor, smoking, is not important, 
i.e" all .I, = 0, equation 1 becomes Ai' = Al 

T ABLE 5 

Poi.<;son ANO VA lable fo r lung cancer mortality data 
in table 4 

No. of
Model in{ ).) parameters Devia.nce" df 

Mi nimal a 1 1,438.0 29 
Smoking effect {~ + 1I~ 6 589.7 24 
Age effect a , 5 1,037.0 25 
Age and smoking Ci. j + 011 10 12,5 20 
Complete '" 30 0 0 

*" The deviance provides an absolute measure of 
residual (i.e., lInexplained) variation and is asymptot­
ically distributed as a chi-squa re random variable (see 
Appendix). 

= exp(a l ), and the maximum likelihood 
estimate of Xi = yi-/cl .. Under this model, 
the expected number of deaths for the kth 
risk group is I ICi,Xj> and the ratio 

y h! I CI,XI = SMRh (6) 

is an estimate of the standardized mortality 
ratio (SMR) for risk group k, where the 
reference group is all risk groups combined. 
Breslow and Day (10) have shown that the 
ratios, SMR./SMR1 (group 1 = non­
smokers in this example), provide estimates 
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TABLE 6 

Comparison of summary relative risk estimates for lung cancer data in lable 4 

Cigarettes per dayRelative risk 
estimator Nonsmokers' Occasional 1- 9 10-20 21 - 39 40+ 

Crude risk rat.io 3.2 4.8 7.5 12.6 19.3 
SMR./SMR,t 3.4 4.8 8.8 15.7 21.9 
~ from product mode It 1 3.5 4.8 8.9 16.2 22.6 

'" Reference category. 
t All groups combined as the standard (see equation 6). SMR, standardized. mortality ratio. 
t From Poisson regression model "AJIt .... exp(aJ + Ih) , where dk is the natural logarithm of the standardized 

rate ratio, i.e., 6~ = ln~k' 

of the summary relative risks. These esti­
mates may be confounded, however, in that 
they lack a common standard. The values 
of these ratios for the data in table 4 are 
given in table 6. The deviance for this 
model is 1,037.0 with 25 df (see table 5), 
thus indicating that the confounder, age, 
alone cannot account fully for the variabil­
ity in the data. 

From the foregoing, it is apparent that 
neither smoking nor age alone can explain 
adequately the variation in these data. A 
further analytic procedure is to fit the prod­
uct model equation (equation 1) which in­
cludes both of these factors. The maximum 
likelihood estimates for this model cannot 
be expressed in closed form; therefore, the 
iteratively reweighted least squares proce­
dure is used to ohtain maximum likelihood 
estimates of the parameters (see Appen­
dix). The deviance for this model is 12.5 
with 20 df (table 5), indicating that the 
product model provides a very good descrip­
tion of these data. 

Miettinen (6) has proposed using the 
standardized risk ratio (SRR) as a sum­
mary relative risk estimator. The standard­
ized risk ratio for risk group k is defined as 

SRRk= (~ WIYlk/Clk)/ (~ w,AI). (7) 

where the WI are the standard population 
weights. If the nonexposed risk group (k = 
1) is considered to be the reference and the 
standard, WI = Cjl and AJ = YJI/Cjl' When 
the product model provides a good fit, as 
indicated by the contrast of the deviance 

and its degrees of freedom, the YJk in equa­
tion 7 can be replaced by their predicted 
values under .the procJu~t model, i.e., YJk = 
CJ' exp(aJ + 0.) = C)kAJrPk. Thus, the SRRk 
can be expressed as 

SRRk* = (~ wJJ ¢.) / (~ WJI) 

= ¢h = exp(b, ). (8) 

The <Pk are therefore estimators of the stan­
dardized risk ratios with the nonexposed 
group as the referent, and the choice of the 
standard population weights (wJ ) is unim­
portant. In these situations, we recommend 
use of the log-linear parameterized form of 
the product model, as given in equation 1, 
because of ease of implementation with 
widely available statistical packages, such 
as GLIM (13). 

If the product model provides a reason­
able fit to the data, one can proceed to test 
the hypothesis of primary interest, i.e., that 
the SRR. = 1 for all k risk groups, against 
the general alternative that SRR, .. l. This 
is equivalent to testing the hypothesis that 
Ii, = 03 = ... = 0, = 0 in the product model. 
In the example under consideration, the 
test statistic is obtained by subtracting 12.5 
from 1,037.0 in table 5 to obtain 1,024.5 
with 5 df, indicat ing that differences in 
standardized risk ratios are highly signifi­
cant. 

Example 3-Modeling disease rates 
according to levels of the exposure variable 

and covariate 

As mentioned previously, summarizing 
relative risk across strata of a covariate is 
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appropriate when there is no interaction 
between relative risk and levels of the co­
variates (7). In the context of the product 
model given in equation 1, interaction is 
equivalent to nonadditivity on a logarith­
mic sca le, and the deviance is used to mea­
sure the lack of fit of the product model. In 
some situations, an additive model A/k = AI 
+ <Ph (<PI = 0) may be more appropriate. 
Note that the model matrix for this additive 
model is identical with that for the product 
model, and Poisson regression can be used 
to fit either model. When there are more 
complex relationships between the rates 
and the cQvariates, conventional summary 
estimation techniques may not be appro­
priate. An alternative approach to this 
problem is offered by Poisson regression 
which can accommodate nonlinear model­
ing of disease rates. An example is given 
below to illustrate the approach. 

Doll (16), in studying the association be­
tween cigarette smoki ng and lung cancer 
among British physicians, proposed a 
model in which the age-specific death rate 
is proportional to smoking rate and age, 
i.e., 

A)k = (1' + adhll)t/, (9) 

where t = (age - 20 years)/42.5 and d = 

exposure rate, expressed as cigarettes per 
day. Frome (9) has provided a detailed pres­
entation of this model which is intrinsically 
nonlinear in the unknown parameter. The 
parameter l' represents the lung cancer 
death (per 105 man-years) in nonsmokers 
(d = 0) at age = 62.5 (t = 1), and I't~ 
corresponds to the age-specific death rate 
in nonsmokers at age t. A plot of the death 
rates against t on a log-log scale will result 
in a straight line with slope of {3 and inter­
cept l' (see example 1). The effect of smok­
ing is represented by the term ad" in equa­
tion 9, and when multiplied by t" corre­
sponds to the increase in the lung cancer 
death rate for individuals that smoke d 
cigarettes per day. Note that if 8 = 1, the 
relative increase in the age-specific death 
rate is proportional to the exposure rate for 

all ages, i.e., the rate ratio is 1 + (ex/-y )d. If 
8 '" 1, this exposure-effect relationship will 
be concave (8 < 1) or convex (8) 1) toward 
the exposure axis. The lung cancer inci­
dence data for smokers and nonsmokers 
(16, 17) are shown in table 7. Poisson 
regression was used to fit the model speci­
fied in equation 9 for these data and, for 
comparison, for the lung cancer and smok­
ing data from Kahn (15) analyzed in the 
previous example. The parameter estimates 
obtained from fitting this model for both 
data sets are shown in table 8. The deviance 
for the data of Doll (16) and the data of 
Doll and Hill (17) is 59.6 with 59 df, indi­
cating a good fit, while the deviance for 
Kahn's data, 43.5 with 26 df, suggests a 
considerably poorer fit. Of particular con­
cern with the data from Kahn is the esti­
mate for 8 which is less than 1.0, indicating 
a concave dose-effect relationship. The dif­
ferent appearances of the dose-effect curves 
for these two data sets are depicted in figure 
2, which shows the maximum likelihood 
estimates of age-adjusted relative risk, ac­
cording to level of smoking, obtained under 
the product model. 

DISCUSSION 

In this paper, we have demonstrated the 
use of Poisson regression modeling for sum­
marizing relative risk estimates. The at­
tractive features of the Poisson regression 
approach are that reasonable summary es­
timates of relative risk can be obtained, an 
evaluation of the presence and nature of 
interaction of relative risk with covariates 
is part of the analysis, and modeling of 
disease rates is facilitated. By contrast, 
conventional rate standardization tech­
niques familiar to epidemiologists are most 
useful under the assumption of no interac­
tion with the covariate(s), and the exami­
nation for interaction typically is limited 
to testing for departures from linearity. 
Complex forms of interaction, such as non­
linear relationships, are accommodated 
better by Poisson regression. 

The resul ts obtained from Poisson 
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TABLE 7 

Person-years at risk and number of lung cancer cases (in parentheses) from study of British physicians· 
according to level of cigarette consumption 

Cigarettes per day 

Age minus (median value) 

20 years 0 1-9 10­14 15-19 20­24 25- 34 35+ 
(01 (5.21 (11.2) (15.9) (20.4) (27.4) (40.8) 

i 
15-19 lO,366 (1) 
20- 24 8,162 

I 
25-29 5,969 
30- 34 4,496 
35- 39 3,512 
40-44 2,201 
45-49 1,4 21 
50-54 1,121 
55-59 826 (2) 

3,121 
2,937 
2,288 
2,015 
1,648 (I) 
1,3lO (2) 
9, 270 

7lO (3) 
606 

3,577 
3,286 (l) 
2,546 (1 ) 
2,2\9 (2) 
1,826 
1,386 (1) 

988 (2) 
684 (4) 
949 (3) 

4,317 
4,214 
3,185 
2,560 (4) 
1,893 
1,33' 

849 

470 

280 


5,683 
6,385 (1) 
5,483 (1) 
4,687 (6) 
3,646 (5) 
2,411 (12) 
1,567 (9) 

857 (7) 
'16 (7) 

3,042 
4,050 (1) 
4,290 (4) 
4,268 (9) 
3,529 (9) 
2,4 24 ( 11) 
1,409 (10) 

663 (5) 
284 (3) 

670 
1,166 
1,482 
1,580 (4) 
1,336 (6) 

924 (lO) 
556 (7) 
255 (4) 
lO4 (1) 

... Data from Doll (16) and Doll and Hill (17 ). 

TABLE 8 
Maximum likelihood estimates for parameters 

specified by a nonlinear model· lor lung cancer and 
cigarette smoking data 

Data source 
Parameter 

Kahnt Doll and Hillt 

fl 3.38 (0.18)§ 4.46 (0 .33) 
logO' 2.62 (0.21) 1.82 (0.66) 

9 0.83 (0.06) 1.29 (0.20) 
log..,. 2.61 (0,13) 2.94 (0.58) 

Deviance 43.5 59.6 
df 26 59 
P value 0.017 0.45 

• Death rate = 	XIII = (-y + ad,,' )t! , where 
(age - 20 years)/42.5 and d -= cigarettes per day. 

t Data from Kahn (15). 
t Data from Doll (16) and Doll and Hill (17) . 
§ Standard deviation in parentheses. 

regression analysis are summarized in a 
Poisson ANOVA table which gives the de­
viances as measures of residual variation 
for the model parameters_ A general x' test 
statistic for the null hypothesis of "no ef­

J fect" of the risk factor, after adjustment for 
the effect of the covariate(s), can also be 
obtained from the ANOVA table (9). When 
this test is significant, and there are quan­
titative val ues associated with levels of the 
exposure variable, the covariate, or both, 
regression models can be developed to de­
scribe more precisely the relationships be­
tween disease rates and the study factors. 

40 
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FIGURE 2. Standardized risk ratios for tung cancer 
and level of c igarette smoking from studies of 
US veterans (0- - -0) (15) and British physicians 
(.-- ...) (16, 17). 

The flexibility of modeling offered by Pois­
son regression may facilitate comparisons 
of results from different studies when, for 
example, the levels of the exposure varia­

1 
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bles differ between studies. This situation 
was illustrated in example 3 in which an 
intrinsically nonlinear model was used to 
describe the effects of cigarette smoking on 
the age-specific mortality rates for lung 
cancer. Data from two studies that used 
different exposure grouping schemes for 
age and smoking intensity were evaluated 
with the same regression model. Although 
the examples considered here were limited 
to one risk factor and one covariate, the 
methods described can be extended to in­
elude multiple risk factors and covariates 
simultaneously. 

The computational requirements for 
Poisson regression are sufficiently complex 
that, in most situations, a computer-based 
analysis would be required. High quality, 
inexpensive portable programs, such as 
GLIM (13), are now widely available, and 
can be used for all the analyses discussed 
in this paper (see Appendix for details). 
Poisson regression analysis can also be per­
formed on any micro (personal) computer 
with software that supports ANSI standard 
FORTRAN using the special purpose pro­
gram written by Frome (18). Consequently, 
while the computations required for these 
methods are extensive, by comparison 
with desk calculator or package program 
routines, the computational complexities 
should no longer limit the availability and 
usefulness of Poisson regression analysis. 

Poisson regression models are especially 
appropriate in follow-up studies in which 
time-based denominators (person-years) 
are used to obtain disease rates, or when 
the outcome of interest is rare, such that 
the Poisson approximation to the binomial 
can be used (see Gart (19) for a discussion 
of this type of application). Further consid­
eration of the use of generalized linear 
models for covariance adjustment and 
standardization is offered by Lane and 
NeIder (20) and Little and Pullum (21). 
Holford (ll) has provided an excellent re­
view of multiplicative models for rates and 
methods for analyzing categoric and cen­
sored survival data. 

The use of Poisson regression in cohorts, 
with internal standard populations, has 
been illustrated by Frome and Hudson (22) 
and by Lushbaugh et al. (23) in occupa­
tional studies ofradiation-exposed workers. 
Breslow et aL (24) have considered both 
internal and external standard populations 
in their demonstrations of the use of Pois­
son regression analysis and have discussed 
the Poisson regression approach relative to 
other statistical methods used in cohort 
studies. When an external standard set of 
population rates is used, e.g., national rates, 
the eJk (see table 1) are "expected" events 
rather than person-years, and, although the 
c,/, are in fact random, the log-likelihood 
given under the Poisson assumption is still 
appropriate (24). Breslow (25) further dis­
cussed the use of Poisson regression with 
external rates and has illustrated how this 
multivariate approach can be used in rela­
tionship to traditional methods of cohort 
data analysis. 

The more general, intrinsically nonlinear 
models are also of interest and can be han­
dled readily using the iteratively reweighted 
least squares procedure as was illustrated 
in example 3. James and Segal (26) have 
also described the fitting of intrinsically 
nonlinear models of age-year interaction 
effects to Poisson-distributed data. Further 
discussion concerning the mathematical 
basis for regression methods appropriate to 
Poisson and binomial data is given by 
NeIder and Wedderburn (27), and Charnes 
et al. (28) have detailed the underlying as­
sumptions and applications of iteratively 
reweighted least squares model fitting for 
general regression models. Frome (29) has 
recently reviewed the use of binomial and 
Poisson regression models in biomedical 
studies, and a general overview of Poisson 
regression and its relationship to other es­
timation procedures has been presented by 
Koch et a!. (30). 

Another useful feature of Poisson regres­
sion analysis is the availability of regres­
sion diagnostics that can be used to aid the 
analyst in detecting the outlying data 
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points or inadequacies in the model speci­
fication . Pregibon (31) has described the 
essential elements of regression diagnostics 
for logistic regression, and Frome (9) has 
discussed regression diagnostics for Pois­
son -distributed data. 
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ApPENDIX 

Illustration of the model specification and 
computations involved in Poisson 

regression analys is 

The product model (see equation 1 and 
table 1) can be expressed as a log-linear 
model as follows: 

Aj' = exp(a l + 0,) = exp(X.p), 

where X, = (X,I , ... , x,p) is a row vector of 
indicator variables for the ith cell in the 
table and P = (a l," ., (Xl> 0" ... , OK)' is 
the p-dimensional column vector of un ­
known parameters with p = J + K - 1. If 
the ith cell of the table corresponds to raw 
j and column k, the components of X. (i = 
1, . . . , JK) can be defined as follows: 

X,m = 1 if m == J; 

X,m = 1 if k > 1 and m = J + k - 1 

(m = 1, ... , J + K - 1); 

X,m = 0 otherwise. 

The rows of the JK by J + K - 1 X matrix 
for a J = 4 by K = 3 table are shown in 
Appendix table 1 to illustrate tbe general 
procedure. 

When e,k > 0 for allj and k , this situation 
is equivalent to a full rank parameteriza­
tion of the design matrix for a two-factor 
fixed effects ANOV A model, and the 0, are 
the natural logarithms of the standardized 
rate ratios with k = 1 as the standard and 

reference group (see example 2). In prac­
tice, it is not necessary to generate this 
matrix because its structure is implied by 
the levels of the factors. 

Frome (9) has shown that maximum 
likelihood estimates of the parameter vec­
tor P is equivalent to a weighted least 
squares regression. Consider the following 
weighted sum of squares: 

N 

S(P) = L wi [r, - X(X" P)]' . 
,~I 

where r. = y,jCi denotes the observed rate 
in the ith cell (i = 1, .. . , N) , where N is 
the number of cells in the table, and the 
"Poisson weights" are Wi = c,jX(X" Pl. The 
maximum likelihood estimate 13 is obtained 
using the iteratively reweighted least 
squares procedure, and the deviance is com­
puted to obtain an absolute measure of 
residual (unexplained) variation. The de­
viance is a likelihood ratio statistic-D (13) 
= -2[L(13) - L( y)] - where L(13) denotes 
the log-likelihood function evaluated at the 
maximum likelihood est imate, and L( y) is 
the log-likelihood function for the satu­
rated model ii. =Yi (i = 1, ... , N). 

The deviance (see references 9 and 27) 
for a Poisson regression model is defined 
as follows: 

N 

D(13) = 2 L [y.ln(y;/ii;) - (Yi - iii)], 
1=1 

where the fitted value iii = c.X(X" 13), and 

ApPENDIX TABLE 1 

Rows of the X matrix lor a 4 by 3 table 

,j x .. Xn x .. x" x . x . 

1 1 0 0 0 0 0 
2 2 0 0 0 1 0 
3 3 1 0 0 0 0 1 

2 I 4 0 0 0 0 0 
2 2 5 0 1 0 0 1 0 
2 3 6 0 1 0 0 0 1 
3 1 7 0 0 0 0 0 
3 2 8 0 0 0 1 0 
3 3 9 0 0 1 0 0 I 
4 I 10 0 0 0 0 0 
4 2 II 0 0 0 I 0 
4 3 12 0 0 0 0 
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$SUBFILE DATA FCAPP1.RSS ON 21 FEB 83 
1 FCAPP1: APPENDIX ! 
! LUNG CANCER MORTALITY-- AGE BY CIGARETTE CONSUMPTION I 
! SOURCE: KAHN(1966) APPENDIX TABLE A ! 
! COLUMN 
! 2 3 4 5 6 
I NEVER OCCA 1-9 10-20 21-39 40+ 
$U NITS 30 ! 
$DATA C $READ ! C = MAN YEARS 

35164 3657 8063 59965 40643 3992 
15134 1283 3129 16392 12839 1928 

213858 14624 45217 151664 103020 19649 
171211 10053 37130 101731 50045 8937 

8489 512 1923 3867 1273 232 
$DATA Y $READ ! Y = LUNG CANCER DEATHS 

000 240 
o 0 0 2 10 2 


25 6 31 183 245 63 

49 10 44 239 194 50 


4 1 5 15 7 3 
$M TITLE FCAPP1: LUNG CANCER MORTALITY (KAHN.1966) $E 
$CA $R=5 : %L=6 $FAC ROW %R COL %L 
$CA ROW=~GL(~R.%L) : COL=$GL(~L,l) ! GENERATE ROW AND CO L 
$DATA 6 DOSE $READ 0 0.5 5 15 30 45 ! CIG. PER DAY 
$CA D=DOSE(COL) : AG= ROW*10+30 ! 
! DEFINE VARIABLES Xl AND X2 FOR NONLINEAR MODEL 
$WARN $CA Xl= %IF( %LE (D,0),-8.%LOG(D) )
$CA X2=%LOG( (AG-20)/42.5) ! 
$CA C=C/l00000 : R=Y/C ! 
$PR TITLE: 'R = LUNG CA DEATHS I 100000 MAN-YEARS' $ 
$RETURN 

FIGURE lAo GU M (1 3) program statements for defining data structure for Poisson regression analysis using 
the product model for data from Kahn (15) in example 2. 

!I (Xi, /3) denotes the regression function 
evaluated at tbe maximum likelibood esti­
mate iJ. (Note tbat maximizing tbe log­
likelihood function is equivalent to mini­
mizing the deviance. ) Anotber well known 
statistic tbat can be used as a measure of 
residual variation in Poisson regression is 
Pearson' s X' = L (y, - ii.ol'/ p., (see refer­
ence 7). Botb of tbese test statistics will 
yield similar values wben tbe fitted values 
are large (i.e., p., > 3 for all i = 1, . .. , N). 
The value of these statistics may differ 
substantially wben some of the p., are small, 
and the analyst should proceed with cau­
tion. If the assumed regression function 
!I(X, fJ) is appropriate, both tbe deviance 
and Pearson's X' will be distributed ap­
proximately as a chi-square with N - pdf, 

where N is the number of observations and 
p is the number of parameters (see refer­
ences 8 and 32). It is generally advisable to 
utilize regression diagnostics (9, 31) to as­
sess the effect of outlying y values and/ or 
model inadequacies on these lack of fi t 
statistics and the estimated parameter val­
ues. In situations in which tbe unexplained 
variation is substantial, t be lack of fit may 
be due to overdispersion (relative to tbe 
Poisson distribution) or to the inadequacy 
of tbe regression function. If tbe lack of fit 
is attributed to overdispersion, the esti­
mated parameter covariance matrix sbould 
be multiplied by tbe heterogeneity factor 
.1' = X'/(N - p), approximate interval 
estimates, for the components of fJ should 
be based on the t distribution, and test 
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$SUBFILE PHOD I 

$MAC PMOD I FIT PRODUCT MODEL 

$ERR P $WE C $YVAR R $FIT I 

$VAR ~L B2 II $CA II:$CU(I) I 

$FIT COL $DISP E $USE RR I 

$FIT .ROW $DISP E $USE RR $E ! 

$MAC RR I CALCULATE RISK RATIOS FOR PHOD 


$EXTR $PE $CA BZ(II):%PE(II ) : B2(1):0 BZ:%EXP(BZ) 

$PR :' RISK RATIOS: ' B2 : $END 

$R ETU RN 

I 
$SUBFILE NONLIN 

$HAC FITNL I FIT NONLINEAR MODEL DEFINED BY MAC NLH 

$DATA 4 B $READ 4.5 2 1 2 I STARTING VALUES FOR BETA 

$CA $K:20 : $C: 0.00001 I SET CON CERGENCE CRITERIA 

$WE W tOWN Rl R2 R3 R4 $SC 1 $YVAR 2 ! DEFINE HODEL 

$WHILE $K NLM ! 

$PR : ' STAND DEVS ' $DISP E $ ! 

$EXTR %VL $CA H: $VL*W ! 

$DEL VI V2 PI P2 P3 P4 DB Z ! DELETE WOR K ARRAYS 

$PR 'H CONTAINS DIAG TERMS fROM H MATRIX' ! 

$CA FT:$SQRT( y) .$SQRT( y.l)-$ SQR T( 4*C*RHAT.l) ! 

$PR' FT CONTAINS FREEMAN-TUKEY RESIDUALS' ! 

$DEL NLH Rl R2 R3 ! 

$END 

$MACRO NLM ! 

! POISSO N RATE ANALY SIS ! 

! MACROS TO FIT NONLINEAR MODEL USING IRLS ! 

$CA VI: $EXP ( B( I)*X2)! 

$CA V2: $IF( %LE(D,0.1l,0.0,HXP(B(2).B(3)*Xl) ) ! 

$CA RHAT: Vl*( V2. %EXP(B ( Q» ) $CA PI: RHAT*X2 ! 

$CA P2: V2*Vl $CA P3: P2*Xl $CA P4: Vl*%EXP(B(4 » 

$CA W: C/RHAT : 2: R-RHAT : %LP: Z ! 

$FIT Pl.P2.P3+P4-%GM $EXTR $PE $CA DB:$PE ! 

$CA B: B • DB $PR $K ' ESTIMATES:' B ! 

I CHECK FOR CONVERGENCE OR MAXIMUM ITERATIONS 

$CA DB:DB/B: DB: %IF( $LE(DB,O),-DB,DB) ! 

$CA DB: $IF( %LE(DB,%C),O.I ) $CA $T: $CU(DB)! 

$CA $K:$K-l $CA %K: $IF( %LECU,O) ,O,%K) $ ! 

$END 

! MACROS REQUIRED BY OWN FOR POISSON RATE ANALYSIS I 
$H Rl $CA $FV:$LP$E $M R2 $CA %DR:l.0 $E $M R3 $CA %VA:l .O$E 
$M R4 $CA $DI: 2*( Y*$LOG(R/RHAT)-C*Z) / W $E I 
$RETURN 

FIGURE 2A. GLlM (13) program statements for Poisson regression analysis of Kahn's (15) data using the 
product model (example 2) and the nonlinear model in equation 9 (example 3). 

statist ics for the relative importance of sub­ factors that correspond to age and smoking, 
sets of parameters should be based on ap­ respectively. The values of these factors 
proximate F ratios (see references 8 and and the variables Xl and X2 that are 
32). needed for the nonlinear model are gener­

Figure lA provides a listing ofthe GLIM ated in the last 10 lines of figure lAo The 
(13) program statements that were used for GLIM macro PMOD in figure 2A was used 
the analysis of the data in example 2 from for the analysis of the data from example 2 
Kahn (15). The GLIM statements in figure using the product model. 
lA read the number of person-years into The data from example 3 necessitated 
the vector C and the corresponding number use of a model which is nonlinear in its 
of lung cancer deaths into the vector Y. In parameter (equation 9) and therefore can­
GLIM terminology, ROWand COL are not be fitted to these data with standard 
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GLIM options. Maximum likelihood esti­
mates of the model parameters can be ob­
tained from the iteratively reweigh ted lin­
ear squares algorithm using a G LIM macro 
developed for this purpose (9). The GLIM 
macro statements for fitting this nonlinear 
model are shown in figure 2A. The itera­
tively reweighted linear squares estimation 
method requires the partial derivatives of 
the rate function 

X(Xi, {J) = [exp({J, + {J"x,d 

+ exp(!34)J exp(!3,x,,), 

where Xi ' = In (d,) (d, = dose rate), x" = 
log(t,), and {J = (13, Ina, 0, In-y)'. The partial 

MODELS FOR RATES 

derivatives are defined in the GLIM macro 
NLM (see figure 2A) as Pl, P2, P3 , and 
P4 , where, for example, PI is 

Pl = aX(X, {J)/a !3, 

=x,, [V2 + exp(!3,)]Vl , 

where V2 = exp(p, + P"x, d and Vl = 
exp(p,x,,). Additional macros that are re­
quired for the nonlinear model are also 
listed in figure 2A, and the reader is re­
ferred to the GLIM manual (13, Chap. 18) 
for further details. Identical results can also 
be obtained using the FORTRAN program 
PREG (18), the SAS procedure NLIN (33)' 
and the BMDP program P3R (34). 


