i

High Availability for the Lustre File System

A Dissertation

Submitted In Partial Fulfilment Of
The Requirements For The Degree Of

MASTER OF SCIENCE

In

NETWORK CENTERED COMPUTING,
HIGH PERFORMANCE COMPUTING AND COMMUNICATION

in the
FACULTY OF SCIENCE
THE UNIVERSITY OF READING
by

Matthias Weber

14 March 2007

Supervisors:
Prof. Vassil Alexandrov, University of Reading
Christian Engelmann, Oak Ridge National Laboratory

Acknowledgment

I would like to thank all of you who have given your time, assistance, and patience to
make this dissertation possible.

For making my research at the Oak Ridge National Laboratory possible in the first place,
I want to thank my advisor, Christian Engelmann, and Stephen L. Scott. T appreciate
their invitation to write my Master thesis at such a renowned institution and the financial
support.

I especially like to thank Christian for his great support and being as excited about the
ongoing research as [am.

Also thanks to Hong Hoe Ong for his support in some struggle with Lustre and to Li
Ou for his help with the prototype design.

Thank you Cindy Sonewald for struggling with administration and bureaucracy to keep
me alive during my stay in the US.

This research is sponsored by the Mathematical, Information, and Computational Sci-
ences Division; Office of Advanced Scientific Computing Research; U.S. Department
of Energy. The work was performed at the Oak Ridge National Laboratory, which is
managed by UT-Battelle, LLC under Contract No. DE-AC05-000R22725.

Abstract

With the growing importance of high performance computing and, more importantly,
the fast growing size of sophisticated high performance computing systems, research in

the area of high availability is essential to meet the needs to sustain the current growth.

This Master thesis project aims to improve the availability of Lustre. Major concern of

this project is the metadata server of the file system.

The metadata server of Lustre suffers from the last single point of failure in the file sys-
tem. To overcome this single point of failure an active/active high availability approach

is introduced.

The new file system design with multiple MDS nodes running in virtual synchrony leads

to a significant increase of availability.

Two prototype implementations aim to show how the proposed system design and its
new realized form of symmetric active/active high availability can be accomplished in

practice.

The results of this work point out the difficulties in adapting the file system to the
active/active high availability design. Tests identify not achieved functionality and show

performance problems of the proposed solution.

The findings of this dissertation may be used for further work on high availability for
distributed file systems.

Contents

Acknowledgment
Abstract
Contents
1. Introduction
1.1. Background
1.1.1. High Performance Computing
1.1.2. The Lustre File System
1.2. Previous Work
1.2.1. High Availability Computing
1.2.2. Virtual Synchrony
1.3. Key Problems and Specification
1.4. Software System Requirements and Milestones

Preliminary System Design

2.1. Analysisof Lustre
2.1.1. Lustre Design
2.1.2. Lustre Networking

2.2. Replication Method Lo
2.2.1. Feasibility of Internal Replication
2.2.2. Feasibility of External Replication

2.3. System Design Approach oL
2.3.1. Standard Lustre Setup
2.3.2. Lustre using External Replication of the MDS

2.4. Final System Design o
2.4.1. Prototype 1
2.4.2. Prototype 2

Implementation Strategy

3.1. Lustre Configuration . . .
3.2. Messaging Mechanisms . .
3.3. Implementation Challenges

vii

o B AN = = -

12
12

15
15
16
18
23
23
25
26
26
27
30
30
33

35
35
37
40

vil

Contents

3.4. System Tests o 42
3.4.1. Functionality 47

3.4.2. Performance 51

4. Detailed Software Design 63
4.1. Message Routingo 63
4.2. Single Instance Execution Problem 66
4.3. Dynamic Group Reconfiguration 68
4.4. Connection Failover L Lo 70

5. Conclusions 73
5. 1. Results o 73
5.2, Future Worko 75
References 77
A. Appendix 81
A.1. Lustre HA Daemon Source Code 81
A.1.1. lustreHAdaemon.c 81

A.1.2. lustreHAdaemon.h oo 104

AL3. transis.c Lo 105

Al4. transis.h . . . L 111

A.1.5. lustreMessageAdjust.c 111

A.1.6. lustreMessageAdjust.ho 119

AL7. Makefileo 123

A.2. Benchmark Program Source Code 125
A.2.1. benchmarkProgram.c 125

A.2.2. benchmarkProgram.h o000 131

A.3. Lustre XML Config File 133
A4, User Manuals 135
A.4.1. Benchmark Program 135

A.4.2. Lustre HA Prototypes 137

List of Figures 141
List of Tables 143

viil

Introduction

1.1 Background

1.1.1 High Performance Computing

High-performance computing (HPC) has become more and more important in the last
decade. With help of this tool problems in research worldwide, such as in climate
dynamics or human genomics are solved. Such real-world simulations use multi-processor

parallelism and exploit even the newest HPC systems.

In general these sophisticated HPC systems suffer a lack of high availability. Thus, the
HPC centres set limited runtime for jobs, forcing the application to store results. This

checkpointing process wastes valuable computational time.

A desired way of producing computational results would be to use no checkpoints and
to produce the result without interruption. This way, no computational time would be
wasted and the result would be produced in the fastest possible way. In order to use

this approach, HPC with no unforeseeable outages is required.

To make current and future HPC systems capable of these demands is the aim of ongoing
research in the Oak Ridge National Laboratory (ORNL). The goal is to provide high
availability (HA) for critical system components in order to eliminate single points of fail-
ure. Therefore different methods of high availability have been tested and implemented

in some systems.

1. Introduction

1.1.2 The Lustre File System

Lustre is one of many available parallel file systems. It runs on some of the fastest
machines in the world. The Oak Ridge National Laboratory uses Lustre as well for their
HPC Systems.

Q 08T 1
MDS 1 MDS 2
/J {active) (failover) ‘
QSW Net

A

. Linux
\ OST
{ Servers
with disk
arrays

— 08T 2

Lustre Clients | 0ST3

(1,000 Lustre Lite)

Up to 10,000's

.

0ST4

)‘ G‘gE 0ST5

CTLLLL,

| 3dparty OST
{ Appliances

L

08T 6

08sT7

J

Lustre Object Storage
Targets (OST)

Figure 1.1.: Lustre Overview |§]

Today’s network-oriented computing environments require high-performance, network-
aware file systems that can satisfy both the data storage requirements of individual
systems and the data sharing requirements of workgroups and clusters of cooperative
systems. The Lustre File System, an open source, high-performance file system from
Cluster File Systems, Inc., is a distributed file system that eliminates the performance,
availability, and scalability problems that are present in many traditional distributed file
systems. Lustre is a highly modular next generation storage architecture that combines

established, open standards, the Linux operating system, and innovative protocols into

1.1. Background

a reliable, network-neutral data storage and retrieval solution. Lustre provides high I/O
throughput in clusters and shared-data environments, and also provides independence
from the location of data on the physical storage, protection from single points of failure,
and fast recovery from cluster reconfiguration and server or network outages. [8, page
1]

Figure 1.1 shows the Lustre File System design. Lustre consists of three main compo-

nents:

o Client
e Meta Data Server (MDS)

e Object Storage Target (OST)

Lustre supports tens of thousands of Clients. The client nodes can mount Lustre volumes

and perform normal file system operations, like create, read or write.

The Meta Data Server (MDS) is used to store the metadata of the file system. Currently,
Lustre supports two MDS. One is the working MDS, the other is the backup MDS for
failover. The Lustre failover mechanism is illustrated in Figure 1.2. In case of a failure
the backup MDS becomes active and the clients switch over to this MDS. However, these
two MDS share one disk to store the Metadata. Thus, this HA approach still suffers a

single point of failure.

The Object Storage Target (OST) is used to physically store the file data as objects. The
data can be striped over several OSTs in a RAID pattern. Currently, Lustre supports

hundreds of OSTs. Lustre automatically avoids malfunctioning OSTs.

The components of Lustre are connected together and communicate via a wide vari-
ety of networks. This is due to Lustre’s use of an open Network Abstraction Layer.
Lustre currently supports tcp (Ethernet), openib (Mellanox-Gold Infiniband), iib (In-
finicon Infiniband), vib (Voltaire Infiniband), ra (RapidArray), elan (Quadrics Elan),
gm (Myrinet).

1. Introduction

LDAP Server LDAP Server

No response
Timedout ~ FPaih

~

¥
MDS 1 MDS 2 MDS 1 MDS 2
(active) (failover) (dead) (failover)

request path
a) Normal functioning in case of b) MDS 1 fails to respond
| MDS/OST :
LDAP Server failover LDAP Server

‘ MDS 1 ‘ MDS 2 MDS 1 ‘ MDS 2
(dead) (active) (dead) (active)

c) Client asks LDAP for d) FPath connects newly

new MDS active MDS 2

Figure 1.2.: Lustre Failover Mechanism 8]

1.2 Previous Work

1.2.1 High Availability Computing

HA of a system is its ability to mask errors from the user. This is achieved with re-
dundancy of critical system components and thus elimination of single points of failure.
If a component fails the redundant component takes over. This functionality prevents

system outages and possible loss of data.

The degree of transparency in which this replacement occurs can lead to a wide variation

of configurations. Warm and hot standby are active/standby configurations commonly

1.2. Previous Work

used in high availability computing. Asymmetric and symmetric active/active configu-

rations are commonly used in mission critical applications.!

e Warm Standby requires some service state replication and an automatic fail-
over. The service is interrupted and some state is lost. Service state is regularly
replicated to the redundant service. In case of a failure, it replaces the failed
one and continues to operate based on the previous replication. Only those state

changes are lost that occurred between the last replication and the failure.!

e Hot Standby requires full service state replication and an automatic fail-over.
The service is interrupted, but no state is lost. Service state is replicated to the
redundant service on any change, ¢.e., it is always up-to-date. In case of a failure,

it replaces the failed one and continues to operate based on the current state.!

e Asymmetric Active/Active Asymmetric active/active requires two or more ac-
tive services that offer the same capabilities at tandem without coordination, while
optional standby services may replace failing active services (n + 1 and n + m).
Asymmetric active/active provides improved throughput performance, but it has

limited use cases due to the missing coordination between active services.!

e Symmetric active/active requires two or more active services that offer the same
capabilities and maintain a common global service state using virtual synchrony.
There is no interruption of service and no loss of state, since active services run in

virtual synchrony without the need to fail-over.!

These redundancy strategies are entirely based on the fail-stop model, which assumes
that system components, such as individual services, nodes, and communication links,
fail by simply stopping. They do not guarantee correctness if a failing system component

violates this assumption by producing false output.!

Previous and related research in the area of symmetric active/active HA encompasses the
two following described projects. Goal of these projects were prototype implementations

as proof-of-concept.

!Towards High Availability for High-Performance Computing System Services [12]

1. Introduction

Symmetric Active/Active Head Nodes

/// o //
W\ s W

Wt
\ oW

-
\ - W\

Compute Nodes

Figure 1.3.: Advanced Beowulf Cluster Architecture with Symmetric Active/Active High
Availability for Head Node System Services [21]

JOSHUA

The emergence of cluster computing in the late 90s made low to mid-end scientific com-
puting affordable to everyone, while it introduced the Beowulf cluster system architecture
with its single head node controlling a set of dedicated compute nodes. The impact of
a head node failure is severe as it not only causes significant system downtime, but also
interrupts the entire system. One way to improve the availability of HPC systems is to

deploy multiple head nodes.[19]

The JOSHUA project offers symmetric active/active HA for HPC job and resource
management services. It represents a virtually synchronous environment using external
replication providing HA without any interruption of service and without any loss of
state.[21]

Figure 1.3 shows the system layout of the prototype solution in the JOSHUA project.

1.2. Previous Work

The prototype uses the external way to replicate the system service head nodes. Transis
is used as group communication facility. The prototype design of the JOSHUA project
is in its basic technologies very close to the intended solution of this project. The
performance test results of the JOSHUA prototype, shown in Table 1.1, are an excellent
example of the latency time imposed by the use of external replication. These times can

be used to compare and judge the performance of the prototype of this project.

System # Latency Overhead
TORQUE 1 98 ms
JOSHUA/TORQUE 1 134ms 36ms / 37%
JOSHUA/TORQUE 2 265ms 158ms /161%
JOSHUA/TORQUE 3 304ms 206ms /210%
JOSHUA/TORQUE 4 349ms 251ms /256%

Table 1.1.: Job Submission Latency Comparison of Single vs. Multiple Head Node HPC
Job and Resource Management [21]

Metadata Service for Highly Available Cluster Storage Systems

The “Metadata Service for Highly Available Cluster Storage Systems” project targets
the symmetric active/active replication model using multiple redundant service nodes
running in virtual synchrony. In this model, service node failures do not cause a fail-over
to a backup and there is no disruption of service or loss of service state. The prototype
implementation shows that high availability of metadata servers can be achieved with

an acceptable performance trade-off using the active/active metadata server solution.|2]

Goal of the project was the replication the metadata server of the Parallel Virtual File

number of clients
System 1124 8 16 | 32
PVFS 1 server 11 [23| 52 | 105 | 229 | 470
Active/Active 1 server | 13 | 27 | 54 | 109 | 234 | 475
Active/Active 2 servers | 14 | 29 | 56 | 110 | 237 | 480
Active/Active 4 servers | 17 | 33 | 67 | 131 | 256 | 490

Table 1.2.: Write Request Latency (ms) Comparison of Single vs. Multiple Metadata
Servers [18|

1. Introduction

< Global State Synchronization

Group Communication Services

Data Se Data Server W
< T
Data Ser Data Server

Figure 1.4.: Active/Active Metadata Servers in a Distributed Storage System [18]

System (PVFS). The replication was realised using the internal method. The group
communication functionality was implemented with help of Transis. Since this Master
thesis targets the same goal like the “Metadata Service for Highly Available Cluster
Storage Systems” project, except with Lustre instead of PVFS, the acquired performance
tests results are exceptionally valuable for comparison and judgement. Table 1.2 shows
the write latency time caused by multiple metadata servers. Figures 1.5 and 1.6 show

the read and write throughput of the attained prototype solution of the project.

1.2.2 Virtual Synchrony

In order to design a HA architecture, important system components must be replicated.
As a result the former single component builds a group of redundant components. This
group behaves like a single component to the rest of the system. If one component
in this group fails a redundant component can take over. In case of an active/active

architecture, the components in the group have to be in virtual synchrony. This means

1.2. Previous Work

120

100

80

60

20

Throughput (Requests/sec)

——PVES —=—-A/A1 —+—A/A2 A/A 4

.\‘—‘\.H

»>
L

1 2 4 8 16 32
Number of Clients

Figure 1.5.: Write Request Throughput Comparison of Single vs. Multiple Metadata
Servers, A/A means Active/Active Servers [18]

400
350
300
250
200
150
100

50

Throughput (Requests/sec)

‘ —— | server —=—2servers —a— 4 servers ‘

<4
L 4
4

1 2 4 8 16 32
Number of Clients

Figure 1.6.: Read Request Throughput Comparison of Single vs. Multiple Metadata

Servers [18|

1. Introduction

that every component is in the same state as the others. This can be achieved through
a group communication system (GCS). The GCS is like a shell around the group of
redundant components. It intercepts the requests from the system and distributes them
to the group. In this step it also ensures total ordering of the messages. This way it is
ensured that every component gets the same requests in the same order and produces
therefore the same outputs. The GCS is also responsible for filtering of all the equal
outputs from the redundant components of the group and sending each output only once

to the system.

There are many different GCS available. Some of them are Isis, Horus, and Transis.
The experience from the preceding HA projects?? in the ORNL has shown that Transis*
is the most suitable one. It is an open source group communication project from the

Hebrew University of Jerusalem.

Transis can provide all necessary group communication facilities needed for the imple-

mentation of the high available job scheduler service system.

The Transis group communication framework provides:

e group communication daemon

library with group communication interfaces

e group membership management

support for message event based programming

Distributed locks or even distributed mutual exclusion solutions are not included and

have to be implemented, if needed.

The fact that Transis is an open source project makes necessary adjustments possible.
In the scope of the Metadata Service Project? Transis has been improved by Li Ou.
Through the new “Fast Delivery Protocol” implementation it offers lower latency and

better throughput than the standard Transis implementation.

2The JOSHUA Project [21]
3Symmetric Active/Active Metadata Service [18]
4The Transis Project [3]

10

1.2. Previous Work

The changes due to the “Fast Delivery Protocol” are described in the paper “A Fast
Delivery Protocol for Total Order Broadcasting”[19].

Total order broadcasting is essential for group communication services, but the agree-
ment on a total order usually bears a cost of performance: a message is not delivered
immediately after being received, until all the communication machines reach agreement
on a single total order of delivery. Generally, the cost is measured as latency of totally
ordered messages, from the point the message is ready to be sent, to the time it is

delivered by the sender machine.|19|

In communication history algorithms, total order messages can be sent by any machine at
any time, without prior enforced order, and total order is ensured by delaying the delivery
of messages, until enough information of communication history has been gathered from

other machines.|[19|

Communication history algorithms have a post-transmission delay. To collect enough
information, the algorithm has to wait for a message from each machine in the group,
and then deliver the set of messages that do not causally follow any other, in a pre-
defined order, for example, by sender ID. The length of the delay is set by the slowest
machine to respond with a message. The post-transmission delay is most apparent when
the system is relatively idle, and when waiting for response from all other machines in
the group. In the worst case, the delay may be equal to the interval of heart beat mes-
sages from an idle machine. On the contrary, if all machines produce messages and the
communication in the group is heavy, the regular messages continuously form a total
order, and the algorithm provides the potential for low latency of total order message
delivery. In a parallel computing system, multiple concurrent requests are expected to
arrive simultaneously. A communication history algorithm is preferred to order requests
among multiple machines, since such algorithm performs well under heavy communi-
cation loads with concurrent requests. However, for relatively light load scenarios, the
post-transmission delay is high. The fast delivery protocol reduces this post-transmission
delay. It forms the total order by waiting for messages only from a subset of the machines
in the group, and by fast acknowledging a message if necessary, thus it fast delivers total

order messages.|19]

11

1. Introduction

1.3 Key Problems and Specification

This master thesis aims to develop a HA solution for the Meta Data Server (MDS) of
the Lustre File System.

So far, the Lustre File System provides only an active/standby architecture for the MDS.
This solution uses one shared disk for both Meta Data Servers, and therefore suffers from

a single point of failure.

The aim is to eliminate this last single point of failure in Lustre and to implement an
active/active HA architecture for the MDS. This will replicate the MDS on several nodes
using their own disk to hold the Metadata.

Thus, the result of the project should be a prototype providing the highest possible
degree of availability for the MDS.

1.4 Software System Requirements and Milestones

To overcome the problems of the existing HA solution of Lustre the single point of failure
must be eliminated. Therefore the design of Lustre has to be changed. To achieve the
highest rate of availability for Lustre, a symmetric active/active architecture for the

MDS needs to be implemented.

The work carried out to realize a symmetric active/active architecture for the MDS of
PVFES gives an example solution to the problem.? In this project an internal replication

of the MDS was implemented with the use of Transis as group communication facility.

To achieve a similar solution for the Lustre File System the MDS must be “isolated”
from the other components of the system. After this step the MDS has to be replicated.
This may be done in two ways. The “internal” and the “external” replication. Both
methods have their own advantages and disadvantages. Which method to choose has to

be investigated in the beginning of the project.

>Symmetric Active/Active Metadata Service [21]

12

1.4. Software System Requirements and Milestones

If replication is done internally, the MDS of Lustre itself needs to be analysed in order
include the group communication system into the code. If replication is done externally,

a complete understanding of the Lustre networking and the MDS protocol is needed.

The most important part of the active/active HA architecture is the global state of the
replicated MDS. Each MDS has to have the same state like the others. The MDS group
has to run in virtual synchrony. To achieve this goal every possible communication to
and also from the MDS has to be analysed. This communication has to be handled

properly with the help of group communication software.

Furthermore, a solution for dynamic group reconfiguration has to be developed. The
recovery, joining and leaving of group members must be masked from the user. Therefore
the functionality of the MDS itself needs to be analysed.

Another key problem is the single instance execution problem. Because the MDS group
members run in virtual synchrony every single MDS produces the same output. The
group communication software has to be designed in a way, that makes sure the proper

output is send only once to the requesting component of the system.

In order to mask a failing MDS from connected clients a connection failover mechanism
needs to be implemented. If the connected MDS fails, the mechanism has to reconnect
to another MDS group member. Therefore the client code must be adjusted and a list

of available MDS group members has to be hold and updated at runtime.

The main goal is to design, implement and test a prototype software that meets the
proposed criteria. The prototype should use the existing Transis group communication

software as basis to implement the virtual synchrony functionality.

The following milestones are set up to help to evaluate every step during the development

process toward the final implementation.

There are three different milestone categories, which outline the project development

status:

e Milestone Category A - minimal criteria and requirements are met

e Milestone Category B - optimal criteria and requirements are met

13

1. Introduction

e Milestone Category C - all requirements are met, including extra capabilities

The following requirement table will be the criteria foundation to judge the success of

the later implementation and the project process. Especially the system tests will prove,

whether all the requirements are met by the dissertation project.

required capability

category milestone

analysis of MDS communication
choice of one replication method

replication of the MDS on the backup node in active/ac-
tive mode

solution for single instance execution problem

MDS service stays available, as long as one node is up
replication of the MDS on more than two nodes

client connects to other MDS node if own fails

new MDS nodes can dynamically join

client table of MDS nodes is updated at runtime

performance improvements for prototype development

A
A
A

Q @ ©T w ® » »

1

2

3

10

14

Table 1.3.: Requirements and Milestones Overview

Preliminary System Design

2.1 Analysis of Lustre

/ LDAP Server

configuration information,
network connection details,
& security management

directory operations, file I/O & file
meta-data, & locking

/ concurrency \

|| Meta-data Server recovery, file status, & . Object Storage Targets | |
(MDS) file creation (OST)

Figure 2.1.: Interactions between Lustre Subsystems |§]

In order to design a sufficient HA solution Lustre needs to be analysed. Goal is to
understand partwise the inner workings of the relevant system components and the

communication in particular.

The Lustre software distribution comes with a couple of papers and manuals describing

the file system and its components in general. One crucial information needed to design

15

2. Preliminary System Design

the prototype is the exact communication (e.g. protocol, what format, what content,
how much messages for one task ...) between the MDS and the other components. Lustre
itself provides almost as much information on that matter as shown in Figure 2.1. This
is by far to general and of little value for the prototype design. As a result, there is no

way around reading and analysing the Lustre source code.

The analysis of the source code takes a lot of time due to almost no comments in the
code and no description at all. The other problem is the code itself. The Lustre design
is very complex and complicated what makes the code intransparent and hard to read.
One example is that Lustre runs nearly all components as kernel modules. Thus they
publish most of the functions to the kernel namespace. That way they can be called all
the time from everywhere in the kernel. That makes it hard to point out the function
call path like in a normal program. Also the code itself differs from a normal user space

application due to the fact that it is kernel code.

2.1.1 Lustre Design

Lustre Modules

Module dependencies

MDS, MDC, LOV, OSC

KSOCKLND PTLRPC FSFILT_LDISKFS

OBDCLASS
LNET LDISKFS
LVFS

File System RPC Networking Disk Access m
Comonents b

Figure 2.2.: Lustre Module Dependencies

Module usage

The design of Lustre is highly modular. Figure 2.2 shows a snapshot of the loaded
modules of a running Lustre. Table 2.1 gives the description of the modules provided in
the source code. Besides the main components like OST or MDS, Lustre uses also a lot

of other modules to do the networking or the disk access.

16

2.1. Analysis of Lustre

Module Description

MDS Metadata Server

MDC Metadata Client

LOV Logical Object Volume OBD Driver

OSC Object Storage Client

PTLRPC Request Processor and Lock Management
KSOCKLND Kernel TCP Socket LND v1.00

LNET Portals v3.1

FSFILT-LDISKFS
LDISKFES
OBDCLASS

LVFS

LIBCFS

Lustre ext3 File System Helper
Lustre ext3 File System

Lustre Class Driver

Lustre Virtual File System

Lustre File System Library

Table 2.1.: Lustre Module Description

For calls between modules Lustre uses its own kind of remote procedure call (RPC) sent
via Sockets over the network. Because Lustre is written in C and there are no object
oriented facilities available, Lustre uses structures extensively to organise data. Even

the network component itself (LNET) is hold in a structure.

To perform a call from the client (in this case the MDC) to the server (the MDS) Lustre
uses the modules in the way indicated in Figure 2.2. The data, the request itself and
the needed information for the connection is assembled and packed from one structure
into another from module to module. This scheme in shown in Figure 2.3. The response

from the MDS takes the same way backwards.

17

2. Preliminary System Design

Request Call Path

t t
MDC
|
t t t t
In:tilrj':d_t Inets_lrig::nd_t PT L R P C
Y L
struct struct L N ET
Inet_libmd_t Inet_msg_t
v
KSOCKLND | i, |l e —»@

Figure 2.3.: Path of Metadata Client Request

2.1.2 Lustre Networking

Lustre is a tightly integrated system. All of its components are defined and assigned
to nodes before the system starts. That way the file system knows all nodes and the
complete setup in advance. As part of the Lustre security concept only messages from

these defined nodes are accepted.

Lustre also accepts only direct sent messages and thus doesn’t allow routing of messages.
In order to check integrity of received messages Lustre looks into the message header.
It compares the sender of the message given in the header with the address of the node

from which the message was received. If they don’t match the message is dropped.

The connections are set up like shown in Figure 2.4. First the OSTs are started. Af-
terwards the MDS is started. The MDS connects to the OSTs. At last the clients are
started. They connect to the MDS as well as to the OSTs.

Each component initiates three single connections to the respective component. For
instance, the Client opens three ports to the MDS. Another restriction of Lustre is that

only three connections per node are accepted. In case a node opens more connections

18

2.1. Analysis of Lustre

Lustre Connection Initialisation

Startup of OST

Client
> OST
MDS
NS
Startup of MDS
Client
~
~
\S OST
MDS
NS
Startup of Client
Client
OST
MDS

Figure 2.4.: Lustre Connection Initialisation

19

2. Preliminary System Design

e.g., a client tries to establish a fourth connection, the first connection is dropped.

To initiate a connection between two components, the Lustre protocol must be followed.
This process takes four messages explained in the following example of a client estab-

lishing a connection to the MDS.

Acceptor
Request

Acceptor Magic
Protocol Version
Target NID

IS
(o]

Size in Bytes: 4

Figure 2.5.: Lustre Acceptor Request Message

First the client sends an “Acceptor Request” message to the MDS. This message has
the layout as shown in Figure 2.5. The message is 16 bytes long. The fist 4 bytes are
the indicator of the used acceptor protocol. The next 4 bytes describe the protocol
version. Whereas the number is split internally into two 2 byte values describing the
minor and major version number. This is checked for compatibility reasons with later
Lustre versions. The last 8 byte number identifies the target to which the connection
should be established. This target nid consists of a 4 byte address and 4 byte network
id. The address id is directly created from the IP address of the node. The network
id identifies the network type e.g., TCP. This information is needed because Lustre is
capable of using different network types at the same time. When this message arrives at
the MDS and if the values are correct the connection from the client is accepted. Now
the LNET layer of Lustre must be initialised. Therefore the MDS waits for the “LNET

Hello” message from the client.

The “LNET Hello” message is indicated in Figure 2.6. It consists of a 32 bytes header
and payload. The size of the payload is given in the header. However, in the “LNET

Hello” message this size is zero and no payload is sent. The first 4 byte describe the

20

2.1. Analysis of Lustre

LNET Hello
[
() c
o — =
el olad ol 3| o
(®)] o — — = [
© g Z g o = il)
= Z 0= |8 55 Payload
Z 21383 2 8 2o =
O] o | » o T | ©
o (@] o
Size in Bytes: 4 4 8 4 4 4 4
Header Payload

Figure 2.6.: Lustre LNET Hello Message

used LNET protocol. The next 4 byte, like in the Acceptor Request message, describe
the protocol minor and major version. The following 8 byte hold information about
the sender of this message. They contain the address and network type of the source
node. The next two 4 byte values are used to identify and distinguish this message from
other messages. The MDS for instance uses the Process Id (pid) numbers to identify a
request and to send the processed response to that request. With the sent pid the client
can identify the response from the MDS and assign it to this request. The 4 byte value
“Header Type” type identifies type of the header. For metadata this value is always
“SOCKNAL_ RX HEADER?”. This is due to the fact that one request is done in one
message. For transport of file data, the header type could change to other values, like
“SOCKNAL_ RX BODY”, because more than one message may be needed to transfer
the entire datablock. However, this field is of no concern in terms of metadata. The last
4 byte value holds the size of the payload. This value should be zero in “LNET Hello”

messages.

The “LNET Hello” messages are exchanged in form of a handshake. Fist the client sends
his “LNET Hello” message to the MDS. Then he waits for the “LNET Hello” from the
MDS. When the MDS receives the “LNET Hello” from the client he checks the values and
sends his “LNET Hello” message back to the client. After the “LNET Hello” messages are
exchanged, one more message is needed to fully establish the connection. This message

is described next.

21

2. Preliminary System Design

Lustre Message

Payload

Destination NID
Source NID
Destination PID
Source PID
Header Type
Payload Length

Size in Bytes: 8 8 4 4 4 4
Header Payload

Figure 2.7.: Ordinary Lustre Message

The ordinary Lustre message format is shown in Figure 2.7. A Lustre message consists
of the 32 bytes header and payload. The fist two 8 byte values hold the address and
network type of the message source and destination node. The next three 4 byte values
are the same like in the “LNET Hello” header. The pid values are used to identify the
requests and responses. The header type is always “SOCKNAL _RX BODY” because
one request is transmitted completely in one message. The last 4 bytes of the header
hold the size of the payload. This size is limited to 4KB in Lustre. The payload is sent
directly behind the header.

To complete the communication initialisation after the “LNET Hello” handshake, one
message is sent from the client to the MDS. This message holds the Universally Unique
Identifier (UUID) of the client and the MDS in the payload. With this information the

MDS can fully establish the connection to the client and process its requests.

A Universally Unique Identifier (UUID) is an identifier standard used in software con-
struction, standardized by the Open Software Foundation (OSF) as part of the Dis-
tributed Computing Environment (DCE). The intent of UUIDs is to enable distributed
systems to uniquely identify information without significant central coordination. Thus,
anyone can create a UUID and use it to identify something with reasonable confidence
that the identifier will never be unintentionally used by anyone for anything else. In-
formation labelled with UUIDs can therefore be later combined into a single database

without needing to resolve name conflicts. The most widespread use of this standard

22

2.2. Replication Method

is in Microsoft’s Globally Unique Identifiers (GUIDs) which implement this standard.
Other significant users include Linux’s ext2/ext3 filesystem, LUKS encrypted partitions,
GNOME, KDE, and Mac OS X, all of which use implementations derived from the uuid
library found in the e2fsprogs package.|4]

A UUID is essentially a 16-byte (128-bit) number. In its canonical hexadecimal form a
UUID may look like this:

550e8400-e29h-41d4-a716-446655440000

The number of theoretically possible UUIDs is therefore 212 — 2561¢ or about 3.4210%.
This means that 1 trillion UUIDs have to be created every nanosecond for 10 billion
years to exhaust the number of UUIDs.|[4]

2.2 Replication Method

Before the prototype can be designed, a decision about the replication method has to be
made. This decision is vital as it affects the entire prototype design. Both replication
methods have their own advantages and disadvantages. But it is not only the question
what method suits best the needs of the prototype. The other important fact to consider
is the feasibility of each method with respect to the Lustre design and the possibilities

in the scope of this thesis.

2.2.1 Feasibility of Internal Replication

In the internal replication, as shown in Figure 2.8, the group communication system
is implemented direct into the Lustre code. Thus no inter-process communication is

needed and as a result this method should yield higher performance than the external.

In general there should be no problem with Lustre itself to realize this method. It
would be possible to link into the MDS communication path! at some point, probably
somewhere in the RPC module. In this module it is easy to filter the incoming and

outgoing requests (structures) of the MDS and to distribute them to Transis.

! The path of the MDS is similar to the path of the MDC shown in Figure 2.3

23

2. Preliminary System Design

/U)X
(O}
777777777777777 User Interface - - - - - - - &1 = - -User Interface - - - - - - - - - - - - - - -
3o ‘
0| =
Qg
Adapter Adapter |Z|= Adapter
Group Group
Send Communication Send Communicatior> Send ‘
N A o~
JE JE S
@© I & —
q 09 . [] . n g
Service @ = Service @ = Service |4 =
s |3 s|= =
Process Process Process
F SE | i
@[@ i @
Ak AE | Ak
NS Qg ; Qg |
Adapter |=|= Adapter |=|= | | Adapter |Z|=
: Group : Group .
Receive Communication Receive § Communication Receive
8 3 | el
Node A 2 Node B 2 i Node C)
,,,,,,,,,,,,,,,,, I+ A R .) IS | @ oo
—————————— @~ - -Userinterface- - - - - - - 1§ User Interface - - - - - - -t 4 - - -
(] [} ()]
=3 =2 =2

Figure 2.8.: Scheme of Internal Replication Method

The core problem in the design of an internal solution is not Lustre, it is Transis. Transis
is a user-space program. Transis consist of a daemon running in userspace and a library
to be linked to the user application. This application calls the library functions and the
library calls the daemon, which does the group communication work. The problem is
that Lustre is made up of kernel modules and runs therefore in kernel space. In order to
include the group communication direct into the Lustre code, the Transis library needs
to be linked into kernel space. This is not possible because the Transis library uses
functions which are only available in user-space. The only workaround to this problem
is to redesign the Transis library for kernel space. This is theoretically possible, but due

to the limited time of this project not reasonable.

The other problem is the development of the prototype itself. Because the group commu-
nication system is implemented directly into the RPC module, the prototype becomes a
new version of Lustre. This means, to test changes made during the development process
Lustre has to be rebuild and reinstalled first. This takes a lot of time. Furthermore,
the whole development of the prototype becomes kernel development. This is also not

reasonable.

24

2.2. Replication Method

To summarize, this method could theoretically be implemented, but the goal within the

scope of this project will be to design an external replication.

2.2.2 Feasibility of External Replication

0

777777777777777 User Interface - - - - - - - - S =-UserInterface - - - - - - - - - - - - - -
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, A I Bt
| 0 Y]
| ! 0|2 |
1 Org | :
Interceptor : ! |\Interceptor|Z|=, | | |Interceptor :
Group Group :
Send Communication Send Communication Send ;
5|2 | 5|2 | IE
S mmmm o SL gu :rlnt rf: 77777777 g— g-u ir Inty r:f g g Ji
(3| S User Interface (31= User Interface - - - - - - - - B1=---
i (G I ! i (G ! g I

Service |=|= Service |=|= Service |2|=

/U)X /‘nx

- 52 oS

f}i ol ; i SIS : j 8 o
————————— 2 —E—Usqunterface———————— ﬁ—s Usa‘rlnter‘facef——————- g1s--
=] i o i =N

Interceptor | = |= =z ==

! 1

Group

Communication
! i

|

! 1

Group

Communication
i 1

(7} | (%] (7}

Node A 2 i Node B 2 Node C =
,,,,,,,,,,,,,,,,,,, (o} I ® e | @ oo
——————————— B User Interface - - - - - - - - LB - -User Interface - - - - - - - - | B

O . ser Interface K ~ ser Interrace O -
= s = s ==

Figure 2.9.: Scheme of External Replication Method

The external replication method is shown in Figure 2.9. In this solution the group
communication system is build like a shell around the MDS. The group communication
system is placed into the Client-MDS communication path as an intermediate commu-
nication process, see Figure 2.12. This process intercepts the calls over the network to
and from the MDS and distributes the TCP packages to Transis. As a result there is no
need to touch the MDS code.

The disadvantage of this method is higher latency time due to inter-process communi-
cation. There is also the need to know the exact communication protocol and format
between the MDS and the client.

The problem of the internal replication is not present in this solution. The interceptor

25

2. Preliminary System Design

process runs as normal user space application and thus there is no problem in linking

the Transis library into it.

To realize this approach, Lustre must be configured in a way that differs from the stan-
dard setup. The Lustre setup, its network components and the tasks of each component,
are configured in one XML file. Lustre assumes that every node in the file system uses
the same XML file for the configuration and startup. However, there seems to be no big
problem to use different XML files for different nodes. That way the external replication

may be realized.

This method is feasible within the limits of the project and the objective of the master

thesis now is to use this replication method for the prototype design.

2.3 System Design Approach

Two projects have implemented prototypes of active/active HA solutions so far. The
aims of these the projects and their results are explained in Section 1.2. Using the
experience of these preceding projects a first prototype design can be developed. This
design provides the basic HA functionality and has to be adjusted to the special needs

of Lustre later.

2.3.1 Standard Lustre Setup

Figure 2.10 shows an example of the standard setup of Lustre. For the development of
the project this setup is used. It is only a very minimal setup of Lustre nevertheless it

provides the full functionality of the file system.

The project setup of Lustre uses three computing nodes for the three main components
of Lustre. One node (usrl) is used as client and mounts the file system. From this node
the functionality of the prototype can be tested and performance tests of the file system
can be run. On the second node two OSTs are installed. Each OST is an independent
partition on the disk. The third node runs as MDS for the file system. The MDS stores

its data on a partition of the disk as well.

26

2.3. System Design Approach

OSTs

Q
OsT

1P:10.0.0.4
Port 988

read status

MDS

MDS
IP: 10.0.0.5
Port 988

read, write
file data

read, write
metadata

Client

Figure 2.10.: Standard Lustre Setup

This approach is sufficient to develop the HA prototype. The full file system functionality
can be tested with this setup and the separation of the components to different nodes

allows easy handling and analyses.

2.3.2 Lustre using External Replication of the MDS

According to the Lustre design shown in Figure 1.1, in Section 1.1.2, the MDS is one
component of the entire file system. This component needs to be replicated. To achieve
a virtual synchrony environment the group communication system Transis has to be put

around the MDS group.

Figure 2.11 shows the scheme of an active/active HA solution. A process (MDS) is
replicated on several nodes. The group communication system (Transis) is placed before

and behind this process. Before the process, Transis receives all requests and distributes

27

2. Preliminary System Design

/(’)X
D ™
=k
215 | |
. e | . |
Service ‘Serwce == ‘ | | Service |
Group Group f
Send Communication Send Communication Send ‘ |
A A o~ |
[ORE] Q|0 Qo !
2|2 2|2 22
b a1 Ak 3
[} i [} B 7 I
s|3 s|3 =5 |
Process Process Process |
= = B |
[ORE) Q| ™ Q| o 1
(= o= (= !
Sl S Ol 1
2= A A= !
Q|5 O |5 ;
S|s S|s s |s :
: Group : Group 3
Receive Communication Receive Communication Receive |
4 4 8 |
Node A 2 Node B 2 Node C = |
,,,,,,,,,,,,,,, 1) D e | @ ISR (. ff EUR—
1) 7] (2]
3 3 3
s |3 =S =2

Figure 2.11.: Scheme of Active/Active HA

them to all nodes. In this step it ensures total message order. This means, all messages
are delivered in the same order to all nodes. Thus, the MDS group runs in virtual syn-
chrony. Then the requests are processed by all nodes independently. This however causes
the single instance execution problem. The MDS group processes as much responses as
members the group has. To overcome this hurdle the group communication system is
placed behind the process as well. Here it receives the responses of the processes again.

It makes sure each response is delivered only once to the system.

The system design of the preliminary prototype is shown in Figure 2.12. The major
difference from the normal Lustre configuration is the group communication system
Transis. The Transis daemon runs on each MDS node. This daemon provides the group
communication functionality. The daemon can be accessed with the Transis library. In
order to distribute the incoming messages to the Transis daemon and to receive messages
from the daemon an interceptor program, implementing the Transis library, has to be

written.

The interceptor implements all needed group communication and routing functionality.

28

2.3. System Design Approach

OSTs

read status read status

MDS
Port 9000,
N
(¢}
distribute Transis
requests, —»(_
filter responses ort 8000

MDS 1

read, write
file data

Transis
Port 8000,

read, write
metadata

Client

Client

Figure 2.12.: Preliminary System Design

This program opens a port (e.g. 8000) to accept connections from the Lustre clients.

The MDS itself listens on its own port (e.g. 9000) for incoming messages from the clients,

which are rerouted through the interceptors.

To get the file system working with interceptors, Lustre must be configured in a proper
way. This may be done with the config XML file from Lustre, described in Section 3.1.
Lustre reads its complete setup from one XML file for all nodes. The rule, to use one
XML file for all nodes must be ignored. To configure Lustre, one XML file for each node
has to be created. The XML files used to configure the MDS and the OST nodes have
to set up the MDS on port 9000. Whereas the XML file used to configure the Client
node has to set up the MDS on port 8000. Thus, the clients expect the MDS there and
send the requests to this port. On this location (the MDS node on port 8000) however,

the interceptor program is running. It catches the messages and routes them through

29

2. Preliminary System Design

the Transis daemon. The daemon orders all incoming messages and distributes them to
all MDS nodes. The ordered messages are sent back by the daemon to their respective
interceptor program. After this step, each interceptor forwards the messages from the

daemon to the MDS running on his node.

The procedure of the response from the MDS to the client works the same way. All
MDS nodes produce their result (all the same of course) independently. The MDS nodes
send the result to their respective interceptor. The interceptor forwards the messages
to Transis. Transis orders all messages and sends them back to the interceptor. The
interceptor receives all those equal messages. To overcome the single instance execution
problem, the interceptor has to analyse these messages and to make sure only one of all

equal messages is forwarded to the client.

Furthermore, the interceptor program should be capable of dynamic group reconfigura-
tion. This could be achieved with help of the Transis daemon. This daemon is aware of
group configuration changes and sends notifications to the interceptor. The interceptor

code has to handle those messages and to help in setting up new members in the MDS

group properly.

Finally, the client code has to be adjusted to allow failover to new group members and to
avoid it to broken group members that no longer remain in the MDS group and therefore

not share the global state anymore.

2.4 Final System Design

Due to the difficulties pointed out in Section 3.3, the proposed preliminary design of the
prototype has to be adjusted to the needs of Lustre. To meet the requirements of the

project, two prototype designs have been developed.

2.4.1 Prototype 1

The first prototype design will replicate the MDS in an active/active fashion and is

capable of dynamic group reconfiguration.

30

2.4. Final System Design

MDS
10.0.0.5
Port 988

MDS
10.0.0.6
Port 988

distribute Interceptor

requests, 10.0.0.10
filter responses i Port 988
A

Interceptor
10.0.0.11
Port 988

Client

Client
Port 988

Figure 2.13.: Prototype 1

This redesign of the preliminary prototype will sort out a couple of problems caused by

Lustre limitations. The problems solved are the following:

e 1o use of individual ports for Lustre components
e no routing of Lustre messages

e inflexible Lustre system configuration

The preliminary prototype runs the Lustre MDS and the interceptor process together
on one node. Each process opens an individual port for incoming communication. This
is needed to distinguish between both communication paths and to route messages to
the individual components. Lustre’s limitation to use only port 988 for all components,

renders the proposed solution impossible. There is no way of configuring a client node

31

2. Preliminary System Design

to connect to the interceptor (e.g. port 8000). One possibility to solve this problem
is to start the interceptor process on an own node. This way the interceptor could be
started on port 988 as well. The client can be configured to expect the MDS on the
interceptor node and to connect to this node. The downside of this solution is a signif-
icant performance impact. The communication from the interceptor to the MDS isn’t
local anymore, but goes now over the network. Also an own node for each interceptor
is needed. This is not reasonable to do. The better solution to this problem is to make
use of IP aliasing. With IP aliasing two network addresses can be bound to one network
card. The advantage is that each address has its own ports and the communication be-
tween both addresses is still local. The latency time caused by communication between

the both addresses is minimal (see performance tests for details in Section 3.4.2).

Using IP aliasing two addresses (e.g. 10.0.0.5 and 10.0.0.10) can be run on one node
with one network card. That way the port 988 can be used for both servers. The MDS

runs on address 10.0.0.5 and the interceptor runs on address 10.0.0.10.

Lustre itself can be configured as described in Section 3.1. The XML files need to be
edited in a way that the interceptor is the client for the MDS and vice versa. If configured

properly, the Lustre MDS and clients accept messages from the interceptors.

In order to provide full HA functionality and to avoid dropped messages due to routing,

the prototype must make use of the message routing principles described in Section 4.1.

To provide a complete HA solution the prototype needs to be capable of dynamic group
reconfiguration. With this functionality the prototype is able to start and join new MDS
nodes in order to replace failed group members or to increase the level of availability.
The other task of dynamic group reconfiguration is to deal properly with failing group

members. This technology and its implementation are described in Section 4.3.

Finally, the single instance execution problem is solved using a shared connection table.

This approach is described in more detail in Section 4.2.

The milestones listed in Section 1.4 are used to judge the project progress. Below listed

are the milestones that are fulfilled with functionality provided by this prototype design:

e A4 solution for single instance execution problem

32

2.4. Final System Design

e A5 MDS service stays available, as long as one node is up

e BG6 replication of the MDS on more than two nodes

e B8 new MDS nodes can dynamically join

Interceptor
10.0.0.8
Port 988

2.4.2 Prototype 2

MDS
10.0.0.5
Port 988

Interceptor
10.0.0.6
Port 988

distribute
requests,
filter responses

Interceptor
10.0.0.2
Port 988

Client

Client
10.0.0.1
Port 988

Figure 2.14.: Prototype 2

This prototype design is an extension of the Prototype 1. The first prototype still suffers
from a lack of connection failover. This problem causes errors to clients if the connected
MDS fails. To mask this kind of error from the user (client) is task of this prototype

design. The connection failover procedure is described in more detail in Section 4.4.

33

2. Preliminary System Design

In order to mask this error from the user, the client has to reconnect to another available

MDS interceptor. Therefore, the client needs to hold a list of available MDS interceptors.

Due to the already mentioned reasons in Section 2.2.1 it is not reasonable to implement
the needed functionality into the client code directly. The better solution is to use IP

aliasing for the client as well. Thus, the client has its own interceptor.

This client interceptor routes the client messages directly without the use of Transis
according to Section 4.1. The only difference is that the client interceptor forwards the

messages to the chosen MDS interceptor instead to the MDS.

To get Lustre working with client interceptors as well, it has to be configured in a

different way. The exact configuration is described in Section 3.1.

The additional milestones that are fulfilled by this prototype design are:

e BY7 client connects to other MDS node if own fails

e B9 client table of MDS nodes is updated at runtime

This prototype design is capable of all proposed criteria and meets all requirements of

the project.

34

Implementation Strategy

3.1 Lustre Configuration

The Lustre file system is configured with one XML file. This file is generated with help of
a config script. The script used to configure Lustre for the development of the prototype

is shown in Figure 3.1.

First, the user has to define all nodes the file system will use. The development setup
uses three nodes (mdsl, ost1, usrl). The next step is to define the network names of the
nodes. For easy handling they should be the same, like the node names. Now, the file
system components can be configured and assigned to the nodes. In the development
setup node mdsl is configured as MDS. Node ostl runs two OSTs (ostl and ost2).
All OSTs are bound together to one Logical Object Volume (LOV). For the MDS and
OSTs, partitions for saving the file system metadata and data must be specified. For the
prototype development files instead of partitions are used. The needed size of the file
can be specified. After creation the files are mounted and behave like partitions. The
last thing to configure, are the clients. The client node must know what LOV, MDS,

and mount point to use.

The port each component uses for incoming connections can be edited directly in the
XML file or in the config script with the option —port, e.g., to choose port 8000 the phrase
“—port 8000” has to be put into the configuration line of the component. However, these
configurations are completely ignored. Lustre uses one port number given in the source

code for all components.

After the file system is configured the script can be run and Lustre generates the XML

35

3. Implementation Strategy

#!/bin/sh
Script configuring Lustre on three nodes
rm —f config.xml

Create nodes

Imc —m config.xml —add node —node ostl

Imc —m config.xml —add node —node mdsl

Imc —m config.xml —add node —node usrl

Add net

Imc —m config.xml —add net —node ostl —nid ostl —nettype tcp
Imc —m config.xml —add net —node mdsl —nid mdsl —nettype tcp
Imc —m config.xml —add net —node usrl —nid usrl —nettype tcp

Configure MDS
Imc —m config.xml —add mds —node mdsl —mds mdsl —fstype ldiskfs \
—dev /lustretest /mds—mdsl —size 500000
Configure LOV
Imec —m config.xml —add lov —lov lovl —mds mdsl —stripe sz 1048576 \
—stripe cnt 0 —stripe pattern 0
Configure OSTs
lmc —m config.xml —add ost —node ostl —lov lovl ——fstype ldiskfs \
——dev /lustretest/ostl —size 1000000 —ost ostl
Imc —m config.xml —add ost —node ostl —Ilov lovl —fstype ldiskfs \
——dev /lustretest/ost2 —size 1000000 —ost ost2

Configure client
Imc —m config.xml —add mtpt —node usrl ——path /mnt/lustre —mds mdsl —lov lovl

Figure 3.1.: Lustre Configuration Script

file. The name of the XML file is also defined in the config script. This XML file has to
be used to start up every node in the file system. First the OSTs, then the MDS, and at

last the clients. The from the config script generated XML file is appended in Section
A3,

Now, a normal Lustre setup like shown in Figure 2.10 is configured. To get Lustre

working with interceptors the configuration has to be adjusted.

In spite of Lustre’s rule to use the same XML file for all nodes, a XML file for every
node needs to be created. The approach to write an own config script for every node
and to generate the different XML files doesn’t work, because Lustre generates different
UUID keys for the same nodes and the file system refuses its own messages. The way

to go is to edit the XML file directly. The important points are the nid tags in the

36

3.2. Messaging Mechanisms

file. The nid tag holds the network name (or network address) of the defined node. The
network names of all available nodes are defined and assigned to TP addresses in the file
/etc/hosts. Lustre uses the network names given in the nid tags to address the file

system components. These nid tags need to be adjusted to the desired setup.

Changes in the respective XML file of the components in case of Prototype 1 (see Figure
2.13):

e OST: no changes
e MDS: nid of Client node needs to be changed to MDS interceptor

e Client: nid of MDS node needs to be changed to MDS interceptor

Changes in the respective XML file of the components in case of Prototype 2 (see Figure
2.14):

e OST: no changes
e MDS: nid of Client node needs to be changed to MDS interceptor

e Client: nid of MDS node needs to be changed to Client interceptor

3.2 Messaging Mechanisms

The communication of the prototype is realized via sockets. The TCP protocol is used.
The implementation of the communication could be done in various different ways. Goal

is to find the fastest and most stable solution.

One general question is what type of sockets to use. Both, blocking/non-blocking sockets

have been tested during the development of the prototype.

Non-blocking sockets have the advantage that the server doesn’t wait for a message on
one socket and blocks until a message arrives. This behaviour could improve performance

due to no delay times on other sockets with already waiting messages. However, blocking

37

3. Implementation Strategy

Connection 1 Connection 2 Connection 3
MDS A A A
- Y Yy 'y
Socket Socket Socket
A
Y.
Select
A
A4
Socket Socket Socket
Interceptor 4 A A
A4 \ \
Connection 1 Connection 2 Connection 3
Client

Figure 3.2.: Message Forwarding using one Thread

sockets have the advantage that they are very likely to deliver and receive the complete

message. This results in easier handling.

Another important fact is that blocking sockets are more performance friendly. In a
non-blocking receive procedure the program polls the socket until a message arrives. For
this process the program uses the cpu all the time. In a blocking receive procedure the
process is set sleeping until the message arrives. This saves resources as it gives the cpu

free for other tasks.

The decision for the prototype implementation falls to blocking communication. The
downside of blocking communication, the possibility of blocking and waiting for one
socket and ignoring another with already available messages is sorted out with the use
of the select system call. The select call listens to all given sockets for incoming data.
If one socket has a message available, select gives this socket back to the program. The
program just has to go to the socket and can get the message. Using select there is no
blocking of sockets because every time a socket is called it is ensured the socket has a
message available. Of course, the select call is blocking itself. Thus, the process is set

to sleep if no messages are available and no cpu time is wasted.

38

3.2. Messaging Mechanisms

Connection 1 Connection 2 Connection 3
MDS A A A
- Y \ A Yy
Socket ' Socket ' Socket
A I A I A
v I v I v
Select I Select I Select
A | A | A
) A : \ i . \d
Socket I Socket I Socket
Interceptor & ! A ! 4
. Yy \ A
‘ Connection 1 Connection 2 Connection 3
Client

Figure 3.3.: Message Forwarding using Multithreading

If select gives back a socket, it is most likely that one complete message can be pro-
cessed. This is due to Lustre’s behaviour to send one request in one message. Before the
message is sent, Lustre assembles all data and sets up the header and puts the request in
the payload. Also the size of the message is limited by Lustre (Payload max. 4KB, see
Section 2.1.2). When the select call gives a socket back to the program, the message
has arrived at the socket. Now, the header and the payload can be read out. If the

message is received without error it can be routed to its destination.

The other decision to make is how to use threads. One possibility is to use only one
thread. This thread deals with all connections. Figure 3.2 shows this method in the
example of the three connections of one client. Here, one select call checks all sockets
for incoming messages. This method works comletely in serial. It has the disadvantage of
worse performance in relation to multiple threads for communication and the advantage

of easier code structure.

The other approach is to use one thread per communication path. Figure 3.3 shows
this method. For each connection a thread is started. This thread holds two sockets
controlled by a select call. The select call checks whether the client or the MDS

39

3. Implementation Strategy

wants to send a message. The advantage is that all connections can be processed in
parallel. This approach is faster than the serial one with only one thread. It would
be the preferred method for direct routing. However, the performance plus due to this

method is minimal and tests have shown no significant difference between both methods.

For the prototype design the fist method using one thread for communication has been
chosen. The reason is Transis. The interceptor needs to route all messages through
Transis. Transis however runs not stable in a multithreaded environment and is likely
to produce errors. With the help of mutual exclusion locks the Transis calls have to be
serialised. Thus, the entire communication of the interceptor is inherently serial and the

single threaded method can be chosen anyway.

3.3 Implementation Challenges

The design of Lustre is complex and tightly integrated. This makes adjustments to the
prototype design difficult.

Implementation challenges for prototype development:

e no use of individual ports for Lustre components

e inflexible Lustre system configuration

e no routing of Lustre messages

e distributed locking mechanisms within Lustre

e existing active/standby failover behaviour of the MDS

e only three connections per node allowed

No use of individual ports for Lustre components

Lustre allows to configure the port for components individually in its config file. However,
this capability is kind of leftover from former Lustre versions and not used anymore.
Now, Lustre uses one hard coded port. As a result, it is not possible to assign individual

ports to components.

40

3.3. Implementation Challenges

This limitation has a significant impact on the preliminary design. Solution to this

problem is the use of IP aliasing as described in Section 2.4.

Inflexible Lustre system configuration
Lustre needs to know its setup in advance. A config script is therefore written, config-
uring the entire file system. From this config script a XML file is generated. This XML

file is used to start Lustre.

Due to the Lustre security concept only messages from nodes configured in the XML file
are allowed. The problem is that in a normal Lustre configuration all messages from the
interceptors are rejected. To get Lustre working with interceptors the file system must
be configured differently and not in the intended way. How this configuration is done is

described in Section 3.1.

No routing of Lustre messages
As part of the Lustre security concept routing of messages is forbidden. Messages that

are not sent directly are dropped.

To route messages is essential for the prototype. To be able to route messages the
prototype has to look into the messages and to trick Lustre. It has to adjust the messages
in a way that Lustre thinks the messages are sent directly. This procedure is described

in Section 4.1.

Distributed locking mechanisms within Lustre
Lustre uses only one MDS to serve thousands of clients. To hold the metadata state of

the file system consistent distributed locking mechanisms are used.

These mechanisms however cause problems in the setup of an MDS group. The problems

to implement an active/active MDS group are described in more detail in Section 4.3.

Existing active/standby failover behaviour of the MDS
Lustre provides an active/standby HA solution. In the scope of this solution it is possible
to shutdown the running MDS and to start the backup MDS. The shutdown is useful to

commit all pending requests to disk.

The problem is that only one MDS can be running at a given time. It is not possible to

start the backup MDS as long as the active MDS is still running. The other problem is

41

3. Implementation Strategy

that only two MDS can be configured. These limitations render the setup of the MDS
group impossible. To run a proper MDS group in an active/active fashion, it is needed

to start and run two and more MDS at the same time.

These limitations also prevent the dynamic group reconfiguration from proper function-

ality.

Only three connections per node allowed

Lustre is designed to accept only three connections from one IP address.

This causes problems to run the prototype with multiple clients. In the prototype
design all clients are routed through one interceptor. This would lead to more than
three connections from the interceptor IP address. If a second client connects to Lustre,
the interceptor opens a fourth, fifth and sixth connection to the MDS. This would kick
out the first three connections of the fist client. To overcome this problem one interceptor
on the MDS side for each client would be needed. This is not reasonable to do. As a

result, the prototype design and tests use just one client.

3.4 System Tests

The process of software testing is used to identify the correctness, completeness and
quality of the developed software. Testing is nothing more but criticism and comparison

towards comparing the state and behaviour of the software against a specification. [1]
The specification for the prototype is given in the beginning of this work in Section 1.4.

All tests are performed in a dedicated cluster environment setup for the development and

tests of the Lustre HA prototype. Each node in the cluster has the following properties:

e Hardware

CPU Dual Core Intel Pentium 4 3.0GHz
Memory 1024MB
Network Ethernet 100MBit/s and 1GBit/s, full duplex

42

3.4. System 'Tests

o Software

Operating System Fedora Core 4

Kernel Red Hat 2.6.9-42.0.3, patched with Lustre

C Compiler gec version 3.4.2 (Red Hat 3.4.2-6.fc3)

Transis daemon and library version 1.03, patched with Fast Delivery Protocol

Lustre version 1.4.8

To evaluate the prototype and its components different setups of the file system and
prototype are used. The following listed prototype configurations are especially valuable

for performance tests.

Standard Lustre

MDS Interceptor

Client Interceptor

MDS Interceptor and Client Interceptor

Prototype 1

Prototype 2

Standard Lustre

This is the standard Lustre setup, as shown in Figure 3.4, without any changes or
manipulations. Lustre is configured as intended on three nodes. One node runs two
OSTs. The second node provides the MDS and the third node is the client of the file
system and mounts Lustre. This setup is used to get the performance of the standard

file system to determine the delay caused by the prototype.

MDS Interceptor
Additionally to the original Lustre, this setup uses one interceptor on the MDS side.
The setup is shown in Figure 3.5. The MDS interceptor makes no use of the group

43

3. Implementation Strategy

MDS
10.0.0.5

Process

=

MDS1

Messages

Client
10.0.0.1

Receive

USR1

Figure 3.4.: Test Setup: Standard Lustre

MDS
10.0.0.5

Process

Interceptor
10.0.0.10

Messages

Route
directly

Messages

Client
10.0.0.1

Send/
Receive

USR1

Figure 3.5.: Test Setup: MDS Interceptor

communication facilities. Thus, only the delay time caused by the message routing

mechanisms on the MDS side can be measured.

Client Interceptor

This is a similar setup as the previous, except that this time the interceptor is located

44

3.4. System 'Tests

MDS
10.0.0.5

Process

Messages

Interceptor
10.0.0.12

o

@

=
Messages

Send/

Figure 3.6.: Test Setup: Client Interceptor

on the client side, see Figure 3.6. Here again the interceptor makes no use of the
group communication facilities. With this configuration the delay caused by the message

routing mechanisms on the client side can be measured.

MDS Interceptor and Client Interceptor

This setup is a combination of the last two. It makes use of both interceptors, see Figure
3.7. That way, the delay caused by the message routing mechanisms on the client and
the MDS side can be measured.

Prototype 1

This setup is the standard Lustre with use of an interceptor on the MDS side. This time
the interceptor routes the messages through Transis, see Figure 3.8. This setup should
allow to determine the delay caused by the group communication facilities. This setup
is tested in three different steps. One time with one MDS group member, one time with
two, and one time with three. These configurations allow to measure the delay time
caused by the group communication facility itself as well as the impact of several group

members on the performance due to the acknowledgement process.

45

3. Implementation Strategy

MDS
10.0.0.5

Process

Interceptor
10.0.0.10

Messages

Route
directly

m[»

©

(2]

4
Interceptor | = ’>

10.0.0.12

Route
directly

Client
10.0.0.1

Messages

Send/
Receive

USR1

Figure 3.7.: Test Setup: MDS Interceptor and Client Interceptor

Prototype 2

This test series uses both interceptors on the MDS and the client side respectively, see
Figure 3.9. The interceptor on the client side just routes the messages directly. The
interceptor on the MDS side routes the messages through the group communication
facilities. This test series measures the impact of up to three group members and allows

conclusions about the performance of a solution capable of connection failover.

The client node is used to test the file system. Here the provided functionality of Lustre
is accessible. Files can be created, deleted, read, and written. The usage and the free

memory of the file system can also be shown.

For the tests an own benchmark program has been written. Its source is provided in
Appendix A.2. The program creates, reads the metadata, and deletes a given number

of files. It does this in a given number of test runs and builds the arithmetic mean

46

3.4. System 'Tests

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

MDS
10.0.0.5
Interceptor Interceptor Interceptor
10.0.0.23 10.0.0.22 10.0.0.10
Route G Route G ! Route
roup roup
Elt]rough Communication '_:Prough Communication t:_‘m”g,h
ransis ’7* ransis \ \ ransis
MDS3 | MDS2 MDS1 "
,,, %
7777777777777777777 I
(2]
3
Client s
10.0.0.1
Send/
Receive
USR1

Figure 3.8.: Test Setup: Prototype 1

values. From the measured times it calculates the operations per second the file system

is capable of. It also calculates the time needed for one operation.

3.4.1 Functionality

Due to restrictions given by Lustre the functionality tests could only performed partwise.

Goal of this section normally should be to test and evaluate the proper functionality of

the prototypes in terms of high availability. However, a complete HA version of the pro-

totype implementations is not running. This limits the possibilities for the functionality

tests. For instance, connection failover cannot be tested. What can be done is to test

the developed parts of the solution for their proper functionality.

The functionality of the developed prototypes that can be tested:

e Message Routing, one MDS Node

e Group Communication System

47

3. Implementation Strategy

MDS
10.0.0.5

Process

Interceptor Interceptor Interceptor
10.0.0.23 10.0.0.22 3 10.0.0.10
Route = Route G ‘ Route
roup roup
through Communication through Communication through
Transis]7 ; Transis ’—|; T Transis
' MDS3 | MDS2 . I mMDs1 ”’r
e L e P %
©
1]
3
Interceptor | s
10.0.0.12
Route
directly
%]
77777777 ()
(=)}
| (]
Client 2
10.00.1 |2
Send/
Receive
USR1

Figure 3.9.: Test Setup: Prototype 2

e Message Routing, multiple MDS Nodes
e Single Instance Execution Problem

e Mount Lustre

e Unmount Lustre

e Lustre File System Status

e File Operation: read

e Lustre File Operation: write

e Lustre File Operation: create

e Lustre File Operation: delete

48

3.4. System 'Tests

Message Routing, one MDS Node

This test evaluates the correct function of the message routing of the prototypes de-
scribed in Section 4.1 Message Routing. This part can be tested with the simplest test
setup “MDS Interceptor”. In this setup one interceptor is placed in the MDS commu-
nication path. The interceptor just forwards and adjusts the messages as described. If
the message routing works correctly, Lustre accepts the interceptor and mounts the file
system. The same test must be done with client interceptor as well. Because the client

interceptor uses the same routing algorithm, Lustre should mount properly.

pass:

Group Communication System

The correct function and implementation of the group communication system into the
prototype also needs to be tested. This can be done in two steps. The first is to test the
group communication system alone on one node. For this test the setup “Prototype 17
with one group member can be used. Here, the MDS interceptor uses Transis to route
the messages. If the group communication system is included correctly, the interceptor
should start the Transis “MDS Group” and Lustre should mount properly. The second
step is to start another interceptor on a second node. This interceptor should join the

“MDS Group” if everything goes right.

pass:

Message Routing, multiple MDS Nodes

This test is an extension of the first two tests. Here the setups “Prototype 1”7 and
“Prototype 2”7 with three group members are used. To evaluate if the message routing
of all three nodes works properly, own servers that act as MDS must be used. One
node starts the Lustre MDS. The other two nodes start their own server. These servers
open a connection at the port 988 and receive messages like the MDS would do. In this
step these own “fake” MDS servers check the message header for the correct source and
destination. To pass the test, Lustre should mount properly and the own servers should

receive messages as well and report no errors.

pass:

Single Instance Execution Problem

The correct function of this part can be tested with an extension of the own “fake”

49

3. Implementation Strategy

MDS servers. The same setups like in test “Message Routing, multiple MDS Nodes” are
used. The difference is, that the “fake” MDS bounce received messages back to their
interceptors. That way, they cause own output messages. If the single instance execution
problem is solved correctly, duplicated output messages should not be sent to the client

and thus not confuse Lustre. This test is passed if Lustre mounts and works properly.

pass:

The following tests show the proper functionality of the Lustre file system with the
prototype implementations. For these tests the “Prototype 2” setups with three group
members is used. Also own “fake” MDS servers, as described in the “Single Instance
Execution Problem” test, are used. This setup is the closest possible to a working

production type HA solution for Lustre.

Mount Lustre

Lustre should be capable to mount without errors.

pass:

Unmount Lustre

Lustre should also be capable to unmount and to shutdown without errors.

pass:

Lustre File System Status
During use of Lustre the command “Ifs df -h” should show the usage state of all OSTs
and the MDS.

pass:

File Operation: read

Test of the file system capability to read files.

pass:

Lustre File Operation: write

Test of the file system capability to write to files.

pass:

Lustre File Operation: create

Test of the file system capability to create files.

20

3.4. System 'Tests

pass:

Lustre File Operation: delete
Test of the file system capability to delete files.

pass:

The functionality listed below could not be tested. It is the HA functionality in general.
Due to the fact that it is impossible to run two MDS at the same time no real HA

solution could be tested.

The functionality of the prototype implementations that cannot be tested:

e dynamic group reconfiguration
e connection failover

e saved state of file system as long as one node is up

The results of the functionality tests give proof of working components, like interceptors
or the group communication system. But an entire HA solution of Lustre could not be
tested. Even though the working components do not provide the functionality of an HA
prototype, they nevertheless consist of almost everything a working solution would need.
The fact that Lustre is working with the implemented solution makes performance tests
possible. These tests will allow to draw conclusions about the impact a full working HA

solution would have on the performance of Lustre.

3.4.2 Performance

As described in the functionality tests the prototypes do not provide the full functionality
of a HA solution. However they are very close to this solution in terms of performance.
A full working HA prototype would have almost the same impact on performance, like
the implemented Prototype 2 in this project. Thus, these tests allow considerations

about the performance a full HA solution.

Tested are the different setups described in the beginning of the test section.

ol

3. Implementation Strategy

For all performance tests the file system cache was deactivated. This step is essential to
compare the performance of the different test setups. All tests have been done in two
different network setups. One time with 100MBit and one time with 1GBit network.

To evaluate the performance a benchmark program has been written. The source of
the program is attached to this work in Appendix A.2. The program creates a given
number of files, reads the metadata of the files, and eventually deletes the files. In order
to evaluate the performance the program takes the time needed for each operation. To
achieve a measurement with a low error the program performs a given number of test

runs and calculates the mean time for each operation from all test runs.

Lustre High Availability Prototype 100MBit Test Runs

100 Mbit
Operations per second 1 file 100 files
create read delete create read delete
Standard Lustre 538.199 462.389 1,129.114 551.799 452.459 1,721.659
MDS Interceptor 6.196 23.632 12.352 8.184 12.205 24.437
Client Interceptor 6.187 22.908 12.368 8.178 11.978 24.349
Client Int. and MDS Int. 6.163 23.386 12.290 8.135 12.136 24.314
Prototype 1, 1 Group Member 6.103 11.840 12.165 8.030 8.052 24.064
Prototype 1, 2 Group Members 6.104 11.846 12.170 8.026 8.060 23.775
Prototype 1, 3 Group Members 6.108 11.844 12.165 8.025 8.062 23.964
Prototype 2, 1 Group Member 6.056 11.758 12.094 7.966 8.051 23.895
Prototype 2, 2 Group Members 6.051 11.732 12.047 7.964 8.045 23.889
Prototype 2, 3 Group Members 6.037 11.782 12.092 7.918 8.046 23.894
] . 100 Mbit
Time taken(f;rsgg)e operation 1 file 100 files
create read delete create read delete

Standard Lustre 1.858 2.163 0.886 1.812 2.210 0.581]
MDS Interceptor 161.403 42.315 80.957 122.191 81.936 40.921
Client Interceptor 161.637 43.653 80.854 122.285 83.485 41.069
Client Int. and MDS Int. 162.248 42.760 81.370 122.929 82.401 41.129
Prototype 1, 1 Group Member 163.859 84.463 82.202 124.538 124.186 41.557
Prototype 1, 2 Group Members 163.827 84.418 82.172 124.593 124.074 42.061
Prototype 1, 3 Group Members 163.707 84.433 82.202 124.607 124.041 41.729
Prototype 2, 1 Group Member 165.125 85.050 82.686 125.529 124.211 41.849
Prototype 2, 2 Group Members 165.248 85.240 83.009 125.558 124.299 41.860
Prototype 2, 3 Group Members 165.647 84.874 82.698 126.298 124.290 41.852

Figure 3.10.: Performance Test Results 100MBit

The results of the test runs are shown in the Tables 3.10 and 3.11. At first glance
the significant performance impacts of all HA solutions are striking. The default Lustre
setup performs up to 89 times faster than the tested prototype setups. This performance

impact is odd and not expected. The JOSHUA project [21] achieved latency times of

02

3.4. System 'Tests

Lustre High Availability Prototype 1GBit Test Runs

1 Gbit
Operations per second 1 file 100 files
create read delete create read delete
Standard Lustre 622.247 550.658 1,330.973 636.749 520.497 1,951.101
MDS Interceptor 6.212 23.828 12.380 8.206 12.288 24.485
Client Interceptor 6.196 22.219 12.382 8.194 11.880 24.379
Client Int. and MDS Int. 6.169 23.300 12.312 8.152 12.177 24.331
Prototype 1, 1 Group Member 6.181 12.710 12.314 8.157 8.252 24.359
Prototype 1, 2 Group Members 6.140 12.038 12.221 8.082 8.179 24.238
Prototype 1, 3 Group Members 6.128 11.939 12.207 8.067 8.138 24.209
Prototype 2, 1 Group Member 6.138 12.144 12.248 8.106 8.217 24.224
Prototype 2, 2 Group Members 6.091 11.926 12.156 8.023 8.134 24.037
Prototype 2, 3 Group Members 6.086 11.900 12.142 8.010 8.125 24.021
. . 1 Gbit
Time taken(fr?]rszg)e operation 1 file 100 files
create read delete create read delete

Standard Lustre 1.607 1.816 0.751 1.570 1.921 0.513
MDS Interceptor 160.984 41.967 80.776 121.855 81.383 40.841
Client Interceptor 161.394 45.007 80.765 122.038 84.173 41.018
Client Int. and MDS Int. 162.097 42.918 81.222 122.675 82.122 41.100
Prototype 1, 1 Group Member 161.786 78.680 81.211 122.598 121.184 41.052
Prototype 1, 2 Group Members 162.871 83.071 81.825 123.734 122.269 41.257
Prototype 1, 3 Group Members 163.193 83.762 81.919 123.964 122.882 41.308
Prototype 2, 1 Group Member 162.920 82.348 81.649 123.364 121.696 41.282
Prototype 2, 2 Group Members 164.165 83.850 82.263 124.646 122.937 41.602
Prototype 2, 3 Group Members 164.310 84.033 82.359 124.840 123.078 41.630

Figure 3.11.: Performance Test Results 1GBit

about 200ms. In the “Metadata Service for Highly Available Cluster Storage Systems”
project the latency times for one client are about 15ms, however these times result from
internal replication. The latency times from the JOSHUA project are gained with a
similar test setup like in this master thesis. Hence the 200ms form the mark of the

expected latency times.

The measured latency times in the test runs are in the range from 165ms - 40ms, de-
pending on the operation performed and network type used. This seems okay, but the
problem is the overhead caused to the file system. The measured overhead to the system
in the JOSHUA project is 256% with four group members. The overhead of Prototype 2
with three group members using 100MBit network in comparison to the default Lustre
configuration is about 8815%! Another possibility to compare this significant impact is
to look at the request throughput achieved in the “Metadata Service for Highly Available
Cluster Storage Systems” project, see Figure 1.6. There, the file system has a through-

23

3. Implementation Strategy

Delay Time of IP Aliasing

100MBit Network

Local Connection 29.483 psec

IP Alias Connection 29.318 psec

1GBit Network

Local Connection 29.458 usec

IP Alias Connection 29.350 psec

Table 3.1.: Delay Time of IP Aliasing

put of about 125 read requests with one client using one metadata server. With the
use of more metadata servers this throughput even increases due to the advantage of
parallelism. In case of four metadata servers the gained throughput of read requests per

second with one client is about 360.

Quite different the results of the prototypes of this master thesis. The default Lustre
setup achieves a read request throughput of about 450 to 550 depending on the used
network and the number of files to read in one test run. Of course, the advantage of
parallelism cannot be taken into account, because all prototype setups still work with
only one MDS. However, the measured values are by far under the expectations. For
instance in case of the Prototype 2 test run with 3 group members and use of 1GBit
network and 100 files the read throughput breaks down from 520 to 8 requests per second.

Such a result renders the proposed HA solution unreasonable in terms of performance.

The performance results are contrary to the results of the preceding two HA projects.
The experience from the preceding projects shows that HA solutions don’t come for free,
but the performance impact is reasonable and the advantage of higher availability out-
weighs this downside. This is not the case in this project. The latency times introduced
by the prototypes are too high to use the Lustre file system in a reasonable way. This

raises the question for the reasons of these high latency times.

To gain a better understanding of the measured values, tests to evaluate the pure network

performance of the test cluster are useful. Also a check of the caused delay by the IP

o4

3.4. System 'Tests

100MBit Network Latency

Size Latency Bandwidth

10 B 200.05 wus 49.99 KB/s

100 B 149.93 us 666.98 KB/s

Client-Server 1.00 KB 284.30 us 3.52 MB/s
10.00 KB 1.90 ms 5.25 MB/s

100.00 KB 22.28 ms 4.49 MB/s

1.00 MB 218.34 ms 4.58 MB/s

10.00 MB 2.29 s 4.38 MB/s

Size Latency Bandwidth

10 B 343.57 us 29.11 KB/s

100 B 150.62 us 663.92 KB/s

Client-Interceptor-Server 1.00 KB 314.57 us 3.18 MB/s
10.00 KB 1.94 ms 5.16 MB/s

100.00 KB 21.93 ms 4.56 MB/s

1.00 MB 219.71 ms 4.55 MB/s

10.00 MB 2.30 s 4.35 MB/s

Size Latency Bandwidth

10 B 352.65 us 28.36 KB/s

100 B 178.42 us 560.48 KB/s

Client-Interceptor-Interceptor-Server 1.00 KB~ 346.70 us 2.88 MB/s
10.00 KB 1.99 ms 5.03 MB/s

100.00 KB 22.72 ms 4.40 MB/s

1.00 MB 226.96 ms 4.41 MB/s

10.00 MB 2.32 s 4.31 MB/s

Table 3.2.: 100MBit Network Latency

aliasing is needed.

To measure the delay caused by the IP aliasing a simple test program can be written.
The program starts a server on the original node address on a given port. This server just
bounces back messages. Then the program establishes two connections to this server.
One time from the same local address and one time from the IP alias address. Now, the
program sends a sting to the server and measures the time it takes to receive the string

again.

Table 3.1 shows the results of this test. The delay times for the both connections are
almost the same. Also the network types make no difference. This was expected, because
the communication happened only local without use of the network. As Table 3.1 shows,
the use of IP aliasing causes no considerable delays and thus cannot be the source of the

significant performance problems of the prototype.

%)

3. Implementation Strategy

1GBit Network Latency

Size Latency Bandwidth

10 B 102.29 wus 97.76 KB/s

100 B 237.95 us 420.26 KB/s

Client-Server 1.00 KB 193.60 wus 5.17 MB/s
10.00 KB 332.54 us 30.07 MB/s

100.00 KB 1.85 ms 53.93 MB/s

1.00 MB 17.15 ms 58.30 MB/s

10.00 MB 170.12 ms 58.78 MB/s

Size Latency Bandwidth

10 B 337.11 wus 29.66 KB/s

100 B 126.84 wus 788.39 KB/s

Client-Interceptor-Server 1.00 KB~ 175.89 us 5.69 MB/s
10.00 KB 384.31 wus 26.02 MB/s

100.00 KB 2.06 ms 48.48 MB/s

1.00 MB 19.47 ms 51.36 MB/s

10.00 MB 196.76 ms 50.82 MB/s

Size Latency Bandwidth

10 B 353.49 us 28.29 KB/s

100 B 156.73 us 638.04 KB/s

Client-Interceptor-Interceptor-Server 1.00 KB~ 205.82 us 4.86 MB/s
10.00 KB 420.77 us 23.77 MB/s

100.00 KB 2.28 ms 43.77 MB/s

1.00 MB 21.81 ms 45.85 MB/S

10.00 MB 222.89 ms 44.86 MB/S

Table 3.3.: 1GBit Network Latency

The next step is to measure the delay times caused by the network.

Therefore, the

latency time of the different network paths must be measured. This is done with another

test program. This program sends byte packages of increasing size over the given network

path. It measures the latency time caused by the network and calculates the bandwidth

of the connection.

Considering the size of metadata messages, the test runs show that the latency time of

the network lies in the range of milliseconds. This is even the highest possible latency

time. Average metadata messages of Lustre are not bigger than 1KB. For the Gigabit

network test, this latency time even for the longest path was not much more than 200

us. So the network is unlikely to be the reason causing the performance issues of the

prototypes.

The IP aliasing and the network itself are not the reason for the high latency times.

26

3.4. System 'Tests

Another possibility is the implementation of the prototypes itself.

The core component of the prototypes is the message routing. The proper functionality
of this component is proven in Section 3.4.1. In terms of performance the problems
discussed in Section 3.2 are essential. All of the different mentioned approaches have
been tested. The parallel approach is a bit faster than the serial used in the performance
tests. However, the gained performance plus is so little, that it makes no real difference in
the measured values of the performance tests. As a result, the prototype implementations

show no errors responsible for causing the significant performance impact.

The last possibility of the performance problems is the Lustre code itself. The file system
cache has been deactivated in order to get consistent results. But due to the complex and
intransparent design, it is likely that Lustre uses internally techniques that are blocked
by the interceptors and thus cause the performance impact. However this is speculation

and cannot be proven.

In spite of the performance problems it is worth to take a closer look at the measured

values.

The general trend of the measured values is alright. The test runs performed on 1Gbit
network give lower latency times/more operations per second than the test runs per-
formed on 100MBit network. The read operation performs better if called only one
time, like in case of the 1 file test runs. Quite the contrary the create and delete oper-
ations. They achieve better results if called several times like in the 100 files test runs.
The delete operation achieves twice the throughput in the 100 files test runs than in the
1 file test runs. This can be the result of internal caching in the MDS of Lustre. The
MDS, for instance, caches several requests in memory before it commits them to disk.

This behaviour cannot be avoided.

However, there are some inconsistencies in the values. For instance, the values of Proto-
type 1, using 100MBit network, 1 file. Here the prototype achieves lower latency times
with three group members than with one. At first glace, this seem odd. But this could
happen with the “Fast Delivery Protocol” introduced in Section 1.2.2. The reason is
that every member in the group can acknowledge a message. In the test setups only one
group member actually runs a MDS the other group members only run an interceptor

with Transis. These nodes are less occupied than the one node running the MDS. They

o7

3. Implementation Strategy

100 MBit/1File
25.000
20.000
=
c
o
8
:::, 15.000 m create
E‘ O read
& 10000 o delete
5
o
o
5,000 4
o
WDS Interceptor ClientInterceptor Clientint.and Prottye 1,1 Probotpe 1,2 Protobpe 1,3 Protobype 2,1 Probtype 2,2 Prolbotype 2,3
MDS Int Group Member Group Members Group Members Group Member Group Members Group Merm bers
Figure 3.12.: 100MBit, 1File Test Runs
100MBit/100File s
25.000
20.000
o
c
o
H]
g 15000 o create
Z o read
S 10000 o delete
c
@
o
o
5.000 4
i
WDS Imerceptor ClientImercepor Clientint and Prombge 1,1 Promtwe 1,2 Protobpe 1,3 Protobpe 2,1 Probhpe 2,2 Probobpe 2,5
MDS Int Group Member Group Members Group Members Group Member Group Members Group Merm bers

Figure 3.13.: 100MBit, 100Files Test Runs

28

3.4. System 'Tests

1GBitH1File
25.000
20.000
=
E=
=3
H
[15.000 o create
@
o
2 O read
£ 1n0m o delete
g
@
o
o
5000 4
o4
MDS Interceptor Clientinterceptor Clientint. and Prototype 1,1 Prombype 1,2 Protobpe 1,3 Prototype 2,1 Probbpe 2,2 Proobpe 2,3
MDS Int Group Member Group Members Group Members Group Member Group Members Group Members
Figure 3.14.: 1GBit, 1File Test Runs
1GBit/100Files
25.000
20.000
=
=
o
5
l:lL'l 15.000 o create
@
o
a o read
S 1nnon o delete
2
@
-3
o
5.000 -
o4

MDS Interceptor Clientimterceptor Clientint and Proiotpe 1,1 Prombpe .2 Prototpe 1,3 Protobme 2,1 Prombwe 2,2 Prowobpe 2,3
MDS Int. Group Member Group Members Group Members Group Member Group hermbers Group Mem bers

Figure 3.15.: 1GBit, 100Files Test Runs

29

3. Implementation Strategy

File Creation Performance, Standard Lustre

660 000

640,000

620 000

600.000

O 100MBit11File

O 100MBit/100Fies
O 1GEit1File

W 1GEit100Files

580 000

560 000

540,000 4

Operations per Second

520 000 4

500.000 4

480 000 +

Figure 3.16.: File Creation Performance of Lustre

File Creation Performance, MDS Interceptor + Client Interceptor

9.000

G000

7.000

6.000 4

@ 100MBit1File

O 100MEIt/100Fles
@ 1GRit1File

| 1GEit100Files

5.000 4

4.000

3.000

Operations per Second

2.000 4

1.000

Figure 3.17.: File Creation Performance using MDS Interceptor and Client Interceptor

60

3.4. System 'Tests

just wait for incoming messages without any processing. It is likely that one of these
nodes can acknowledge a message faster than the one node running the MDS. This could
be the reason for the lower latency times with three group members than with one group

member.

Another inconsistency can be seen in the measured values of the interceptor latency
times. In the 1GBit, 1 file, read command test run the measured performance of the
test setup with the client interceptor alone is 22.219 operations per second. However,
the measured performance of the test setup with client and MDS interceptor is 23.300
operations per second. This is not reasonable and should not happen. Source of this
error in the measurements might be changing occupation of the nodes due to other
running processes in the background or different workload on the network during the

individual test runs.

The Figures 3.16 and 3.17 show a different behaviour of the default Lustre setup in
contrast to the file system with included interceptors. As shown in the figures, the
advantage of the faster Gigabit network is much bigger in the default Lustre setup. This
result also indicates some problems with the correct adaptation of the interceptors to

the file system.

To summarise, the measured values show some light inconsistencies, but nevertheless
appear to be okay. The major result of the test runs is the big performance impact of
the prototype designs on the file system. This impact renders the proposed HA solution
unreasonable in terms of performance. The source of the significant latency times is
most likely to find in the file system code itself. To fully understand the reason of the
performance impact, Lustre needs to be analysed and understood completely. This is
not possible in the limited time of this master thesis and therefore the reason of the

performance impact remains a speculation.

61

Detailed Software Design

4.1 Message Routing

Core component of the prototype design is the message routing. This component is

responsible for managing the connections and routing the messages to the appropriate

nodes.

Structure Connection Connection
Information Entry 1 Entry 2
C'\c';r:eb(iiro?]fs Entry ID Entry ID
Client IP Client IP
Address Address
Connection Connection
Lock Lock
MDS Socket MDS Socket
1D 1D
Client Socket Client Socket
1D 1D
Message Message
Type Type

Connection Table

Figure 4.1.: Connection Table

Figure 4.1 shows the connection table structure. This structure is responsible for holding
and maintaining all connection information. Because the connection table is a shared
resource it needs to be locked. Mutual exclusion locks are used for this purpose. They
avoid simultaneous access from the Transis receive thread and the interceptor receive

thread. This is most important, because each thread can manipulate the allocated mem-

63

4. Detailed Software Design

ory of the connection table. As a result, simultaneous access could lead to segmentation

fault and crash of the program.

Each interceptor holds an own connection table. In order to keep the information con-

sistent between all connection tables the group communication system is used.

The initiation of a connection is always the same process. Fist, each interceptor listens
for incoming connections from the clients. If one interceptor gets an incoming connection
it creates an entry in its connection table. In this step it stores the socket identifier of
the client connection in this entry. The interceptor also sets the connection lock of
this entry. This should prevent further message routing until the connection is fully
established. Then, the interceptor uses the group communication system to send the id
of the entry and the request to connect to the MDS. All interceptors, the sending one
included, receive this request. All create the connection to their respective MDS. The
socket identifier of this connection needs then to be stored in the table entry associated
with the id sent in the request. Also, the connection lock of this entry must be unset
after successful connection to the MDS. The interceptor connected to the client already
holds an entry with this id in the connection table, and just adds the socket identifier
of the MDS connection to this entry. It also unsets the connection lock. All other
interceptors create a new entry with this id and add the socket identifier of their MDS

connection. The connection lock is already unset in the new created entries.

The other information stored in the connection table is the IP address of the client. This
information is not needed in the actual prototype implementations, but could be used
to identify the client in case of connection failover. The use of the field Message Type

is described later in this section.

If one client disconnects, the procedure to perform is similar to the connection process.
Fist, the interceptor connected to this client sends a request to disconnect to the group
communication system. After the connections are closed the appropriate table entries

are deleted.

Figure 4.2 shows the connection state of a setup with three group members and one client.
The client uses three connections for communication. Each connection is associated with
one table entry. The only information needed to route each individual message are the

id of the related connection table entry and the destination of the message (CLIENT or

64

4.1. Message Routing

Connection 1 IConnection 2 I M Connection 1 IConnection 2 | M Connection 1 IConnection 2 I M

MDS MDS MDS

Socket

l-4————distribute request:

Socket

Socket

Transis distribute request: Transis

Socket Socket

Interceptor Interceptor Interceptor

Connection 1 IConnection 2 I W

Client

Figure 4.2.: Message Routing, Request from Client to MDS

MDS) to determine the direction.

In case of a message or request from the client to the MDS, the interceptor connected
to the client receives the message. It then adds the needed routing information to
the message and passes the message on to Transis. The group communication system
distributes the message to all interceptors. They receive the message and read the routing
information. The destination MDS tells them to choose a MDS socket and the entry id
determines what connection to use. With help of this information the interceptors can
pass on the message to the appropriate MDS connections.

Connection 1 IConneclion ZI hnectiﬂ Connection 1 IConnection ZI M Connection 1

MDS MDS MDS

Socket I Socket : lSocketI Socket l Socket I l50cketl Socket

Connection 2 nnectiol

B
=R

Socket Socket

i
i

Socket I Socket I lSocketI

Interceptor Interceptor Interceptor

Connection 1 IConnection ZI w

Client

Figure 4.3.: Message Routing, Response from MDS to Client

In case of a response from the MDS to the client, all interceptors receive the response

from their MDS, see Figure 4.3. Only the interceptor connected to the client holds

65

4. Detailed Software Design

information about the client socket in the respective connection table entry. Thus, only

this interceptor passes the message on the client.

To meet the rules of Lustre’s networking, messages need to be modified. Each inter-
ceptor needs to adjust the message header, in a way, that it acts as client for the MDS
and vice versa. The important fields to change are the message Source NID and the
Target /Destination NID, as described in Section 2.1.2. To avoid rejected messages from
Lustre the interceptor has to change the IP address in the Source NID to its own IP
address. Furthermore, it has to change the IP address in the Target/Destination NID
to the IP address of the client and the MDS respectively.

Because the positions of the NID fields vary in the three different Lustre message types,
the last field in a connection table entry is used. The field Message Type is set accord-
ingly to the Lustre protocol. That way, it is ensured that throughout the connection
initialisation the appropriate header type of the received message is known and the right
values are changed. After the initialisation process this field is no longer used, due to

the facts that only “Lustre Messages” are exchanges anymore.

4.2 Single Instance Execution Problem

40x 40x 40x

(%2} (%2} [%2]

= = =

o o o

o o ol

(7] 1 (7)) I (%)

4] ! [0) 4]
MDS o | MDS o MDS x

Process Process | Process

g S gl
......... S5 - - | T o RS

o ! oL o

(0] ! (5] (0]
Interceptor | X ! Interceptor | @ 12

Group . Group
ommunication Receive Communication

Node A o Node B Node C

Figure 4.4.: Single Instance Execution Problem

66

4.2. Single Instance Execution Problem

Interceptor ' | \Interceptor i
Group Group 3
Communication Send Communication Send ‘ i
- o
1 (7] | 7]
| = c
‘ = S|
o\- I o N o
0 ! (7)) — | [T}y
@ : O ‘ 4]
MDS [vd i | MDS @ ; MDS o
Process Process i
7 i . . 7 |
o : o— : O
,,,,,,,,, 35 - 1 P (= 1 ! I JERE R (- f SO !
o ‘ <y I o
7] 7] | ! 7] 1
Interceptor | X Interceptor | X i i | Interceptor | X i
. Group 0 Group . i
Receive Communication Receive Communication Receive i
Node A % | Node B ' | NodeC
,,,,,,,,,,,,,,,,,,, % oo ! S
o
]
o

Figure 4.5.: Single Instance Execution Problem Solved

In an active/active architecture the replicated components work independent from each
other. The group communication system distributes the incoming requests in the right
order to the group and holds thus the group members in virtual synchrony. The prob-
lem here is that each member produces a response and wants to send this response to
the system. The system however expects only one response to one request. Multiple

responses are dropped in the best case or lead to inconsistencies, or crash in the worst

case.

To sort out this problem, the group communication system has to be used again. As
indicated in Figure 4.4, it has to be set between the output of the MDS and the rest

of Lustre. In this position, it has the task of filtering all requests and sending only one
back to Lustre.

In the prototype implementation, this problem is solved with help of the connection
table described in Section 4.1. This table holds identifiers of existing client connections.
When a response is received the group members look in the connection table for an

appropriate client connection. Only the group member actually connected to the client

67

4. Detailed Software Design

sends the response to the system. The other members drop their request. Because one
client is connected to one group member only, the response is sent only once to the

system. Thus, the connection table can be used to filter the responses.

Another possibility to sort out this problem is to send the responses through the group
communication system first. The group communication system distributes the responses
to all group members. This raises the problem that the group member connected to the
client gets the responses from the other group members as well. In this situation an

identifier to recognize all equal responses from the group members is needed.

The approach to send all responses through the group communication system has an
advantage. It could be used to detect errors in the response. This may be achieved with
help of voting algorithms. Possibilities are for instance majority or unanimous voting
algorithms. Fist, all responses from the group members need to be compared. In case
of a majority voting algorithm all equal responses are counted. One response from the
group with the highest number of equal responses is sent back to the system. All other
responses are dropped. In case of a unanimous voting algorithm all responses have to be
the same. If only one response differs from the others, not response at all is sent back

to the system.

4.3 Dynamic Group Reconfiguration

Dynamic group reconfiguration is essential for running a group of members in an ac-
tive /active fashion. Normally the system is started with one group member. In case of
Lustre the file system is started, like intended, with one MDS. In order to build up the

active/active group new members (MDS) must join.

The sense of HA is to provide uninterrupted service. To realize this goal the active/active
group must be able to be reconfigured at runtime. If members fail they must be repaired

or replaced with new ones. This functionality provides dynamic group reconfiguration.

The group communication system Transis keeps track of active group members. If the
configuration of the group changes it sends a message with the new configuration. This

message can be used to initiate the appropriate reconfiguration procedure.

68

4.3. Dynamic Group Reconfiguration

The process of leaving members is simple. Because all members share the same state
they can continue operation without new reconfiguration. The only thing to do, is to
update the group member list of the client interceptors to avoid failover to broken group

members that no longer share the global state.

To keep the state of the active/active group during the join process consistent the fol-

lowing steps must be performed in the right order:

1. stop all members from accepting requests
2. copy the group state from one elected member to the new member

3. start accepting requests again

Fist, all members must stop to accept new requests from the clients. Now an elected
member has to send his state to the new member. This can be done with copying the
partition in which the MDS data is stored to the new member. Now the entire group is

in virtual synchrony again and can start to accept requests.

If something goes wrong during the join process, the new member shuts down itself to
ensure that no member is online which does not share the exact same global state in

order to sustain the virtual synchrony.

The design of Lustre raises some issues that avoid successful implementation of this

capability in the prototype.

One problem could occur with server timeouts. During the whole join process the MDS
is stopped, or better, occurs dead to the client. However this seems likely to be no
problem, because the Lustre MDS is designed for heavy load. Lustre already has a
similar problem when tens of thousands clients send requests to this one server at the
same time. In this case the server is under such heavy load that it appears dead to some
clients for minutes. To overcome this problem Lustre has already set the server timeout
to 100 seconds, and in some cases, like in the Lawrence Livermore National Laboratory
to 300 seconds.

Another problem to face is the reinitiation of connections to new MDS. Because Transis

is implemented externally and Lustre uses three active connections for one client, it’s

69

4. Detailed Software Design

not enough to copy the state (partition) to the new MDS. The new group member
(interceptor) needs to connect the active clients to the new started MDS. Therefore the
state of connections must also be copied. To establish a connection the interceptor has
to follow the Lustre protocol. One possibility to solve this problem is to save the original

initiation messages of each connection and reuse them for new members.

Lustre’s MDS also works with caching of requests. This is another source of inconsis-
tency. Because it is never ensured that the state on the disk (the partition) is the same
like the state in the RAM (the running MDS).

The main challenge is to start the new MDS. This point rendered the dynamic group
reconfiguration impossible within the limits of this project. The Lustre design doesn’t
allow two active MDS at the same time. For failover Lustre first shuts down the failed
MDS and starts then the new MDS. As long as one MDS is up, it is impossible to start
a second MDS. Even if this hurdle could be sorted out, the Lustre design still causes
plenty of problems. For example distributed locking and the fact that the MDS talks
with the OSTs. For one request, each MDS in the group would try to get the same lock
from the OSTs or try to create the same file.

4.4 Connection Failover

Connection failover is an integral part in the HA solution. It ensures the masking of
errors to the connected clients. If a client is connected to a MDS and this MDS fails, the
client gets an error and cannot use the service anymore. The state is still saved as long
as another MDS is up. However, in an active/active HA solution uninterrupted service

should be provided.

Solution to the problem is connection failover. It is the ability of the client to change to
another active MDS.

To realize this solution, the client needs to hold a list of all available MDS. If the
connection to the MDS fails, the client looks in the list and connects to another MDS.

That way the error of a failing connected MDS is also masked from the client.

One problem with inconsistency could occur, when a request is already in the queue of

70

4.4. Connection Failover

Client Connection without MDS Failure

MDS
10.0.05
Port 988

distribute
requests,
filter responses

Port 988

Port 988

Client
10.0.0.1
Port 988

Interceptor
10.00.10

Interceptor
10.0.0.12

Client Connection in Case of MDS Failure

MDS
10.0.0.4
Port 988

Interceptor
10.0.0.11
Port 988

Interceptor
10.0.0.12
Port 988

Client

Client
10.0.0.1
Port 988

Figure 4.6.: Connection Failover

the connected MDS but is not distributed yet before the MDS fails. To avoid such errors

an acknowledgment scheme is needed.

71

Conclusions

5.1 Results

This Master thesis project aims to improve the availability of the Lustre file system.

Major concern of this project is the metadata server (MDS) of the file system.

The MDS of Lustre suffers from the last single point of failure in the file system. Lustre
already provides an active/standby high availability (HA) solution for the MDS. Down-
side of this solution is the shared disk between the two MDS to store the metadata. If
this disk fails, the state of the entire file system is lost.

To overcome this single point of failure a new active/active HA approach is introduced.
In the active/active mode the MDS is replicated on several nodes, each using its own
disk to share the metadata.

To achieve a shared global state among the multiple MDS nodes an existing group

communication framework is used.

The new file system design with multiple MDS nodes running in virtual synchrony

provides active/active high availability and leads to a significant increase of availability.

Goal of the project is to develop a proof-of-concept implementation based on the expe-
rience attained in preceding two active/active HA projects'? at the Oak Ridge National

Laboratory.

!The JOSHUA Project [21]
2Symmetric Active/Active Metadata Service [18]

73

5. Conclusions

As a final result achieved of this Master thesis project, all general system design tasks
have been finished. As shown in the previous sections an overall system design to solve

the key problems of the dissertation has been created.

For proper development and testing a working environment has been build and set up.
The development was done on a small dedicated cluster with one to three nodes serving
as MDS, one node serving as object storage target (OST), and one node serving as client
for the file system. All nodes are homogeneous and identical in hardware and software
setup. The system tests have been done on 100MBit and 1GBit network.

Two prototype implementations have been developed with the aim, to show how the
proposed system design and its new realized form of symmetric active/active high avail-

ability can be accomplished in practice.

The Lustre networking has been analysed in order to include the HA system components

into the file system.

The functionality tests of the prototypes prove working components like interceptors
or the group communication system. However, they also show missing functionality of
the prototypes. Components like dynamic group reconfiguration or connection failover
couldn’t be implemented. With lack of this functionality no working active/active HA
solution can be provided with this Master thesis. Reason for the missing components is
the Lustre design. It doesn’t allow multiple running MDS at the same time. Further-
more, the MDS is so tightly included into the file system, that there is no reasonable

workaround to this problem.

The performance tests show a significant performance impact of the prototypes on the
file system. This impact renders the proposed HA solution unreasonable in terms of
performance. After several tests, the problem causing this impact seems to be in the

Lustre implementation. However, this is mere speculation and cannot be proven.

The results of this dissertation show the difficulties of an implementation of an ac-
tive/active HA solution for MDS of Lustre. The insufficient documentation and the
complicated and intransparent design of Lustre prohibit an adaptation to this solution.

An easy adaptation of the file system to the active/active HA design like in the case of

74

5.2. Future Work

the parallel virtual file system (PVFS) in one of the preceding projects® is not possible

with Lustre.

Nevertheless, the results and findings of this Master thesis may be used for further

improvement of high availability for distributed file systems.

5.2 Future Work

The results and findings of this Master thesis cannot provide a working solution to the

last single point of failure in Lustre.

The work provides a complete system design that needs to be adapted to Lustre. This

adaptation requires further investigation of the file system.

In order to implement a fully working production type active/active HA solution, the
inner workings of the Lustre components must be understood and adjusted. The need

to run multiple MDS at the same time requires a change of the entire Lustre design.

To overcome the performance problems of the prototypes of this project, the source of

the significant performance impact needs to be found.

Another problem is the group communication system Transis. Its inability to run in
a multithreaded environment limits the possibilities of the prototype design. Transis

needs to be replaced by a more sophisticated group communication system.

Due to the requirement of performing changes in the Lustre code anyway and the perfor-
mance issues of the project prototype implementations, the internal replication method

seems to be preferred for further work on active/active HA for Lustre.

3Symmetric Active/Active Metadata Service [18]

7

[1]

2]

3]

4]

[5]

6]

7]

8]

9]

[10]

[11]

References

Software Testing explained at Wikipedia. Available at http://en.wikipedia.org/

wiki/Software_test.

The Parallel Virtual File System (PVFS) Project. Available at http://www.pvfs.
org/index.html.

Transis group communication system project at Hebrew University of Jerusalem,

Israel. Available at http://www.cs.huji.ac.il/labs/transis.

Universally Unique Identifier (UUID) explained at Wikipedia. Available at http:
//en.wikipedia.org/wiki/Uuid.

R. Alexander, C. Kerner, J. Kuehn, J. Layton, P. Luca, H. Ong, S. Oral, L. Stein,
J. Schroeder, S. Woods, and S. Studham. Lustre™: A How To Guide for Installing
and Configuring Lustre Version 1.4.1, 2005. Available at www.ncsa.uiuc.edu/
News/datalink/0507/LustreHowTo.pdf.

S. Bafna, S. Dalvi, A. Kampasi, and A. Kulkarni. CHIRAYU: A Highly Available
Metadata Server for Object Based Storage Cluster File System. In IEEE Bom-
bay Section, Apr. 2003. Available at www.cs.utexas.edu/~abhinay/research_

papers/chirayu.pdf.

S. Bafna, S. Dalvi, A. Kampasi, and A. Kulkarni. Increasing current Lustre
availability to 99.9% with a backup Metadata Server. Jan. 2003. Available at
http://abhinaykampasi.tripod.com/TechDocs/HAMDSCharacteristics.pdf.

Cluster File Systems, Inc. Lustre White Paper, 2004. Available at http://www.

lustre.org.

Cluster File Systems, Inc. Lustre 1.4.7 Operations Manual, Version 1.4.7.1-man-
v35 (09/14/2006), 2006. Available at http://www.lustre.org.

X. Defago, A. Schiper, and P. Urban. Total order broadcast and multicast algo-
rithms: Taxonomy and survey. ACM Computing Surveys, 36(4):372-421, 2004.

C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He. Symmetric Active/Active
High Availability for High-Performance Computing System Services. Journal of
Computers, 1(8):43-54, 2006.

77

http://en.wikipedia.org/wiki/Software_test
http://en.wikipedia.org/wiki/Software_test
http://www.pvfs.org/index.html
http://www.pvfs.org/index.html
http://en.wikipedia.org/wiki/Uuid
http://en.wikipedia.org/wiki/Uuid
www.ncsa.uiuc.edu/News/datalink/0507/LustreHowTo.pdf
www.ncsa.uiuc.edu/News/datalink/0507/LustreHowTo.pdf
www.cs.utexas.edu/~abhinay/research_papers/chirayu.pdf
www.cs.utexas.edu/~abhinay/research_papers/chirayu.pdf
http://abhinaykampasi.tripod.com/TechDocs/HAMDSCharacteristics.pdf
http://www.lustre.org
http://www.lustre.org
http://www.lustre.org

References

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

78

C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He. Towards High Avail-
ability for High-Performance Computing System Services: Accomplishments and
Limitations. In Proceedings of High Awvailability and Performance Workshop,
Santa Fe, NM, USA, Oct. 17, 2006. Available at www.csm.ornl.gov/~engelman/

publications/engelmannO6towards.pdf.

C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He. On Programming Models
for Service-Level High Availability. In Proceedings of 2" International Conference
on Availability, Reliability and Security, Vienna, Austria, Apr. 10-13, 2007.

C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He. Transparent Symmetric
Active/Active Replication for Service-Level High Availability. In Proceedings of 7t
IEEFE International Symposium on Cluster Computing and the Grid, Rio de Janeiro,
Brazil, May 14-17, 2007. To appear.

X. He, L. Ou, C. Engelmann, X. Chen, and S. L. Scott. Symmetric Active/Active
Metadata Service for High Availability Parallel File Systems. 2007. (under review).

C. Leangsuksun, V. K. Munganuru, T. Liu, S. L. Scott, and C. Engelmann. Asym-
metric Active-Active High Availability for High-end Computing. In Proceedings of
2nd International Workshop on Operating Systems, Programming Environments and
Management Tools for High-Performance Computing on Clusters, Cambridge, MA,
USA, June 19, 2005.

D. Malki. The Transis User Tutorial, 2004. Available at http://www.cs.huji.ac.

il/labs/transis.

L. Ou, C. Engelmann, X. He, X. Chen, and S. L. Scott. Symmetric Active/Active
Metadata Service for Highly Available Cluster Storage Systems. 2007. (under

review).

L. Ou, X. He, C. Engelmann, and S. L. Scott. A Fast Delivery Protocol for Total
Order Broadcasting. 2007. (under review).

K. Uhlemann. High Availability for High-End Scientific Computing. Master’s thesis,
Department of Computer Science, University of Reading, UK, Mar. 2006.

www.csm.ornl.gov/~engelman/publications/engelmann06towards.pdf
www.csm.ornl.gov/~engelman/publications/engelmann06towards.pdf
http://www.cs.huji.ac.il/labs/transis
http://www.cs.huji.ac.il/labs/transis

References

[21] K. Uhlemann, C. Engelmann, and S. L. Scott. JOSHUA: Symmetric Active/Active
Replication for Highly Available HPC Job and Resource Management. In Proceed-
ings of IEEE International Conference on Cluster Computing, Barcelona, Spain,
Sept. 25-28, 2006.

79

© 0 N D U W N -

-
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Appendix

A.1 Lustre HA Daemon Source Code

A.1.1 lustreHAdaemon.c

//

// Lustre High Availability Daemon
//

// lustreHAdaemon.c ——source file —
//

// version 0.52rev

//

// by Matthias Weber

//

#include "transis.h"

#include "lustreHAdaemon.h"
#include "lustreMessageAdjust.h"

// Globals

__u8 fileCounterR = 0; /* counter for debug files Receive x/

int interceptorSocketID; /x the id of the interceptor server socket x/
struct hostent xhostinfo; /* hold host information x/

connection table t xconnectionTable; /% table of available connections x/

int LusterAcceptorPort = LUSTRE MAX ACC PORT}; /% local secure port for MDS x*/

pthread mutex t mutexCT = PTHREAD MUTEX INITIALIZER; /+ connection table lock x/

/1l

// Get information about host running on

/1l

// returns: 0 on success / —1 if error occurs
/[l

int GetHostInfo ()

{

char hostname [HOSTNAME LENGTH];

/* get host information =/

if (gethostname (hostname, HOSINAME LENGTH) !'= 0) {
perror("error getting hostname");
return —1;

81

A.

Appendix

e T T T T

/
/
/
/
/

~—

82

if ((hostinfo = gethostbyname(hostname)) == NULL) {
herror("error getting host by name");
return —1;

}
printf("0fficial host name: [%s]\n", hostinfo—>h name);
printf("0fficial host addr: [%s]\n", inet_ mntoa(
x(struct in addr *)hostinfo—>h addr list[0]));

return 0

starts the MDS/Client interceptor server

returns: 0 on success / —1 if error occurs

t StartInterceptorServer ()

int rc;
struct sockaddr in socketServer;

/* setting server up =/
interceptorSocketID = socket (AF INET, SOCK STREAM, 0);
if (interceptorSocketID < 0) {

perror ("error opening interceptor socket");

return —1;

}

socketServer.sin family = AF INET;
socketServer.sin _addr.s_addr = inet addr (INTERCEPTOR ADDR);
socketServer.sin port = htons(LUSTRE SERVER PORT);

bzero (socketServer.sin zero, 8);

printf("Binding Interceptor port: [%i] on addr: [%s]\n", LUSTRE SERVER PORT,
INTERCEPTOR_ADDR) ;

rc = bind(interceptorSocketID , (struct sockaddr *)&socketServer,
sizeof(socketServer));
if(re < 0){
perror ("error binding interceptor socket");
return —1;

}
rc = listen (interceptorSocketID , NUM_CONNECTIONS) ;
if (re < 0){

perror ("error listening to interceptor socket");
return —1;

}

return 0

Main Loop;

checks Sockets for messages and processes them,
looks for incomming connections as well

returns: 0 on success / —1 if error occurs

A.1. Lustre HA Daemon Source Code

102 //

103 int MessagePassOn ()

104 {

105 int re;

106 int ij

107 int Is;

108 fd set readfs;

109 int maxfd ; /* maximum file desciptor used =/

110 int noe; /* number of connection entries =/

11 int MDSSockets [NUM_CONNECTIONS | ; /+ MDS sockets s/

112 int CLIENTSockets [NUM CONNECTIONS | ; /* CLIENT sockets x/

113 int IDOfIndex [NUM CONNECTIONS] ; /* IDs of connection entries =/

114 int MessageType [NUM_CONNECTIONS]| ; /* message types of connection entries x*/
115 int closedConnections [NUM_CONNECTIONS|; /x closed connection entries x/

116 int numberOfClsConn ; /* number of closed connection entries x/
117

118

119 /* Lustre pass through =/
120 while (1){

121

122 numberOfClsConn = 0;

123

124 /* get connection table lock =/

125 rc = pthread mutex lock(&mutexCT); /+ get lock x/

126 if(rc !'= 0) {

127 perror("error getting connection table lock");

128 return —1;

129 }

130

131 /* check for active connections x*/

132 noe = GetNumberOfEnties ();

133 FD ZERO(&readfs);

134 FD SET(interceptorSocketID , &readfs); /+ look for incomming connections =/
135 maxfd = interceptorSocketlD ; /* set max fd x/
136

137 /% set the active connections x/

138 for (i=0; i<noe; i++4) {

139 /x set MDS x/

140 MDSSockets[i] = connectionTable—>connection[i].MDSSocket;
141 if (MDSSockets[i] '= —1)}{

142 FD SET(MDSSockets[i], &readfs);

143 if (MDSSockets|i]| > maxfd)

144 maxfd = MDSSockets[i];

145

146 /% set Client x/

147 CLIENTSockets[i] = connectionTable—>connection[i]. ClientSocket ;
148 if (CLIENTSockets[i] '= —1){

149 FD SET(CLIENTSockets[i], &readfs);

150 if (CLIENTSockets|[1] > maxfd)

151 maxfd = CLIENTSockets|[1i];

152 }

153

154 /* get connection id =/

155 IDOfIndex[i] = connectionTable—>connection[i].id;

156

157 /% get message type x/

158 MessageType|[i] = connectionTable—>connection[i].MessageType;
159 }//for

160

161 /* release connection table lock x/

162 rc = pthread mutex unlock(&mutexCT); /+ release lock =/
163 if(rc !'= 0) {

164 perror{"error releasing connection table lock");

83

192

220

Appendix

84

return —1;

}

/+ wait for data on sockets x*/
rc = select (maxfd+1, &readfs, NULL, NULL, NULL);
if(rc = —1) {

perror("error select");

return —1;

}

/* process connections =/
for (i=0; i<noe; i++) {
int closed = 0;

/% check Client =/
if (CLIENTSockets[i] != —1){
if (FD_ISSET(CLIENTSockets[i], &readfs)){

/% process message x/
switch (MessageType[i]) {
case LUSTRE ACCEPTOR CONNREQ:
rc = ReceiveAcceptorRequest (IDOfIndex[i], CLIENTSockets[i], MDS);

if(rc = —1)
return —1;

if(re = —2){
closedConnections [numberOfClsConn++] = IDOfIndex[1i |;
closed = 1;

}

break;
case LUSTRE LNET HELLO:
rc = ReceiveLNETHello (IDOfIndex[i], CLIENTSockets[i], MDS);

if(rc = —1)
return —1;

if(re = —2){
closedConnections [numberOfClsConn++]| = TDOfIndex[i];
closed = 1;

}

break;
case LUSTRE MESSAGE:
rc = ReceiveLustreMessage (IDOfIndex[i], CLIENTSockets[i], MDS);

if(re = —1)
return —1;
if(re = —2){
closedConnections [numberOfClsConn++4| = IDOfIndex[i];
closed = 1;
}
break;
default :
fprintf(stderr, "error, got wrong message type\n");
return —1;
break;
}//switch
1/t
b/ ik
/% check if connection was closed x/
if(closed =— 1)
continue;

/* check MDS s/
if (MDSSockets[i] !'= —1){
if (FD_ISSET(MDSSockets[i], &readfs)){

A.1. Lustre HA Daemon Source Code

228 /% process message */

229 switch (MessageType[i]) {

230 case LUSTRE ACCEPTOR CONNREQ:

231 rc¢ = ReceiveAcceptorRequest (IDOfIndex[i], MDSSockets[i], CLIENT);
232 if(rc = —1)

233 return —1;

234 if(rc = —2){

235 closedConnections [numberOfClsConn++| = IDOfIndex[i];
236 closed = 1;

237 }

238 break ;

239 case LUSTRE LNET HELLO:

240 rc¢ = ReceiveLNETHello(IDOfIndex[i], MDSSockets[i], CLIENT);
241 if(rc = —-1)

242 return —1;

243 if(re = —2){

244 closedConnections [numberOfClsConn++| = IDOfIndex[i];
245 closed = 1;

246 }

247 break ;

248 case LUSTRE MESSAGE:

249 rc = ReceiveLustreMessage (IDOfIndex[i], MDSSockets[i], CLIENT);
250 if(rc = —-1)

251 return —1;

252 if(re = —2){

253 closedConnections [numberOfClsConn++| = IDOfIndex[i];
254 closed = 1;

255 }

256 break ;

257 default :

258 fprintf(stderr, "error, got wrong message type\n");
259 return —1;

260 break ;

261 }//switch

262 Y/t

263 Y//if

264 }//for

265

266 /* close connections x/

267 for (1i=0; i<numberOfClsConn; i++){

268 /* get connection table lock =/

269 ls = pthread mutex lock(&mutexCT); /* get lock =/

270 if(ls 1= 0){

271 perror("error getting connection table lock");

272 return —1;

273 }

274 rc = CloseConnection(closedConnections[i]);

275 /* release connection table lock =/

276 ls = pthread mutex unlock(&mutexCT); /% release lock =/

277 if(ls 1= 0){

278 perror ("error releasing connection table lock");

279 return —1;

280

281 if (rc = -1)

282 return —1;

283 }

284

285 /* handle new Client connection s/

286 if (FD_ISSET(interceptorSocketID , &readfs)) {

287 rc = GetNewClient ();

288 if (rc = -1)

289 return —1;

290 }

85

A. Appendix

291

292 }// while

293

294 return 0;

205 }

296

297

208 //

209 // routine to close one connection between Client and MDS
300 //

301 // sockets are closed and the connection table enty is removed
302 //

303 // id — id of table entry with the connection details
304 //

305 // returns: 0 on success / —1 if error occurs

306 //

307 int CloseConnection (int id)

308 {

309 int rc;

310 int socket;

311

312 /% close MDS socket =/
313 rc = GetSocketFromConnectionTable (id, MDS, &socket);
314 switch (rc) {

315 case 0:

316 close (socket);

317 break ;

318 case —1:

319 fprintf(stderr, "error getting socket from MDS connection\n");
320 return —1;

321 break ;

322 case —2:

323 break ;

324 }

325

326 /x close Client socket x*/

327 rc = GetSocketFromConnectionTable (id, CLIENT, &socket);
328 switch (rc) {

329 case 0:

330 close (socket);

331 break;

332 case —1:

333 fprintf(stderr, "error getting socket from Client connection\n");
334 return —1;

335 break ;

336 case —2:

337 break ;

338 }

339

340 /+ Remove connection entry from table x/
341 rc = RemoveEntryFromConnectionTable (id);
342 if(rc = -1)

343 return —1;

344

345 printf("Connection with id: %i disconnected!\n", id);
346 return 0;

347 }

348

349

350 //

351 // set up incomming client connection

352 //

353 // if connection comes in, Client is accepted, connection table is

86

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

A.1. Lustre HA Daemon Source Code

// set up and request to connect to MDS is sent to Transis,
// function waits for lock and returns after connection
// 1is established
//
// returns: 0 on success / —1 if error occurs
//
int GetNewClient ()
{
int rc;
int Is;
int id;
int socket;
#ifndef TRANSIS BYPASS

_u32 +header;
#endif
struct sockaddr in socketClient;
unsigned int lengthClient = sizeof(socketClient);

printf(“Getting new client...\n");

/x get Client =x/
socket = accept(interceptorSocketID , (struct sockaddr *)&socketClient ,
&lengthClient);
if (socket < 0) {
if (errno = EWOULDBLOCK) {
perror ("Error accept Interceptor Client");
return —1;
}
perror ("Error accept Interceptor Client");
return —1;

}

/+ get connection table lock x/
ls = pthread mutex lock(&mutexCT); /* get lock =/
if(1s = 0) {
perror ("error getting connection table lock");
return —1;

}

/+ get new connection table id =/
GetConnectionID(&id);

/+ set up new connection table entry =/
rc = AddEntryToConnectionTable(id, —1, socket,
(char =)inet ntoa(socketClient.sin addr));
if(rc = —1) {
fprintf(stderr, "error setting up connection table entry\n");
return —1;

}

printf("--- got client with id: %i, connecting to MDS ... ---\n", id);

/* Got client , tell Transis to connect the Interceptor nodes to their MDS x/

rc¢ = EditMDSLock(id, SET); /% set MDS Lock! x/
if(rc = —-1)
return —1;

/x release connection table lock x/
ls = pthread mutex unlock(&mutexCT); /* release lock x/
if(1s = 0) {
perror("error releasing connection table lock");
return —1;

87

A. Appendix

417

418 #ifndef TRANSIS BYPASS

419 /* set up header data for transis message =/

420 header = (__u32 x)BufferToTransis; /* pointer to beginning of message =*/

421 #(header++) = CREATE CONNECTION; /% type of the message (specified in transis.h) =/
422 *(header++4) = (4*sizeof(__u32)); /* size of the message =/
)

423 *(header++) = id; /* identifier of entry in the connection table x/
424 *(header++4) = NO_TARGET; /% target of the message (No, Client or MDS) x/
425 /* send message x/

426 rc = SendMessageToTransis(BufferToTransis, (4xsizeof(_ u32)));
427 if(re = —1)

428 return —1;

429 #else

430 rc¢ = ConnectToMDS(id);

431 if(rc = -1)

432 return —1;

433 #endif

434

435 /* wait for MDS lock release; if released, connection to MDS is established x/
436 do {

437 /* get connection table lock =/

438 ls = pthread mutex lock(&mutexCT); /*x get lock =/

439 if(1s = 0) {

440 perror("error getting connection table lock");

441 return —1;

442 }

443 /+ get MDS lock status x/

444 rc = GetMDSLock(id);

445 /+ release connection table lock x*/

446 ls = pthread mutex unlock(&mutexCT); /* release lock x/
447 if(ls !'= 0) {

448 perror ("error releasing connection table lock");

449 return —1;

450

451 if(rc = —1)

452 return —1;

453

454 }while (rc !'= UNSET);

455

456 return 0;

457 }

458

459

460 //

461 // establish connection to the MDS

462 //

463 // uses local secure port (Acceptor Port) to connect to the MDS,
464 // after connection is set up, the connection table is updated
465 // and the MDS lock is released

166 //

467 // id — connection identifier

168 //

469 // returns: 0 if success / —1 if error occurs

a70 //

471 int ConnectToMDS (int id)

ar2 {

473 int rc;

474 int option;

475 int mdsSocketID ;

476 struct sockaddr in socketServer;

477 struct sockaddr_in socketConnect;

478

479 mdsSocketID = socket (PF_INET, SOCK STREAM, 0);

88

A.1. Lustre HA Daemon Source Code

if (mdsSocketID == —1) {
perror ("Error, can’t create MDS Socket!");
return —1;

}
/+ set socket options x*/
option = 1;

rc = setsockopt (mdsSocketID, SOL SOCKET, SO_REUSEADDR,
(char =*)&option, sizeof(option));
if(rc !'= 0) {
perror ("Error, can’t set socket options for MDS Socket!");
return —1;

}

/+ bind socket to local secure port =/

socketServer.sin family = AF INET;
socketServer.sin_port = htons(LusterAcceptorPort ——);

socketServer.sin addr.s addr = inet addr(INTERCEPTOR ADDR);
/* bind socket x/

r¢ = bind(mdsSocketID, (struct sockaddr *)&socketServer, sizeof(socketServer));

if(rc = 0) {
perror("error binding local secure MDS port");
return —1;

}

/+ set up MDS data x/
socketConnect .sin_family AF _INET;
socketConnect.sin_port = htons (LUSTRE_SERVER PORT);
socketConnect.sin_addr.s_addr = inet addr (LUSTRE MDS ADDR);
/* connect socket x/
rc = connect (mdsSocketID, (struct sockaddr x)&socketConnect,
if(re!'=0) {

perror ("Error connecting to Lustre MDS");

return —1;

}

/* get connection table lock =/
rc = pthread mutex lock(&mutexCT); /+ get lock =/
if(rc = 0){
perror("error getting connection table lock");
return —1;

}

sizeof (socketConnect));

/* check if entry in connection table already exists, and make new/edit old entry =/

r¢ = CheckConnectionID (id);
if(rc = 0){
/* no entry in table x/
rc = AddEntryToConnectionTable (id, mdsSocketID, —1, NULL);
if(re = —1){
close (mdsSocketID);
/* release connection table lock x/
rc = pthread mutex unlock(&mutexCT); /+ release lock =/
if(rc = 0){
perror ("error releasing connection table lock");
return —1;
}
return —1;
}
}else{

/* found entry in table x/
rc = EditConnectionTableEntry (id, mdsSocketID, —1, NULL);
if(re = —1){

close (mdsSocketID };

89

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

A.

Appendix

}

e e e e e e
= N

—~~

/% release conmnection table lock x*/

rc = pthread mutex unlock(&mutexCT); /+ release lock =/

if(rc !'= 0){
perror{"error releasing connection table lock");
return —1;

t

return —1;

¥
}

/% release MDS Lock! x/
rc = EditMDSLock (id , UNSET);

if(re = —1){
/x release connection table lock x/
rc = pthread mutex unlock(&mutexCT); /+ release lock =/
if(rc = 0){

perror("error releasing connection table lock");
return —1;

}

return —1;

}

/* release connection table lock =/
rc = pthread mutex unlock(&mutexCT); /+ release lock =/
if(rec !'= 0){
perror ("error releasing connection table lock");
return —1;

}

printf("connection with id: %i connected to MDS\n", id);
return 0;

receives LUSTRE ACCEPTOR REQUEST and passes the message on to Transis
id — connection identifier
socket — the socket identifier

target — indicate the target of the message (MDS, CLIENT)

returns: 0 if success / —1 if error occurs / —2 if peer closed connection

t ReceiveAcceptorRequest (int id, int socket, int target)

int rc;

int ls;

~_u32 xheader;

__u32 messageLength = (4xsizeof(_u32)) + sizeof(lnet acceptor connreq t);

/* set up header for transis message */

header = (__u32 x)BufferToTransis; /* pointer to beginning of message =*/
x(header++4) = LUSTRE ACCEPTOR CONNREQ; /x type of the message (see transis.h) =/
x(header++) = messageLength; /* size of the message x*/

(header++) = id; / identifier of entry in connection table x/
*(header++) = target; /% target of message (No, Client or MDS) x/

/* receive acceptor request and put behind the header x/
rc = ReceiveBuffer (socket, header, sizeof(lnet acceptor connreq_t), BLOCK);
switch (rc) {
case —1:
fprintf(stderr, "Error receiving acceptor request.\n");
return —1;

90

A.1. Lustre HA Daemon Source Code

606 break;

607 case —2:

608 fprintf(stderr ,

609 "ReceivelAcceptorRequest - peer closed connection; id: %i; socket: %i\n",
610 id, socket);

611 return —2;

612 break;

613 default:

614 if(rc !'= sizeof(lnet acceptor connreq t)) {
615 fprintf(stderr, "Didn’t receive complete acceptor request structure.\n");
616 return —1;

617 1

618 break;

619 1

620

621 #ifdef DEBUG

622 {

623 int fileTemp;

624 char fileName[30];

625 char fileNumber[20];

626

627 strcpy (fileName ,"recv");

628 sprintf(fileNumber, "%d", fileCounterR++);

629 strcat (fileName, fileNumber);

630

631 fileTemp=open (fileName , O CREAT | O TRUNC | O RDWR, 0666);
632 if (fileTemp < 0){

633 perror("error creating file");

634 return —1;

635 }

636

637 rc = write(fileTemp , header, sizeof(lnet acceptor connreq t));
638 if(rc = —1){

639 perror("error writing to debug file");

640 return —1;

641 }

642

643 rc = close(fileTemp);

644 if(re = —1){

645 perror("error closing debug file");

646 return —1;

647 }

648 }

649 #endif

650

651 #ifndef TRANSIS BYPASS

652 /+ send message to Transis =/

653 rc = SendMessageToTransis(BufferToTransis, messageLength);
654 if(rce = -1) {

655 fprintf(stderr, "error sending acceptor request\n');
656 return —1;

657

658 #endif

659

660 /* get connection table lock =/

661 ls = pthread mutex lock(&mutexCT); /% get lock =/
662 if(1s = 0){

663 perror("error getting connection table lock");
664 return —1;

665 1

666

667 /* set message type to the next in Lustre protocol x/
668 rc = SetMessageType (id, LUSTRE LNET HELLO);

91

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731

A. Appendix

/+ release connection table lock x*/
ls = pthread mutex unlock(&mutexCT); /* release lock x/
if(ls !'= 0){

perror ("error releasing connection table lock");

return —1;
if(rc = —1)
return —1;
#ifdef TRANSIS BYPASS
/* Check message and pass on to Lustre x/
rc = CheckAndSendAcceptorRequest ();
if(rc = -1)
return —1;
#endif
return 0;

}
//
// receives LUSTRE LNET HELLO and passes the message on to Transis
//
// id — connection identifier
// socket — the socket identifier
// target — indicate the target of the message (MDS, CLIENT)
//
// returns: 0 if success / —1 if error occurs / —2 if peer closed connection
//
int ReceiveLNETHello (int id, int socket, int target)
{ .
int rcj
int ls;
Inet hdr t xhdr; /#* pointer to Lustre LNET header x*/
_u32 xheader;
__u32 messageLength = (4xsizeof(u32)) + sizeof(lnet hdr t);
/+ set up header for transis message x*/
header = (_ _u32 x)BufferToTransis; /+ pointer to beginning of message */
(header++) = LUSTRE LNET HELLO; /% type of the message (see transis.h) x/
x(header++4) = messageLength; /* size of the message x/
*(header++) = id; /% identifier of entry in connection table =/
x(header++) = target; /* target of message (No, Client or MDS) x/
/+ receive LNET hello and put behind the header =/
rc = ReceiveBuffer (socket , header, sizeof(lnet hdr t), BLOCK);
switch (rc) {
case —1:
fprintf(stderr, "Error receiving LNET hello.\n");
return —1;
break ;
case —2:
fprintf(stderr,
"ReceiveLNETHello - peer closed connection; id: %i; socket: %i\n",
id, socket);
return —2;
break;
default :
if(rc != sizeof(lnet hdr t)) {
fprintf(stderr, "Didn’t receive complete LNET hello header.\n");
return —1;
}
break ;

92

A.1. Lustre HA Daemon Source Code

732 }

733

734 /+ check for payload =/

735 hdr = (lnet hdr t =*)header;

736 if (hdr—>payload length != 0){

737 fprintf(stderr, "got payload in LNET Hello header!!!\n");
738 return —1;

739 }

740

741 #ifdef DEBUG

742 {

743 int fileTemp;

744 char fileName|[30];

745 char fileNumber [20];

746

747 strecpy (fileName ,"recv");

748 sprintf(fileNumber, "%d", fileCounterR++);

749 strcat (fileName, fileNumber);

750

751 fileTemp=open (fileName , O CREAT | O TRUNC | O RDWR, 0666);
752 if (fileTemp < 0){

753 perror{"error creating file");

754 return —1;

755 }

756

757 rc = write(fileTemp , header, sizeof(lnet hdr t));
758 if(re = —-1){

759 perror("error writing to debug file");

760 return —1;

761 }

762

763 rc = close (fileTemp);

764 if(rc = —1){

765 perror("error closing debug file");

766 return —1;

767 }

768

769 #endif

770

771 #ifndef TRANSIS BYPASS

772 /* send message to Transis =/

773 rc = SendMessageToTransis(BufferToTransis, messageLength);
774 if(rce = —-1) {

775 fprintf(stderr, "error sending LNET hello header\n");
776 return —1;

e

778 #endif

779

780 /+ set message type to the next in Lustre protocol =/
781 if (target = CLIENT){

782 /* get connection table lock =/

783 ls = pthread mutex lock(&mutexCT); /+ get lock =/
784 if(1s !'= 0){

785 perror{"error getting connection table lock");
786 return —1;

787 }

788 /* set message type x/

789 rc = SetMessageType (id, LUSTRE MESSAGE);

790 /x release connection table lock x*/

791 ls = pthread mutex unlock(&mutexCT); /* release lock =/
792 if(ls !'= 0){

793 perror("error releasing connection table lock");
794 return —1;

93

A. Appendix

795

796 if(rc = —-1)

797 return —1;

798 }

799

800 #ifdef TRANSIS BYPASS

801 /% Check message and pass on to Lustre =/

802 rc¢ = CheckAndSendLNETHello ();

803 if(rc = —1)

804 return —1;

805 #endif

806

807 return 0;

808 }

809

810

811 //

812 // receives LUSTRE message and passes the message on to Transis

813 //

814 // id — connection identifier

815 // socket — the socket identifier

816 // target — indicate the target of the message (MDS, CLIENT)

817 //

818 // returns: 0 if success / —1 if error occurs / —2 if peer closed connection

819 //

820 int ReceiveLustreMessage (int id, int socket, int target)

821 {

822 int rc;

823 Inet _hdr t =hdr; /* pointer to Lustre message header x/

824 u32 xheader ;

825 _u32 *messageLength ;

826

827 /+ set up header for transis message x*/

828 header = (_ u32 x)BufferToTransis; /+ pointer to beginning of message */
829 x(header++4) = LUSTRE MESSAGE; /* type of the message (see transis.h) x/
830 messagelLength = header++; /+ pointer to size of message in header =x/
831 x(header++) = id; /% id of entry in connection table x/
832 x(header++) = target; /+ target of message (No, Client or MDS) =/
833

834 /* get the Lustre message header and put behind transis message header =/

835 rc = ReceiveBuffer(socket, header, sizeof(lnet hdr t), BLOCK);
836 switch (rc) {

837 case —1:

838 fprintf(stderr, "Error receiving Message.\n");

839 return —1;

840 break;

841 case —2:

842 fprintf(stderr, "ReceivelLustreMessage, header - peer closed connection;\
843 id: %i; socket: %i\n", id, socket);

844 return —2;

845 break ;

846 default :

847 if(rc != sizeof(lnet hdr t)) {

848 fprintf(stderr, "Didn’t receive complete message header.\n");
849 return —1;

850 }

851 break;

852 1

853

854 /* check for Payload length =/

855 hdr = (Ilnet hdr t =*)header;

856 if ((hdr—payload length + sizeof(Inet hdr t)) > MESSAGE BUFFER SIZE) {

857 fprintf(stderr, "Bad payload length %1d\n", le32 to cpu (hdr—>payload length));

94

858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

—

A.1. Lustre HA Daemon Source Code

return —1;

}

/+ get payload if needed =x/
if (hdr—>payload length > 0) {
/% receive payload and put behind Lustre message header x*/
rc = ReceiveBuffer(socket, (u8 x)(header + (sizeof(lnet hdr t)/sizeof(u32))),
hdr—>payload length, BLOCK);
switch (rc) {

case —1:
fprintf(stderr, "Error receiving Message.\n");
return —1;
break ;
case —2:
fprintf(stderr, "ReceiveLustreMessage, payload - peer closed connection;\

id: %i; socket: %i\n", id, socket);
return —2;

break;
default :
if (re¢ !'= hdr—>payload length) {
fprintf(stderr, "Didn’t receive complete message payload.\n");

return —1;

}

break ;
}
}
#ifdef DEBUG
{
int fileTemp;
char fileName|[30];
char fileNumber [20];
strepy (fileName ,"recv");
sprintf(fileNumber, "%d", fileCounterR+-+);
strcat (fileName, fileNumber);
fileTemp=open (fileName , O_CREAT | O TRUNC | O RDWR, 0666);
if(fileTemp < 0){
perror("error creating file");
return —1;
}
rc = write(fileTemp, header, sizeof(lnet hdr t) 4+ hdr—>payload length);
if(re = —1){
perror("error writing to debug file");
return —1;
}
rc = close(fileTemp);
if(rc = —1){
perror{"error closing debug file");
return —1;
}
#endif
/* set message length in transis message header =/
xmessageLength = (4xsizeof(__u32)) 4 sizeof(lnet hdr_ t) + hdr—>payload length;
#ifndef TRANSIS BYPASS

/* send message to Transis =/
rc = SendMessageToTransis(BufferToTransis, xmessageLength);

95

A. Appendix

921 if(rc = -1) {

922 fprintf(stderr, "error sending Lustre Message\n");

923 return —1;

924 }

925 #else

926 /* Check message and pass on to Lustre x/

927 rc = CheckAndSendMessage ();

928 if(rc = -1)

929 return —1;

930 #endif

931

932 return 0;

933 }

934

935

936 //

937 // Reads a buffer from a file descriptor (non—/blocking).
938 //

939 // fd — The file descriptor to read from.

940 // buffer — The buffer to read into.

941 // length — The maximum buffer length to read.

942 // block — The (non—)blocking flag (0 = non—blocking, 1 = blocking).
943 //

944 // returns: number of bytes read on success, —2 on closed file descriptor
945 // or —1 on any other error with errno set appropriately.
946 //

947 int ReceiveBuffer (int fd, void xbuffer , unsigned int length, unsigned int block)
948 {

949 int bytes;

950 unsigned int index;

951

952 for (index = 0; index < length;) {

953 /+ Read some data. x/

954 switch (bytes = read(fd, buffer + index, length — index)) {
955 case —1: {

956 switch (errno) {

957 case EINTR: {

958 break ;

959 1

960 case EAGAIN: {

961 if (0 = block) {

962 return index;

963 }

964 break;

965 }

966 default: {

967 perror ("unable to read from file descriptor");
968 return —1;

969 }

970 }

971 break;

972

973 case 0: {

974 errno = EPIPE;

975 if (0 !'= index) {

976 perror ("unable to read from closed file descriptor");
977 }

978 return —2;

979

980 default: {

981 index += bytes;

982 if (0 = block) {

983 return index;

96

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046

A.1. Lustre HA Daemon Source Code

}
}
}
}
return index;
}
/!
// Writes a buffer into a file descriptor (blocking).
//
// fd — The file descriptor to write to.
// buffer — The buffer to write from.
// length — The buffer length to write.
//
// returns: 0 on success, —2 on closed file descriptor or —1 on any
// other error with errno set appropriately.
//
int SendBuffer (int fd, const void xbuffer, unsigned int length)
{
int bytes;
unsigned int index;
for (index = 0; index < length;) {
/* Write some data. x/
switch (bytes = write(fd, buffer + index, length — index)) {
case —1: {
switch (errno) {
case EINTR:
case EAGAIN: {
break;
case EPIPE: {
if (0 != index) {
perror ("unable to write to closed file descriptor");
}
return —2;
}
default: {
perror{"unable to write to file descriptor");
return —1;
}
}
break ;
default: {
index 4= bytes;
}
}
}
return 0;
}
/!
// Add entry to connection table
//
// id — identifier of the connection
// MDSSocket — number of socket to MDS, —1 if not connected
// ClientSocket — number of socket to Client, —1 if not connected
// ipAddress — the TP Address of the Client, NULL if no enty
//
// returns: 0 on success / —1 if error occurs

97

A.

Appendix

1047 //

1048 int AddEntryToConnectionTable(int id, int MDSSocket, int ClientSocket , char xipAddress)
1049 {

1050 int index;

1051 void *connection = NULL;

1052

1053 /* Increase registry size. x/

1054 index = connectionTable—>count;

1055 connectionTable—>count++;

1056

1057 /* Reallocate registry. =/

1058 if (NULL — (connection = realloc(connectionTable—>connection ,

1059 (connectionTable—>count * sizeof(connectionTable—>connection[0]))))) {
1060 perror(“"realloc");

1061 return —1;

1062}

1063 connectionTable—>connection = connection;

1064

1065 /* Set connection entries. x/

1066 connectionTable—>connection[index].id = id;

1067 connectionTable—>connection [index |. MDSLock = UNSET;

1068 connectionTable —>connection [index]. MDSSocket = MDSSocket ;

1069 connectionTable—>connection [index]. ClientSocket = ClientSocket;
1070 connectionTable—>connection [index |. MessageType = LUSTRE ACCEPTOR_ CONNREQ;
1071 if (ipAddress != NULL)

1072 strcpy (connectionTable—>connection|index |. IPAddress, ipAddress);
1073 else

1074 strcpy (connectionTable—>connection|[index].IPAddress, "0.0.0.0");
1075

1076 return 0

1077 }

1078

1079

1080 //

1081 // Edit entry in the connection table

1082 //

1083 // id: — the entry with the given id will be edited

1084 // MDSSocket — number of socket to MDS, —1 if not to be set

1085 // ClientSocket — number of socket to Client, —1 if not to be set
1086 // ipAddress — the IP Address of the Client, NULL if not to be set
1087 //

1088 // returns: 0 on success / —1 if error occurs

1089 //

1090 int EditConnectionTableEntry (int id, int MDSSocket, int ClientSocket , char xipAddress)
1091 {

1092 int i

1093 int index = —1;

1094

1095 /* get index of id x/

1096 for (i=0; i<connectionTable—>count; i++) {

1097 if (connectionTable—>connection[i].id = id){

1098 index = 1i;

1099 break;

1100 }

1101 }

1102

1103 /% id not found =/

1104 if(index =— —1){

1105 fprintf(stderr, "Error editing connection table entry: id not found!\n");
1106 return —1;

1107 }

1108

1109 /+ Edit connection entries. x/

98

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

171 //

A.1. Lustre HA Daemon Source Code

I

{

connectionTable—>connection [index |. MessageType = LUSTRE ACCEPTOR_CONNREQ;
if (MDSSocket != —1)

connectionTable—>connection [index | . MDSSocket = MDSSocket ;
if (ClientSocket !'= —1)

connectionTable—>connection[index]. ClientSocket = ClientSocket;

if (ipAddress != NULL)
strecpy (connectionTable—>connection [index |.IPAddress, ipAddress);

return 0;

Remove entry from connection table
id — the entry with the given id will be removed

returns: 0 on success / —1 if error occurs

t RemoveEntryFromConnectionTable (int id)

int i
int index = —1;
void *connection = NULL;

/+ get index of id =x/
for (i=0; i<connectionTable—>count; i++) {

if (connectionTable—>connection[i].id == id){
index = i;
break;

}

}

/% id not found x/

if (index = —1){
fprintf(stderr, "Error removing connection from table: id not found!\n");
return —1;

}

/+ Remove entry from registry. =/
connectionTable—>count ——;

memmove(connectionTable—>connection + index, connectionTable—>connection + index + 1,
(connectionTable—>count — index) * sizeof(connectionTable—>connection|[0]));

/* Reallocate registry. =/
if (0 = connectionTable—>count) {
free(connectionTable —>connection);
connectionTable—>connection = NULL;
} else if (NULL = (connection = realloc(connectionTable—>connection ,
connectionTable—>count x sizeof(connectionTable—>connection[0])))) {
perror("realloc");
return —1;

} else {

connectionTable—>connection = connection;

return 0;

1172 // Function returns an unused connection id

99

A. Appendix

1173

1174 *id — pointer to the returned id

1176
1177
1178
1179 int rc;

1180 int rn;

1181

1182 do {

1183 /* generate random number x/

1184 rn = random ();

1185

1186 /% check if random number is already used, if not use it as id =/
1187 r¢ = CheckConnectionID (rn);

1188 if (0 = rc) {

1189 *id = rn;

1190 return ;

1191

1192 } while (1);

1193 }

1194
1195
1196

//
//

17 //
//
void GetConnectionID (int xid)
{

1197
1198
1199
1200
1201

Checks if connection ID is already used
id — the connection id to check

returns: 0 if id is not used / —1 if id is already used

1202
1203
1204
1205 int i;

1206

1207 /% check if id is already used =/

1208 for (i=0; i<connectionTable—>count; i++) {

1209 if (connectionTable—>connection[i].id = id){
1210 return —1;

1211 1

1212 }

1213

1214 return 0;

1215 }

1216
1217
1218

o e e
NN N

t CheckConnectionID (int id)

~~

1219 Returns the number of entries in the connection table
1220
1221
1222

1223

returns: >=0 the number of entries

e e e
[Ny

1224
1225
1226
1227
1228
1229

t GetNumberOfEnties ()

return connectionTable—>count;

——

1230
1231
1232
1233
1234
1235

gets the socket id from the connection table

id — connection identifier
choose — indicate the socket to get back (MDS, CLIENT)
xsocket — pointer to hold the socket identifier

e e, M S
e S M S

100

A.1. Lustre HA Daemon Source Code

1236 //

1237 // returns: 0 if success / —1 if error occurs / —2 if not connected
1238 //

1239 int GetSocketFromConnectionTable (int id, int choose, int *xsocket)
1240 {

1241 int i;

1242

1243 /+ look for connection x*/

1244 for (i=0; i<connectionTable—>count; i++) {

1245 if (connectionTable—>connection[i].id == id) {

1246 if (choose =— MDS) /* need MDS Socket x/

1247 xsocket = connectionTable—>connection [i].MDSSocket ;
1248 else /+ need Client Socket x*/

1249 xsocket = connectionTable—>connection[i]. ClientSocket;
1250 /% check for connection x/

1251 if (xsocket = —1)

1252 return —2; /% not connected x/

1253 else

1254 return 0; /% return socket id =/

1255 Y//if

1256 }//for

1257

1258 return —1;

1259 }

1260

1261

1262 //

1263 // Returns the MDS Lock status for the given table enty
1264 //

1265 // id — connection identifier

1266 //

1267 // returns: —1 if error occurs / 0 (UNSET) if Lock is not set /
1268 // 1 (SET) if Lock is set

1269 //

1270 int GetMDSLock (int id)

1271 {

1272 int i

1273

1274 /* look for connection enty x/

1275 for (i=0; i<connectionTable—>count; i++) {

1276 if (connectionTable—>connection[i].id == id) {

1277 /* check status =/

1278 switch (connectionTable—>connection[i].MDSLock) {
1279 case SET:

1280 return SET;

1281 break;

1282 case UNSET:

1283 return UNSET;

1284 default :

1285 break ;

1286 }//switch

1287 Y//if

1288 }//for

1289

1290 fprintf(stderr,

1291 "error finding, or false MDS Lock entry for connection with id: %i\n", id);
1292 return —1;

1203 }

1294

1295

1296 //

1207 // Set/Unset the MDS Lock from the given entry in the connection table
1208 //

101

1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361

A. Appendix

// id — connection identifier

// lockStatus — the status to set the MDSLock to
//

// returns: 0 if success / —1 if error occurs

/!

int EditMDSLock (int id, int lockStatus)

{

int i;

/* look for connection entry s/
for (i=0; i<connectionTable—>count; i++4) {

if (connectionTable—>connection[i].id = id) {
/* set/unset the Lock x/
connectionTable—>connection[i].MDSLock = lockStatus;
return 0;
b/ it
}// for
fprintf(stderr, "cannot set/unset MDS Lock for connection with id:

return —1;

//
// gets the message type of an connection table enty
//
// id — connection identifier
// =messageType — pointer to hold the message type
//
// returns: 0 if success / —1 if error occurs
//
int GetMessageType (int id, int xmessageType)
{

int i

/+ look for connection x*/

for (i=0; i<connectionTable—>count; i++) {

if (connectionTable—>connection[i].id = id) {
xmessageType = connectionTable—>connection[i]. MessageType;
return 0;
b/ if

}// for

fprintf(stderr, "could not get message type\n");

return —1;
}

/!

// Sets the message type of an connection table enty
//

// id — connection identifier

// messageType — the message type to set enty to

/!

// returns: 0 if success / —1 if error occurs

/!

int SetMessageType (int id, int messageType)

{

int i;
/+ look for connection x*/

for (i=0; i<connectionTable—>count; i++) {
if (connectionTable—>connection[i].id = id) {

102

%i\n" ,

id);

A.1. Lustre HA Daemon Source Code

1362 connectionTable—>connection[i]|. MessageType = messageType;
1363 return 0

1364 Y//if

1365 Y/ /for

1366

1367 fprintf(stderr, "could not set message type\n");

1368 return —1;

1369 }

1370

1371

1372 //

1373 // Application main entry point

13714 //

1375 //

1376 // programm exits or breaks up only here

1377 //

1378 int main (int argc, char xargv|[])

1379 {

1380 int rc;

1381 connection table t connTab; /+ the connection table =/
1382

1383 /+ set up the connection table =/

1384 connectionTable = (connection table t x)&connTab;
1385 connectionTable—>connection = NULL;

1386 connectionTable—>count = 0;

1387

1388 /+ release connection table lock x*/

1389 rc¢ = pthread mutex unlock(&mutexCT); /+ release lock =/
1390 if(rc !'= 0)

1391 exit (—1);

1392

1393 rc = GetHostInfo ();

1394 if(rce = -1)

1395 exit(—1);

1396

1397 #ifndef TRANSIS BYPASS
1398 rc = SetUpTransis ();

1399 if(rc = -1)

1400 exit (—1);

1401

1402 rc = StartTransisReceiveThread ();
1403 if(rc = -1)

1404 exit{(—1);

1405 #endif

1406

1407 #ifdef FAKE MDS

1408 for (;;){} /* Let Transis run ... x/
1409 #else

1410 rc = StartInterceptorServer ();
1411 if(rc = —-1)

1412 exit (—1);

1413

1414 rc = MessagePassOn ();

1415 if(rc = -1)

1416 exit (—1);

1417 #endif

1418

1419 #ifndef TRANSIS BYPASS

1420 r¢ = LeaveTransis();

1421 if(rc = —-1)

1422 exit{—1);

1423 #endif

1424

103

1425
1426
1427
1428
1429
1430
1431

A. Appendix

exit (0);

}

End of file

Tl Tl T
Tl T T

A.1.2

lustreHAdaemon.h

© 00 N O U W N
T T T T T T T T
T T T T T T T T

lustreHAdaemon .h

version 0.52rev

by Matthias Weber

—header

Lustre High Awvailability Daemon

file —

10

11 #ifndef LUSTREHADAEMON H

12

13 #include
14 #include
15 #include
16 #include
17 #include
18 #include
19 #include
20 #include
21 #include
22 #include
23 #include
24 #include
25 #include
26 #include
27 #include
28

29

<stdio .h>
<string .h>
<stdlib .h>
<fentl . h>
<sys/types.h>
<sys/socket .h>
<sys/time.h>
<netdb .h>
<errno .h>
<pthread .h>
<stddef.h>
<ctype.h>
<arpa/inet .h>
<netinet/in.h>
<unistd .h>

30 // Defines

31 #define HOSTNAME LENGTH
32 #define NUM_ CONNECTIONS
33 /% MDS/Connection Table
34 #define SET 1

35 #define UNSET 0

36 typedef struct {

37 unsigned int count;
38 struct {

39 int id;

40 char IPAddress[20];
41 int MDSLock;

42 int MDSSocket ;

43 int ClientSocket;
44 int MessageType;
45 } #connection;

46 } connection table t;
47

48

49 // Prototypes

50 int GetHostInfo

51 int StartInterceptorServer

104

20
10

Lock defines x*/

number of connections x/

the connection
the IP address of
connection to MDS

identifier
identifier

of entry s/

the client , NULL if not connected x*/
in progress (1) / established (0) =/
socket =/

of Client socket, —1 if no connection exists x/

next message according to Lustre Protocol (transis.h) x/

connection

information

struct x/

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

© 00 N O U A W N

R S I R R e T R S S
X NP O © KNG A W~ O

A.1. Lustre HA Daemon Source Code

int MessagePassOn 0);

int CloseConnection (int id);

int GetNewClient (0);

int ConnectToMDS (int id);

int ReceiveAcceptorRequest (int id, int socket, int target);

int ReceiveLNETHello (int id, int socket, int target);

int ReceiveLustreMessage (int id, int socket, int target);

int ReceiveBuffer (int fd, void xbuffer, unsigned int length,
unsigned int block);

int SendBuffer (int fd, const void xbuffer, unsigned int length);

int AddEntryToConnectionTable (int id, int MDSSocket, int ClientSocket ,
char xipAddress);

int EditConnectionTableEntry (int id, int MDSSocket, int ClientSocket ,
char xipAddress);

int RemoveEntryFromConnectionTable (int id);

void GetConnectionID (int =id);

int CheckConnectionID (int id);

int GetNumberOfEnties ()s

int GetSocketFromConnectionTable (int id, int choose, int =xsocket);

int GetMDSLock (int id);

int EditMDSLock (int id, int lockStatus);

int GetMessageType (int id, int xmessageType);

int SetMessageType (int id, int messageType);

// Globals

extern struct hostent xhostinfo; /+ hold host information =/

extern pthread mutex t mutexCT; /* pthread lock for connection table x/

#endif

//

// End of file

//

A.1.3 transis.c

//

// Lustre High Availability Daemon

//

// transis.c ——source file —

//

// version 0.52rev

//

// by Matthias Weber

//

#include "transis.h"

#include "lustreHAdaemon.h"

#include "lustreMessageAdjust.h"

// Globals

__u8 fileCounterTR = 0; /% counter for debug files Transis Receive x/

__u8 fileCounterTS = 0; /% counter for debug files Transis Send x/

88 BufferToTransis

Bthreadit
pthread mutex t

mutexTRANSIS;

[MAX MSG SIZE];
_s8 BufferFromTransis [MAX MSG SIZE|;
ReceiveThread; /+ transis receive thread =x/

/* pthread lock for transis =/

105

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

A. Appendix

static zzz_mbox_cap TransisGroup; /x Transis Group x*/

connect to transis deamon, join MDS group,
and set up receive handler

returns: 0 on success / —1 if error occurs

e e
[N Ny

t SetUpTransis ()

~~

/* connect to transis x/
TransisGroup = zzz_Connect(hostinfo—>h_name, (void %)0, SET_GROUP_SERVICE);

if (TransisGroup — 0) {
fprintf(stderr, "error connecting to transis!\n");
return —1;

}

/* join group x/
zzz _Join (TransisGroup, GROUPNAME);

/* set up message receive handler x/
zzz _Add Upcall(TransisGroup, TransisReceiveHandler , USER PRIORITY, 0);

return 0

}

//

// removes receive handler and leaves MDS group
//

// returns: 0 on success / —1 if error occurs
//

int LeaveTransis ()

/+ remove receive handler x/

rc = zzz_Remove Upcall(TransisGroup);

if(re = —1){
fprintf(stderr, "error removing receive handler\n");
return —1;

}

/x leaving group x*/
zzz _Leave (TransisGroup , GROUPNAME) ;

return 0

}

//

// starts thread that listens to transis for pending messages
//

// returns: 0 on success / —1 if error occurs

//

int StartTransisReceiveThread ()

~~

int rc;
/% start thread =/

rc = pthread create(&ReceiveThread , NULL, Transis Receive Thread, NULL);
if(rec !'= 0) {

106

87
88
89
90
91

93
94
95
96
97
98
99
100
101
102
103
104

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

140
141
142
143
144
145
146
147
148
149

A.1. Lustre HA Daemon Source Code

perror("error creating Transis receive thread");
return —1;

}

printf("Thread listening to Transis started.\n");
return 0;

//

// Thread that gives control to Transis. Transis polls for pending
// messages and invokes TransisReceiveHandler to deal with messages.
//
/!
Vo

roid xTransis Receive Thread ()

/+ give control to transis =/
E main_ loop();

pthread exit(NULL);

//
// handler invoked if transis message is pending
//
//
void TransisReceiveHandler ()
{
int rc;

/* receive pending message x/

rc = ReceiveTransisMessage ();
if(re = —1){
fprintf(stderr, "error receiving transis message\n");
}
}
//
// check received message from Transis and invoke appropriate
// function to deal with message
//
// returns: 0 on success / —1 if error occurs
//
int CheckTransisMessage ()
{
#ifndef FAKE MDS
int rc;
__u32 xtype;

/+ set pointer to message type x*/
type = (__u32 x)BufferFromTransis;

/* process message x/
switch (xtype) {
case CREATE CONNECTION:
rc = ConnectToMDS (*(type+2)); /+ *(type+2) pointer to connection id x/

if (rc = -1)
return —1;
break;

case LUSTRE ACCEPTOR CONNREQ:
rc = CheckAndSendAcceptorRequest ();

107

A. Appendix

150 if(rc = -1)

151 return —1;

152 break ;

153 case LUSTRE LNET HELLO:

154 rc = CheckAndSendLNETHello ();
155 if(rc¢ = -1)

156 return —1;

157 break ;

158 case LUSTRE MESSAGE:

159 rc = CheckAndSendMessage ();
160 if(re = —1)

161 return —1;

162 break ;

163 default :

164 fprintf(stderr, "Got wrong Transis message type!\n");
165 return —1;

166 break ;

167 }

168 #else

169 /+ print a dot instead x/
170 printf(".");
171 #endif

173 return 0;

receives message from Transis

returns: 0 on success / —1 if error occurs

t ReceiveTransisMessage ()

184 int rc;
185 int recvType;
186 view xgview;

188 /* obtaining lock =/
189 rc = pthread mutex lock(&mutexTRANSIS);

190 if(rc !'= 0) {

191 perror ("error obtaining transis lock");
192 return —1;

193 }

194

195 /* receive message x/

196 rc = zzz_Receive(TransisGroup, BufferFromTransis, MAX MSG SIZE, &recvType, &gview);
197 if(rc = —1) {

198 fprintf(stderr, "error receiving message from Transis.\n");
199 return —1;

200 }

201

202 /* release lock =/

203 rc = pthread mutex unlock({&mutexTRANSIS);
204 if(rc = 0) {

205 perror ("error releasing transis lock");
206 return —1;

207 }

208

209 if (recvType != VIEW CHANGE) {

210

211 #ifdef DEBUG

212 {

108

A.1. Lustre HA Daemon Source Code

213 __u32 xtype;

214 type = (__u32 x)BufferFromTransis;

215 if («type != CREATE CONNECTION){

216 int fileTemp ;

217 char fileName [30];

218 char fileNumber[20];

219

220 strcpy (fileName ,"TRrecv");

221 sprintf(fileNumber, "%d", fileCounterTR++);
222 strcat (fileName , fileNumber);

223

224 fileTemp=open (fileName, O CREAT | O TRUNC | O RDWR, 0666);
225 if (fileTemp < 0){

226 perror("error creating file");

227 return —1;

228 }

229

230 rc = write(fileTemp , BufferFromTransis, rc);
231 if(rc = —=1){

232 perror("error writing to debug file");
233 return —1;

234 }

235

236 rc = close(fileTemp);

237 if(re = —1){

238 perror("error closing debug file");

239 return —1;

240 }

241 }

242

243 #endif

244

245 /* process received message */

246 rc = CheckTransisMessage ();

247 if(rc = —-1)

248 return —1;

249 } else {

250 /* display new group status x/

251 printf("change in group configuration:\n");

252 printf(" group is ¥%s\n", gview—>members[0]);
253 printf(" no. of clients is %1d\n", gview—>nmembers);
254 }

255

256 return 0;

257 }

258

259

260 //

261 // sends buffer to Transis

262 //

263 // *xmessage — pointer to the buffer holding the message
264 // messagelLength — length of the message

265 //

266 // returns: 0 on success / —1 if error occurs

267 //

268 int SendMessageToTransis (char smessage, int messageLength)
269 {

270 int rc;

271

272 /* check message length =/

273 if (messageLength > MAX MSG_SIZE){

274 fprintf(stderr, "error message to big for transis: %i bytes\n", messageLength);
275 return —1;

109

A. Appendix

276 }

277

278 #ifdef DEBUG

279 {

280 ~u32 xtype;

281 type = (__u32 x)message;

282 if (xtype 1— CREATE CONNECTION){

283 int fileTemp;

284 char fileName |[30];

285 char fileNumber[20];

286

287 strcpy (fileName ,"TRsend");

288 sprintf(fileNumber, "%d", fileCounterTS++);
289 strcat (fileName, fileNumber);

290

291 fileTemp=open (fileName , O CREAT | O TRUNC | O RDWR, 0666);
292 if (fileTemp < 0){

293 printf("error creating file\n");

294 return —1;

295 }

296

297 rc = write (fileTemp , message, messageLength);
298 if(re = —1){

299 perror{"error writing to debug file");
300 return —1;

301 }

302

303 rc = close (fileTemp);

304 if(rc = —-1){

305 perror("error closing debug file");
306 return —1;

307 }

308 }

309

310 #endif

311

312 /* obtaining lock =x/
313 rc = pthread mutex lock(&mutexTRANSIS);

314 if(rc '= 0) {

315 perror ("error obtaining transis lock");
316 return —1;

317 }

318

319 /* send messages to transis s/

320 rc = zzz_VaSend(TransisGroup, AGREED, 0, messageLength, message, GROUPNAME, NULL);
321 if (rc < messageLength){

322 fprintf(stderr, "error sending message to transis!\n");

323 return —1;

324 }

326 /* release lock =/

327 rc = pthread mutex unlock({&mutexTRANSIS);
328 if(rc '= 0) {

329 perror ("error releasing transis lock");
330 return —1;

331 }

333 return 0;
334 }

335

336

337 //
338 // End of file

110

A.1. Lustre HA Daemon Source Code

339 //
A.1.4 transis.h

v //

2 // Lustre High Availability Daemon

3 //

4 // transis.h ——header file —

5 //

6 // version 0.52rev

T //

8 // by Matthias Weber

9 //

10

11 #ifndef TRANSIS H

12

13 #include <stdio.h>

14 #include "zzz_layer.h" /x Transis x/

15 #include "events.h" /+ Transis Event handler x/
16

17

18 // Defines
19 #define GROUPNAME "MDSGroup"
20 /* define Transis message types x/

21 #define CREATE CONNECTION 1 /* establish connection to MDS =/

22 #define LUSTRE ACCEPTOR CONNREQ 2 /* Lustre acceptor connection request x/
23 #define LUSTRE LNET HELLO 3 /* Lustre LNET hello message */

24 #define LUSTRE MESSAGE 4 /* ordinary Lustre message x/

25 /+ Transis message targets =/

26 #define MDS 0
27 #define CLIENT 1
28 #define NO TARGET —1
29
30

31 // Prototypes

32 int SetUpTransis

33 int LeaveTransis

34 int StartTransisReceiveThread
35 void *Transis Receive Thread
36 void TransisReceiveHandler

37 int CheckTransisMessage

38 int ReceiveTransisMessage

39 int SendMessageToTransis

40

41

42 // Globals

43 extern char BufferToTransis [MAX MSG SIZE|; /+ buffer holding messages to Transis =/
44 extern char BufferFromTransis [MAX MSG SIZE|; /* buffer holding messages from Transis =/
45

R N NN
[I P NN NI NN

ar xmessage, int messageLength);

46 #endif
47
48
19 /)
50 // End of file
51 /)
A.1.5 lustreMessageAdjust.c
v//

111

© 00 N O Ut W N

WOW W W W W NN NN NN NN NN R R e e e e
GOR DR RO ©0NO0A N RO ©RN®OA®N RO

36
37
38
39

A. Appendix

// Lustre High Availability Daemon

//

// lustreMessageAdjust.c ——source file —
//

// version 0.52rev

//

// by Matthias Weber

//

#include "transis.h"

#include "lustreHAdaemon.h"
include "lustreMessageAdjust.h"
g J

// Globals
char ipString[128]; /% Array to hold ip string for message adjust operations x/
__u8 fileCounterS = 0; /* counter for debug files Send =/
//
// Checks the acceptor request message and passes the message on
//
// returns: 0 on success / —1 if error occurs
//
int CheckAndSendAcceptorRequest ()
{
int re;
int socket ;
~u32 id;
__u32 target;
~u32 xhdrTran; /* pointer to transis message header x/
Inet acceptor connreq t xcr; /% pointer to Lustre acceptor request message */
/% set pointer to the structures in the buffer =/
#ifndef TRANSIS BYPASS

hdrTran = (_ u32 x)BufferFromTransis;
#else

hdrTran = (_ u32 x)BufferToTransis;
Hendif

cr = (lnet acceptor connreq t x*)(hdrTran+4);

/+ get message data from the transis message header =/

id = *(hdrTran+2); /% connection id =/

target = x(hdrTran+3); /+ message target x*/

/* check acceptor request x/

/* check acceptor magic =/

if (!lnet_accept_magic(cr—>acr_magic, LNET PROTO_ACCEPTOR MAGIC)) {
fprintf(stderr, "No recognised acceptor magic\n");
return —1;

}

/% check acceptor magic version number =/

if (cr—>acr_version != LNET PROTO ACCEPTOR_VERSION) {
fprintf(stderr, "wrong acceptor magic version\n");
return —1;

/* check target nid =/

if (0 = strcmp(libcfs nid2str (cr—>acr nid), INTERCEPTOR ADDR)) {
if(target = CLIENT){ /* message target is Client =/

fprintf(stderr, "Acceptor Packet from MDS to Client!!!\n");
return —1;

} else { /% message target is MDS x/

112

A.1. Lustre HA Daemon Source Code

65 change_string(&cr—>acr_nid, LUSTRE_MDS_ADDR);
66 }

67 }

68

69 /% get connection table lock =/

70 rc = pthread mutex lock(&mutexCT); /+ get lock =/
71 if(rc = 0){

72 perror("error getting connection table lock");
73 return —1;

74 }

75

76 /x get socket to send message to x/

77 r¢ = GetSocketFromConnectionTable (id, target , &socket);
78 switch (rc) {

79 case 0:

80 /* OK, go on... x/

81 break;

82 case —1:

83 fprintf(stderr, "error getting socket from connection table\n");
84 /x release connection table lock x/

85 rc = pthread mutex unlock(&mutexCT); /+ release lock =/
86 if(rc !'= 0){

87 perror ("error releasing connection table lock");

88 return —1;

89 1

90 return —1;

91 break;

92 case —2:

93 /* OK, no connection, no reply ;) x*/

94 /* release connection table lock x/

95 rc = pthread mutex unlock(&mutexCT); /+ release lock =/
96 if (rc !'= 0){

97 perror ("error releasing connection table lock");

98 return —1;

99 1

100 return 0;

101 break;

102 }

103

104 /+ release connection table lock x*/

105 rc¢ = pthread mutex unlock(&mutexCT); /+ release lock =/

106 if(rc !'= 0){

107 perror ("error releasing connection table lock");

108 return —1;

109 }

110

111 #ifdef DEBUG

112 {

113 int fileTemp;

114 char fileName|[30];

115 char fileNumber [20];

116

117 strcpy (fileName ,"send");

118 sprintf(fileNumber, "%d", fileCounterS+-+);

119 strcat (fileName, fileNumber);

120

121 fileTemp=open (fileName , O CREAT | O TRUNC | O RDWR, 0666);
122 if (fileTemp < 0){

123 perror("error creating file");

124 return —1;

125 }

126

127 rc = write(fileTemp, cr, sizeof(lnet acceptor connreq t));

113

157

166

180

A. Appendix

if (rce = —1){
perror("error writing to debug file");
return —1;
}
rc = close(fileTemp);
if(rc = —1){
perror("error closing debug file");
return —1;
}
#endif
/* pass on Lustre acceptor request message */
rc = SendBuffer (socket, cr, sizeof(lnet acceptor connreq t));
switch (rc) {
case —1:
fprintf(stderr, "Error sending Acceptor Request.\n");
return —1;
break ;
case —2:
fprintf(stderr, "peer closed connection.\n"};
return —1;
break ;
case 0:
/% OK, go on... %/
break ;

}

return 0

}
//
// Checks the LNET hello message and passes the message on
//
// returns: 0 if success / —1 if error occurs
//
int CheckAndSendLNETHello ()
{
int re;
int socket ;
_u32 id;
~u32 target;
Inet _hdr t *hdr; /« pointer to Lustre message header =/
Inet magicversion t xhmv; /* pointer to Lustre Magic =/
_u32 «hdrTran; /+ pointer to transis message header =/

/* set pointer to the structures in the buffer =/
#ifndef TRANSIS BYPASS

hdrTran =
#else

hdrTran =
#endif

hdr =

hmv =

(__u32 x)BufferFromTransis;
(_ _u32 x)BufferToTransis;

(Inet hdr t =*)(hdrTran+4);
(Inet magicversion t =x)&hdr—>dest nid;

/* get message data from the transis message header =/

id =
target —

(hdrTran+2); /+ connection id x/
x(hdrTran+3); /+ message target =/

/* check LNET hello header =/

/* check

114

magic */

A.1. Lustre HA Daemon Source Code

191 if (hmv—>magic != le32_to_cpu (LNET _PROTO_TCP_MAGIC)) {

192 fprintf(stderr, "LNET TCP PROTO magic check failed!\n");

193 return —1;

194 }

195 /% check magic version =/

196 if (hmv—>version_major != cpu_to_lel6 (LNET_PROTO_TCP_VERSION_MAIJOR) ||
197 hmv—>version minor != cpu_ to lel6 (LNET PROTO TCP VERSION MINOR)) {
198 fprintf(stderr, "LNET TCP PROTO magic version check failed!\n");

199 return —1;

200 }

201 /% check header type =/

202 if (hdr—type != cpu_to le32 (LNET MSG HELLO)) {

203 fprintf(stderr, "Expecting a HELLO header, but got type %1d\n",

204 le32 to_ cpu(hdr—type));

205 return —1;

206 }

207 /+ check source address x/
208 if (le64 to cpu(hdr—>src_nid) = LNET NID ANY) {

209 fprintf(stderr, "Expecting a HELLO header with a NID, but got LNET_NID_ANY\n");
210 return —1;

211 1

212 /+ change source address x/

213 if(0 = strcmp(libcfs nid2str (hdr—>src¢_nid) ,CLIENT ADDR) ||

214 0 =— strcmp(libcefs nid2str (hdr—>src_nid) ,LUSTRE MDS ADDR))

215 change string(&hdr—>src nid , INTERCEPTOR ADDR);

216

217 /+ get connection table lock x/
218 rc = pthread mutex lock(&mutexCT); /+ get lock x/

219 if(rc !'= 0){

220 perror("error getting connection table lock");
221 return —1;

222 1

223

224 /% get socket to send message to x/

225 rc = GetSocketFromConnectionTable (id, target , &socket);
226 switch (rc) {

227 case 0:

228 /% OK, go on... =/

229 break;

230 case —1:

231 fprintf(stderr, "error getting socket from connection table\n");
232 /* release connection table lock x*/

233 rc = pthread mutex unlock(&mutexCT); /+ release lock =/
234 if(rc = 0){

235 perror ("error releasing connection table lock");

236 return —1;

237 }

238 return —1;

239 break;

240 case —2:

241 /* OK, no connection, no reply ;) =/

242 /+ release connection table lock x*/

243 rc = pthread mutex unlock(&mutexCT); /+ release lock =/
244 if (rc !'= 0){

245 perror ("error releasing connection table lock");

246 return —1;

247 }

248 return 0;

249 break;

250 }

251

252 /* release connection table lock x/

253 rc = pthread mutex unlock(&mutexCT); /+ release lock =/

115

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

A. Appendix

if(re 1= 0){

}

perror ("error releasing connection table lock");

return —1;

#ifdef DEBUG

{

int fileTemp;
char fileName[30];

char fileNumber[20];

strcpy (fileName ,"send");

sprintf(fileNumber,

strcat (fileName,

fileTemp=open (fileName, O CREAT | O TRUNC | O RDWR, 0666

if (fileTemp < 0){

"4da", fileCounterS-+-+);
fileNumber);

perror("error creating file");

return —1;

}

rc = write(fileTemp, hdr, sizeof(lnet hdr t));

if(rc = —1){

perror("error writing to debug file");

return —1;

¥
rc = close(fileTemp);
if (re = —1){

perror("error closing debug file");

return —1;

}

#endif

/+ pass on Lustre LNET hello x*/
rc = SendBuffer (socket , hdr, sizeof(lnet hdr t));
switch (rc) {

}

case —1:
fprintf(stderr,
return —1;
break ;

case —2:
fprintf(stderr ,
return —1;
break;

case 0:

/* OK, go on...
break ;

return 0;

}

"Error sending Message.\n");

"peer closed connection.\n");

*/

)

Checks a Lustre message and passes the message on

returns: 0 on success / —1 if error occurs

//
//
//
//
//

{

int rc;

116

t CheckAndSendMessage ()

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

A.1. Lustre HA Daemon Source Code

int socket;

o u32 id;

__u32 target;

_u32 transisMessageLength ;
u32 transisHeaderLength

Inet _hdr_t +hdr;
R EY +hdrTran

)

/

/ *

/%

/*

/ *

length of the transis message =/
length of the transis message header x/

poi
poi

nter to Lustre message header =/
nter to transis message header x/

/% set pointer to the structures in the buffer x/

#ifndef TRANSIS BYPASS

hdrTran = (_ u32 x)BufferFromTransis;
#else
hdrTran = (__u32 x)BufferToTransis;
#endif
hdr = (lnet_hdr_t x)(hdrTran+4);
/+ get message data from the transis message header =/
transisHeaderLength = 4xsizeof(_ u32); /* length of the transis message header =/
transisMessageLength = x(hdrTran+1); /* length of the entire transis message x/
id = x(hdrTran+2); /* connection id =/
target = x(hdrTran+3); /* message target x/
/* adjust ip addesses in Lustre message header =/
if(0 = stremp(libcfs nid2str (hdr—>src_nid) ,CLIENT ADDR) ||
0 — stremp(libcefs nid2str (hdr—>src nid) ,LUSTRE MDS ADDR))
change_string(&hdr—>src_nid, INTERCEPTOR_ADDR);
if (0 = strcmp(libefs nid2str (hdr—>dest nid), INTERCEPTOR ADDR)) {
if (target = MDS) /+ message target is MDS =/
change string(&hdr—>dest nid, LUSTRE MDS ADDR);
else /+ message target is Client x/
change string(&hdr—>dest nid, CLIENT ADDR);
}
/* get connection table lock =/
rc = pthread mutex lock(&mutexCT); /% get lock =/
if(rc = 0){
perror("error getting connection table lock");
return —1;
}
/* get socket to send message to x/
r¢ = GetSocketFromConnectionTable (id, target , &socket);
switch (rc) {
case 0:
/* OK, go on... =/
break;
case —1:
fprintf(stderr, "error getting socket from connection table\n");
/+ release connection table lock x*/
rc = pthread mutex unlock(&mutexCT); /« release lock s/
if(re !'= 0){
perror ("error releasing connection table lock");
return —1;
}
return —1;
break;
case —2:
/% OK, no connection, no reply ;) x*/
/* release connection table lock x/
rc = pthread mutex unlock(&mutexCT); /% release lock x/
if(rc = 0){
perror ("error releasing connection table lock");

117

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

A. Appendix

return —1;

}

return 0;
break ;

}

/* release connection table lock =/
rc = pthread mutex unlock(&mutexCT); /% release lock =/

if(rc !'= 0){

perror ("error releasing connection table lock");

return —1;

}

#ifdef DEBUG
{

int fileTemp;
char fileName |[30];

char fileNumber [20];

strcpy (fileName ,"send");

sprintf (fileNumber ,

"%d", fileCounterS++);

strcat (fileName , fileNumber);

fileTemp=open (fileName , O _CREAT | O_TRUNC | O RDWR, 0666);

if (fileTemp < 0){

perror("error creating file");

return —1;

}

rc = write(fileTemp, hdr, transisMessageLength—transisHeaderLength);

if(re = —1){

perror("error writing to debug file");

return —1;

}

rc = close(fileTemp);

if(rc = —1){

perror("error closing debug file");

return —1;

}
#endif

/* pass on complete

Lustre message */

rc = SendBuffer(socket , hdr, transisMessageLength—transisHeaderLength);

switch (rc) {
case —1:
fprintf(stderr,
return —1;
break ;
case —2:
fprintf(stderr,
return —1;
break ;
case 0:
/% OK, go on...
break;

}

return 0

}

118

"Error sending Message.\n");

"peer closed connection.\n");

*/

443
444
445
446
447
448
449
450
451
452

454
455
456
457
458
459

461
462
463
464
465
466

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

489
490
491
492
493
494

U W N

A.1. Lustre HA Daemon Source Code

//

// Lustre Code

/]

char % libcfs nid2str (lnet nid t nid)
{

__u32 addr = LNET_NIDADDR(nid);

suprintf(ipString , LNET NIDSTR SIZE, "Ju.%u.%u.%u",

((unsigned int)addr >> 24) & O0xff, ((unsigned int)addr >> 16) & 0xff,

((unsigned int)addr >> 8) & O0xff, (unsigned int)addr & Oxff);

return ipString;

}

int libcfs ip_ str2addr (char *str, int nob, _ u32 xaddr)

{
int a
int b
int ¢
int d
int n = nob; /* XscanfX x/

/* numeric IP?7 s/

if (sscanf(str, "%u.%u.%u.%u¥%n", &a, &b, &c, &d, &n) >= 4 &

n — nob &&

(a & ~0xff) — 0 && (b & ~0xff) — 0 &&

(¢ & ~0xff) — 0 && (d & ~0xff) — 0) {
xaddr = ((a<<24)[(b<<16)|(c<<8)|d);

return 1;

}

return 0;

}

void change string (lnet nid t xnid, char =*str)
{

__u32 xaddrp;

~u32 addr = LNET NIDADDR(x*nid);

__u32 net = LNET NIDNET (*nid);

addrp = &addr;
libcfs ip str2addr(str, strlen(str), addrp);
«nid = LNET MKNID(net ,addr);

}
int lnet accept magic (__u32 magic, _ u32 constant)
{

return (magic = constant || magic = _ swab32(constant));
}
/1l
// End of file
/!

A.1.6 lustreMessageAdjust.h

//
// Lustre High Availability Daemon
//
// lustreMessageAdjust.h ——header file —
/!

119

A. Appendix

versio

by

© 0 N O
S
S

n 0.52rev

Matthias Weber

10
11

12 #ifndef LUSTREMESSAGEADJUST H

13

14 #include
15 #include
16 #include
17 #include

<sys/uio.h>

<sys/types.h>

<stdio .h>
<stddef.h>

18 #include <fcntl.h>
19
20
21 /
22 /
23/
24

Lustre Data

Tl T T

#ifndef KERNEL

/% Userpace byte flipping */

include <endian.h>

include <byteswap.h>

define _ swabl6(x) bswap 16

define _ swab32(x) bswap 32(

define swab64(x) bswap_ 64 (
)
)
)

_ x)

B x)

- x)

define swabl6s(x) do {x(x) =

define _ swab32s(x) do {x(x bswap 32(x(x

define _ swab64s(x) do {*(x bswap 64 (*(x
if BYTE ORDER — __ LITTLE ENDIAN

define lel6 to cpu(x

define cpu_ to lel6(x

le32 to_cpu(x

(x

(x

(x

bswap 16 (x(x));}
))s}

)i}

while (0)
while (0)
while (0)

define
define cpu_to le32
define le64 to cpu
define cpu_to le64
else
if _ BYITE ORDER =—
define lel6 to cpu
cpu_to_

(x)

define (x)
le32 to cpu(x)

(x)

(x)

(x)

)
)
)
)
)
)
BIG_ENDIAN

define

cpu_to_le32
le64 to_cpu
le64

define
define
define
else
error "Unknown byte order"
endif /« _ BIG ENDIAN x/
endif /= LITTLE ENDIAN x/
#endif /x ! */

cpu_to

__KER.\EL__

char
unsigned
unsigned
unsigned
unsigned
u64
u32

typedef
typedef
typedef
typedef
typedef
typedef
typedef

__88;
__u8;

ul6;
__u3d2;
__ub4;
Inet nid_t;
Inet pid t;

char
short
long
long long

64 #define
65 #define
66 #define
67 #define
68 #define

LNET_NID_ANY
LNET_NIDSTR_SIZE
LNET_NIDADDR(nid)
LNET NIDNET(nid)
LNET_MKNID(net , addr)

Inet nid _t) —1)

/% size of each one (sece below for usage) =/
_u32)((nid) & Oxffffffff))

“u32) (((nid) >> 32)) & Oxffffffff)

((
32
(-
((((__u64)(net)) < <32)[((__u6d)(addr)))

120

A.1. Lustre HA Daemon Source Code

69

70 #define WIRE ATTR __attribute ((packed))
71

72 #define LNET PROTO TCP MAGIC OxeebcOded

73 #define LNET PROTO TCP_VERSION MAJOR 1
74 #define INET_PROTO_TCP_VERSION MINOR 0

75 #define INET PROTO ACCEPTOR MAGIC Oxacce7100
76 #define LNET PROTO ACCEPTOR_VERSION 1
e

78 typedef enum {

79 LNET MSG ACK = 0,
so INET MSG PUT,

81 LNET MSG_GET,

82 LNET MSG_REPLY,

83 LNET MSG_HELLO,

84 } Inet msg type t;

86 /+ The wire handle’s interface cookie only matches one network interface in
% one epoch (i.e. new cookie when the interface restarts or the node

88 x reboots). The object cookie only matches one object on that interface
89 s during that object’s lifetime (i.e. no cookie re—use). */

90 typedef struct {

91 ~_u64 wh interface cookie;

92 __u6b4 wh_object cookie;

93 } WIRE ATTR lnet handle wire t;
94

95 /% The variant fields of the portals message header are aligned on an 8

*+ byte boundary in the message header. Note that all types used in these
97 x wire structs MUST be fixed size and the smaller types are placed at the
98 x end. x/
99 typedef struct Inet ack {

100 Inet handle wire t dst wmd;
101 __ub4 match_bits;
102 ~u32 mlength ;

103 } WIRE ATTR Inet ack t;

104

105 typedef struct lnet put {

106 Inet handle wire_t ack wmd;
107 ub4 match bits;
108 __ub4 hdr data;
109 u32 ptl index;
110 _u32 offset ;

111 } WIRE ATTR lnet put_t;

112

113 typedef struct lnet get {

114 Inet handle wire t return wmd;
115 __ub4 match_bits;
116 _u32 ptl index;
117 u32 src_offset;
118 _u32 sink length;
119 } WIRE ATTR lnet get t;

120

121 typedef struct Ilnet reply {

122 Inet handle wire_t dst_wmd;
123 } WIRE ATTR Inet reply t;

124

125 typedef struct lnet hello {

126 __ub4 incarnation;

127 __u32 type;

128 } WIRE ATTR Inet hello t;

129

130 typedef struct {
131 Inet _nid_t dest_nid;

121

A. Appendix

132 Inet _nid_t src_nid;
133 Inet pid t dest pid;
134 Inet pid_t src_pid;

135 __u32 type; /* lnet msg type t =/

136 u32 payload length; /* payload data to follow =/
137 /#<————__u64 aligned ——— >/

138 union {

139 Inet _ack t ack;

140 Inet put t put;

141 Inet get t get ;

142 Inet reply t reply;

143 Inet hello t hello;

144 } msg;
145 } WIRE ATTR Inet hdr t;

146

147 typedef struct {

148 __u32 magic ; /* LNET PROTO TCP MAGIC =/

149 _ulé version major; /% increment on incompatible change x/
150 __ul6 version minor; /* increment on compatible change x/
151 } WIRE ATTR lnet magicversion t;

152

153 typedef struct {

154 u32 acr magic; /* PIL ACCEPTOR PROTO MAGIC =/

155 __u32 acr_version; /% protocol version x/

156 _ub4 acr nid; /* target NID x/

157 } lnet acceptor connreq t;

158

159

160 //

161 // Interceptor Data

162 //

163

164 // Defines
165 #ifdef INTERCEPTOR CLIENT

166 #define INTERCEPTOR ADDR "10.0.0.12"
167 #define LUSTRE MDS ADDR "10.0.0.10"
168 #elif INTERCEPTOR CLIENT ALONE

169 #define INTERCEPTOR ADDR "10.0.0.12"
170 #define LUSTRE MDS ADDR "10.0.0.5"
171 #else

172 #define INTERCEPTOR ADDR "10.0.0.10"
173 #define LUSTRE MDS ADDR "10.0.0.5"
174 #endif

175 #define CLIENT ADDR "10.0.0.1"

176 #define LUSTRE SERVER PORT 988

177 #define LUSTRE MIN ACC PORT 512

178 #define LUSTRE MAX_ACC_PORT 1023

179 #define MESSAGE BUFFER SIZE 4168 /+ Lustre message size: 4096(payload) + 72(header)
180 #define BLOCK 1 /+ 1 blocking / 0 non—blocking communication =/
181

182

183 // Prototypes

184 int CheckAndSendAcceptorRequest ();

185 int CheckAndSendLNETHello ();
186 int CheckAndSendMessage ()s
187 // Lustre prototypes

188 char * libcfs nid2str (Inet nid t nid);

180 int libcfs ip str2addr (char #str, int nob, _ u32 xaddr);
190 void change_string (Inet nid_t *nid, char =xstr);

191 int Inet accept magic (_ _u32 magic, _ u32 constant);

192

193 #endif

194

122

A.1. Lustre HA Daemon Source Code

195

196 //
197 // End of file

198 //

A.1.7 Makefile

1 ## Makefile to create the HA components for Lustre

2 ## Written by Matthias Weber

3 it

4 #4£ usage:

5 ## three targets to build:

6 FH interceptor mds (default) (possible flag: CPPFLAGS+=DTRANSIS BYPASS)

7T FHH interceptor client (with flags: CPPFLAGS+——DINTERCEPTOR CLIENT

8 #4F CPPFLAGS+——DTRANSIS BYPASS)

9 fake mds (with flag CPPFLAGS+=DFAKE MDS)

10 ##

11 ## additional option:

12 ## debug mode: CPPFLAGS+=-DDEBUG

13 ##

14 ## for cleanup:

15 #4# clean (deletes all object files and executables)

16 ## clean objects (deletes all object files)

17 #HE clean debug files (deletes the files created in debug mode)

18 #H#

19 ## CPPFLAGS:

20 DEBUG — enable debug mode

21 #Hf INTERCEPTOR CLIENT — switch ip addresses to client (use of MDS

22 #H interceptor as MDS)
23 #H INTERCEPTOR CLIENT ALONE — switch ip addresses to client (use of Lustre

24 MDS directly)
25 - FAKE MDS — Jjust work as transis client and don’t use real MDS
26 #Hf TRANSIS BYPASS — no use of transis

27 FH£

28 ## example:

29 make interceptor client —e CPPFLAGS+=DDEBUG CPPFLAGSt+=DINTERCEPTOR CLIENT
30 #4£ CPPFLAGS+=-DTRANSIS BYPASS

31

32

33 ## Compiler

34 CC = gcc

35

36 ## Transis directory

37 BASEDIR=/usr/src/transis

38

39 ## Transis include directories
40 INCLUDEDIR=$ (BASEDIR)/include/
41 LIBDIR=$ (BASEDIR)/ bin /LINUX/

43 ## Transis flags

44 TRANSISLIBS—=L$(LIBDIR) —ltransis
45

46 ## Compiler flags

47 CFLAGS—T$ (INCLUDEDIR) —Wall

48

49 ## lpthread flags

50 LPTHREAD=—Ipthread

51

52 ## the objects

53 OBJECTS = lustreHAdaemon.o lustreMessageAdjust.o transis.o
54

123

A. Appendix

55 all: interceptor mds

56

57 interceptor mds: clean_ objects $(OBJECTS)

58 @echo "building Lustre MDS Interceptor..."

50 @$(CC) —o lustre MDS Interceptor $(OBJECTS) $(TRANSISLIBS) $(LPTHREAD)

60 @Qecho "done"

61

62 interceptor client: clean objects $(OBJECTS)

63 @echo "building Lustre Client Interceptor..."

64 @3(CC) —o lustre_ CLIENT _Interceptor $(OBJECTS) $(TRANSISLIBS) §(LPTHREAD)
65 @echo "done"

66

67 fake mds: clean_objects $(OBJECTS)

68 @echo "building Lustre Fake MDS..."

69 @$(CC) —o lustre Fake MDS $(OBJECTS) $(TRANSISLIBS) $(LPTHREAD)

70 @echo "done"

71

72 clean:

73 @echo "cleaning all executables and object files...
74 @/bin/rm —f lustre Fake MDS lustre CLIENT Interceptor lustre MDS Interceptor *.o0
75 @echo "done"

76

77 clean objects:

78 @echo "cleaning object files..."

79 @/bin/rm —f x*.o0

80 @echo "done"

81

82 clean debug files:

83 @echo "cleaning debug files..."

g4 @/bin/rm —f sendx recvs* TRx

85 @Qecho "done"
86
87 %.0: %.c

88 @echo "compiling file..."
89 @$(CC) $(CFLAGS) $(CPPFLAGS) —c $< —o $Q@
90 @echo "done"

124

© 00 N O Uk W N

QUOOT U QU Ut Ot QU B R R B R R R B R R W W W W W W W W W NN NN NN NN N R e e e e e e e e
DU R WY RO © N0 U R WN RO © 0O WN O © 0N U WN O © 000N WN = O

A.2. Benchmark Program Source Code

e T T T T T T T T
e T T T T T T T T T

A.2 Benchmark Program Source Code

A.2.1 benchmarkProgram.c

Benchmark Programm for the

Lustre High Awvailability Daemon

benchmarkProgram.c
version 1.0

by Matthias Weber

—source file —

#include "benchmarkProgram.h"

// Globals
__ubd NumberOfFiles;
_u64 NumberOfTests ;
int xFileDescriptorArray ;
char «xFileNameArray ;

time data t xtimeData;

sets up the needed values to perform

returns: 0 on success / —1 if error occurs

tests

t Set_Up_ Values ()

u6d i;

char fileNumber [20];

/+ allocate memory to hold results

runs x/

timeData = (time data t =) malloc({NumberOfTests * sizeof (time data t));

if (timeData = NULL)
return —1;

/* allocate memory to hold file name and descriptor x/
FileDescriptorArray = (int =) malloc(NumberOfFiles % sizeof(int));

if (FileDescriptorArray =— NULL)
return —1;

FileNameArray = (char %) malloc(NumberOfFiles % sizeof(char x*));

if (FileNameArray =— NULL)
return —1;

for (i=0; i<NumberOfFiles; i++){

FileNameArray[i] = (char %) malloc(30 * sizeof(char));

if (FileNameArray[i] == NULL)
return —1;

}

/+ create file names x*/
for (i=0; i<NumberOfFiles; i++){

strcpy (&FileNameArray[i][0], "/mnt/lustre/LTEST");

125

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

74
75
76
"
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

110
111
112
113
114
115
116
117
118
119

A. Appendix

sprintf(fileNumber, "%11d", 1);
strcat (&FileNameArray[i][0], fileNumber);

}

return 0

}
//
// creates the specified number of files and measures time needed
// to do so
/1l
// returns: 0 on success / —1 if error occurs
/!
int Test Open (__u64 run_ number)
{
_ub4 i;
int re;

struct timezone tz;

struct timeval time before;
struct timeval time after;
time data_t *time ;

time = &timeData|[run_number|;

/* get time before test x/
rc = gettimeofday(&time before, &tz);
if(rc = —-1)

return —1;

for (1i=0; i<NumberOfFiles; i++){
/* create file =x/
FileDescriptorArray|[i] = open(&FileNameArray[i][0],
O CREAT | O TRUNC | O RDWR, 0666);
if (FileDescriptorArray[i] — —-1) {
perror ("open'");
return —1;
}
/x close file =x/
rc = close(FileDescriptorArray[i]);
if(rc = —1) {
perror("close");
return —1;

}
}

/* get time after test x*/
rc = gettimeofday(&time after, &tz);
if(rc = -1)

return —1;

/x get difference x/
time—>open usec = ((time after.tv sec*1000000) + time after.tv usec) —

((time before.tv_secx1000000) + time before.tv_usec);

return 0;

reades the file status (metadata) of the created files
and measures time needed to do so

— S
— S

126

A.2. Benchmark Program Source Code

120 // returns: 0 on success / —1 if error occurs

121 //

122 int Test Stat (__ u64 run_number)

123 {

124 o ubd iy

125 int re;

126 struct stat file status;

127 struct timezone tz;

128 struct timeval time before;

129 struct timeval time after;

130 time data t *time ;

131

132 time = &timeData|[run number|;

133

134 /+ get time before test x/

135 rc = gettimeofday(&time before, &tz);
136 if(rc = -1)

137 return —1;

138

139 for (1=0; i<NumberOfFiles; i++){

140 /* open file x/

141 FileDescriptorArray[i] = open(&FileNameArray[i][0], O RDWR, 0666);
142 if (FileDescriptorArray [i] = —1)
143 perror{"open'");

144 return —1;

145 }

146 /x read file =/

147 rc = fstat (FileDescriptorArray[i], &file status);
148 if(re = -1) {

149 perror("fstat");

150 return —1;

151 }

152 /% close file x/

153 rc = close(FileDescriptorArray[i]);
154 if(rc = —1){

155 perror{"close")

156 return —1;

157 }

158 }

159

160 /% get time after test =/

161 rc = gettimeofday(&time after, &tz);
162 if(rc = -1)

163 return —1;

164

165 /* get difference x/

166 time—>read usec = ((time after.tv_sec*1000000) + time after.tv_usec) —
167 ((time before.tv secx1000000) + time before.tv usec);
168

169 return 0;

170 }

171

172

173 //

174 // deletes the created files and measures time needed to do so
175 //

176 // returns: 0 on success / —1 if error occurs
7)/

178 int Test Delete (__u64 run_ number)

179 {

180 _ubd i

181 int rC

182 struct timezone tz;

127

A. Appendix

183 struct timeval time before;
184 struct timeval time after;
185 time data_t *time ;

186

187 time = &timeData[run number];
188

189 /* get time before test =/
190 rc = gettimeofday(&time before, &tz);

191 if(rc = —1)

192 return —1;

193

194 for (i=0; i<NumberOfFiles; i-++){
195 r¢ = unlink(&FileNameArray[i][0]);
196 if(rc = —1) {

197 perror ("unlink");

198 return —1;

199 }

200 }

201

202 /* get time after test x*/
203 rc = gettimeofday(&time after, &tz);

204 if(rc = -1)

205 return —1;

206

207 /* get difference x/

208 time—>delete usec = ((time after.tv_secx1000000) + time after.tv_ usec) —
209 ((time before.tv_secx1000000) + time before.tv_usec);
210

211 return 0;

212 }

213

214

215 //

216 // Prints the result of the benchmark test on the screen
217 //

218 void Print Test Results ()

219 {

220 _ub4 iy

221 double open time = 0;

222 double read time = 0;

223 double delete time = 0;

224 double open_Temp = 0;

225 double read Temp = 0;

226 double delete Temp = 0;

227 double open_Operations;

228 double read Operations;

229 double delete Operations;

230 double open StandardDeviation;
231 double read StandardDeviation;
232 double delete StandardDeviation;
233

234 time data_t xtime;

235

236 /% add up time x/
237 for (i=0; i<NumberOfTests; i++){

238 time = &timeDatali|;

239

240 open time += time—>open usec;
241 read _time += time—>read usec;
242 delete time 4= time—>delete usec;
243 }

244

245 /* calculate mean value x/

128

251

271

302

304
305
306
307
308

A.2. Benchmark Program Source Code

open_time = open_time / (double) NumberOfTests;

read time = read time / (double) NumberOfTests;

delete time = delete time / (double) NumberOfTests;

/* print mean value x/

printf("-- Mean Time taken for Operations --\n");
printf("- Time taken for create: %12.31f usec -\n", open time);
printf("- Time taken for read: %12.31f usec -\n", read time);
printf("- Time taken for delete: %12.31f usec -\n", delete time);
Printf (M ocm e \n\n");

/x calculate performed operations per sec x/

open_Operations = (double) NumberOfFiles / (open time / 1000000.0);
read Operations = (double) NumberOfFiles / (read time / 1000000.0);
delete Operations = (double) NumberOfFiles / (delete time / 1000000.0);

/+ print operations per sec x/

printf("-- Operations per second --\n");

printf("- create: %10.31f /sec -\n", open_Operations);
printf("- read: %10.31f /sec -\n", read Operations);
printf("- delete: %10.31f /sec -\n", delete Operations);
printf("-----mm e \n\n");

/+ print time needed for one operation x*/

printf("-- Mean Time --\n");

printf("-- for one Operation --\n");

printf("- create: %10.31f msec -\n", open_time /((double)NumberOfFiles*1000.0));
printf("- read: %10.31f msec -\n", read time/({double)NumberOfFiles*1000.0));
printf("- delete: %10.31f msec -\n", delete time /((double)NumberOfFiles*1000.0));
printf("----cmm e \n\n");

/* calculate standard deviation =/
for (1=0; i<NumberOfTests; i++){
time = &timeDatal[i];

open_Temp += pow(time—>open usec — open_time, 2.0);

read Temp 4= pow(time—>read usec — read time, 2.0);

delete Temp += pow(time—>delete usec — delete time, 2.0);
}
open_StandardDeviation = sqrt(open_Temp /(NumberOfTests—1));
read StandardDeviation = sqrt(read Temp /(NumberOfTests—1));
delete StandardDeviation = sqrt(delete Temp/(NumberOfTests —1));

/+ print standard deviation x/

printf("-- Standard Deviation --\n");

printf("-- of Test Series --\n");

printf("- create: %12.31f -\n", open_StandardDeviation);
printf("- read: %12.31f -\n", read StandardDeviation);
printf("- delete: %12.31f -\n", delete StandardDeviation);
printf("--c-o e \n\n");

Runns one test series

returns: 0 on success / —1 if error occurs

int Run_One Test (u64 run number)

rc = Test Open(run_number); /+ create files x/

129

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

A. Appendix

if(rc = -1) {
fprintf(stderr, "error, creating files\n");
return —1;
}
rc = Test_Stat(run number); /% read metadata x/
if(rc = —1) {
fprintf(stderr, "error, reading metadata\n");
return —1;
}
rc = Test Delete(run_number); /x delete files =/
if(rc = -1) {

}

fprintf(stderr, "error, deleting files\n");
return —1;

return 0

//
// Application main entry point
//
int main (int argc, char xargv][])
{
_ub4 i;
int re;

/* check for parameters =/
if (arge = 3){

printf("usage:

printf("example: benchmark 1024 1\n");
exit(—1);

NumberOfFiles = atoll(argv[1]);
NumberOfTests = atoll (argv[2]);

printf("Number of files to use for testing: %1ld\a",

benchmark number_of_files number_of_tests\n");

NumberOfFiles);

printf("Number of tests to run: %11d\n", NumberOfTests);

/x set up values x*/

printf("setting up values... ");
rc = Set_Up_ Values();
if(rc = —1){

fprintf(stderr, "error Set_Up_Values\n"});
free (FileDescriptorArray);

free (FileNameArray);

exit(—1);

printf("done\n");

/% run test series x/
printf("doing test runns...\n");
for (1=0; i<NumberOfTests; i++){
rc = Run_ One Test(i);

if(rc = —1){

130

}

fprintf(stderr, "error in test run %11d\n",
free (FileDescriptorArray);

free (FileNameArray);

exit (—1);

i);

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

© 00 N O U s W N

=
N O

13

14 #include
15 #include
16 #include
17 #include
18 #include
19 #include
#include
#include
#include

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

A.2. Benchmark Program Source Code

printf(".");

printf("\ndone\n");

/% print

results x/

printf("\nTest Results:\n\n");
Print Test Results ();

/* free memory and exit =/
free (FileDescriptorArray);
free (FileNameArray);

exit (1);

T T
T T

e T T T T T T T T T
e T T T T T T T T T

//

//

typedef
typedef
typedef

__ub4

End of file

A.2.2 benchmarkProgram.h

Benchmark Programm for the

Lustre High Awvailability Daemon

benchmarkProgram .h
version 1.0

by Matthias Weber

—header

file —

Includes

<stdio .h>
<stdlib .h>
<unistd .h>
<string .h>
<fentl . h>
<math.h>
<sys/types.h>
<sys/stat .h>
<sys/time.h>

Defines
unsigned
unsigned
struct {
open_usec;
read usec;
delete usec;

long
long long

_ub4
_ub4

} time data t;

/!

int
int
int
int
int

Prototypes
Set_Up_Values (
Test Open (
Test Stat (
Test Delete (
Run_ One Test (

~u32;
_ub4;

run_number
run_number
run_number
run_number

)
)
)
)

131

41
42
43
44

46

A.

Appendix

void Print_Test Results

/
/
/

—

132

OF

End of file

A.3. Lustre XML Config File

A.3 Lustre XML Config File

1 <?xml version=’1.0’ encoding=’UTF-8°7>
2 <lustre version=’2003070801’ mtime=>1169142788 >

3

© 00 N O Ut

<ldlm name=’1dlm’ uuid=’1dlm_UUID’/>
<node uuid=’mds1_UUID’ name=’mds1’>
<profile_ref uuidref=’PROFILE_mds1_UUID’/>
<network uuid=’NET_mdsl_tcp_UUID’ nettype=’tcp’ name=’NET_mdsl_tcp’>
<nid>mdsl</nid>
<clusterid >0</clusterid >
<port >988</port>
</network>
</node>
<profile uuid=’PROFILE_mds1_UUID’ name=’PROFILE_mdsl’>
<ldlm ref uwuidref=’>1d1lm_UUID’/>
<network ref uuidref=’NET_mdsi_tcp_UUID’/>
<mdsdev_ref uuidref=’"MDD_mdsl_mds1_UUID’/>
</profile>
<node uuid=’ost1_UUID’ name=’ostl’>
<profile ref uuidref=’"PROFILE_ost1_UUID’/>
<network uuid=’NET_ostl_tcp_UUID’ nettype=’tcp’ name=’NET_ostl_tcp’>
<nid>ostl </nid>
<clusterid >0</clusterid >
<port >988</port>
</network>
</node>
<profile uuid=’PROFILE_ost1_UUID’ name=’PROFILE_ostl’>
<ldlm _ref uuidref=’1d1m_UUID’/>
<network ref uuidref=’NET_ostl_tcp_UUID’/>
<osd_ref uuidref=>08D_ostl_ost1_UUID’/>
<osd_ref uuidref=>08D_ost2_ost1_UUID’/>
</profile>
<node uuid=’usr1_UUID’ name=’usrl’>
<profile ref uuidref=’PROFILE_usr1_UUID’/>
<network uuid=’NET_usrl_tcp_UUID’ nettype=’tcp’ name=’NET_usrl_tcp’>
<nid>usrl</nid>
<clusterid >0</clusterid >
<port >988</port>
</network>
</node>
<profile uuid=’PROFILE_usr1_UUID’ name=’PROFILE_usrl’>
<ldlm _ref uuidref=’1d1m_UUID’/>
<network ref uuidref=’NET_usri_tcp_UUID’/>
<mountpoint _ref uuidref=’MNT_usrl_UUID’/>
</profile>
<mds uuid=’mds1_UUID_2’ name=’mdsl’>
<active ref uuidref=’"MDD_mdsl_mdsl1_UUID’/>
<lovconfig ref uuidref=’LVCFG_lov1_UUID’/>
<filesystem _ref uuidref=’FS_fsname_UUID’/>
</mds>
<mdsdev uuid=’MDD_mdsl_mds1_UUID’ name=’MDD_mdsi_mdsl’>
<fstype>ldiskfs </fstype>
<devpath>/lustretest /mds—mdsl</devpath>
<autoformat >no</autoformat>
<devsize >500000</devsize>
<journalsize >0</journalsize >
<inodesize >0</inodesize>
<node_ref uuidref=’mds1_UUID’/>
<target ref uuidref=’mds1_UUID_2°’/>
</mdsdev>
<lov stripesize=’1048576’ stripecount=’0’ stripepattern=’0"’
uuid=’1lov1_UUID’ name=’lovl’>

133

A. Appendix

61 <mds_ref uuidref=’mds1_UUID_2’/>
62 <obd ref uuidref=’o0st1_UUID_2’/>
63 <obd _ref uuidref=’o0st2_UUID’/>

64 </lov>

65 <lovconfig uuid=’LVCFG_lov1_UUID’ name=’LVCFG_lovl’>

66 <lov_ref uuidref=>1ov1_UUID’/>

67 </lovconfig>

68 <ost uuid=’o0stl1_UUID_2’ name=’ostl’>

69 <active ref uuidref=’0SD_ostl_ostl_UUID’/>

70 </ost>

71 <osd osdtype=’obdfilter’ uuid=’0SD_ostl_ostl1l_UUID’ name=’0SD_ostl_ostl’>

72 <target ref uuidref=’ost1_UUID_2’/>
73 <node _ref uuidref=’o0st1_UUID’/>

74 <fstype>ldiskfs </fstype>

75 <devpath>/lustretest /ostl</devpath>
76 <autoformat>no</autoformat>

77 <devsize >1000000</devsize >

78 <journalsize >0</journalsize >

79 <inodesize >0</inodesize >

80 </osd>

81 <ost uuid=’o0st2_UUID’ name=’ost2’>

82 <active ref uuidref=’0SD_ost2_ostl_UUID’/>

83 </ost>

84 <osd osdtype=’obdfilter’ uuid=’0SD_ost2_ostl1_UUID’ name=’0SD_ost2_ostl’>

85 <target ref uuidref=’ost2_UUID’/>
86 <node _ref uuidref=’o0st1_UUID’/>

87 <fstype>ldiskfs </fstype>

88 <devpath>/lustretest /ost2</devpath>
89 <autoformat >no</autoformat>

90 <devsize >1000000</devsize >

91 <journalsize >0</journalsize >

92 <inodesize >0</inodesize >

93 </osd>

94 <filesystem uuid=’FS_fsname_UUID’ name=’FS_fsname’>
95 <mds ref uuidref=’mds1_UUID_2’/>

96 <obd _ref uuidref=>1ov1_UUID’/>

97 </filesystem >

98 <mountpoint uuid=’MNT_usrl1_UUID’ name=’MNT_usrl’>

99 <filesystem ref uuidref=’FS_fsname_UUID’/>
100 <path>/mnt/lustre </path>
101 </mountpoint>

102 </lustre>

134

A.4. User Manuals

A.4 User Manuals

A.4.1 Benchmark Program

The benchmark program can be build easily from the sources, provided in Section A.2,

with the following command:
gcc -1m -o benchmarkProgram benchmarkProgram.c

The use of the program is straightforward. The program needs two parameters to de-
termine how the test run should be performed. The first parameter gives the number
of files to use for one test run. The second parameter tells the program how many test

runs to perform.
A command for an example test may look like this:
./benchmarkProgram 1024 10

The program always uses the /mnt/lustre/ directory for testing. The above given
command starts the benchmark program. It performs one test run with three individ-
ual tests. The program creates, reads the metadata of, and deletes 1024 files in the

mentioned directory. The times needed to perform each of the tests are taken.

The second parameter tells the program to repeat this test run 10 times. After all test
runs are completed, the mean time needed to perform one test is calculated from all test
runs. Also the standard derivation of the test series is calculated in order to evaluate
the error of the test.

The result of the example test is given below:

Number of files to use for testing: 1024
Number of tests to run: 10
setting up values... done

doing test runns...

135

A. Appendix

Test Results:

-- Mean Time taken for Operations --

- Time taken for create: 46457 .700 usec -
- Time taken for read: 2213.200 usec -
- Time taken for delete: 4732.100 usec -

-- Operations per second --
- create: 22041.556 /sec -
- read: 462678.475 /sec
- delete: 216394.413 /sec -

-— Mean Time -

-- for omne Operation --

- create: 0.045 msec -
- read: 0.002 msec -
- delete: 0.005 msec -

-- Standard Deviation --

- of Test Series -

- create: 33795.633 -
- read: 90.385 -
- delete: 213.347 -

136

A.4. User Manuals

A.4.2 Lustre HA Prototypes

Due to the lack of complete HA functionality a user manual cannot be provided for the
prototypes. What is described in this section is how to setup the machines in order to

replicate the results of this project.

First step is to setup a network with five nodes. All nodes need to run Fedora Core 4

as operating system.

Lustre needs to be installed on all nodes. The test runs in the project have been done
with Lustre version 1.4.8, build from source against a prepatched kernel provided by
Lustre. The two following source packages of Lustre version 1.4.8 for the Red Hat kernel

2.6 include the needed data and can be downloaded from Lustre!.

The prepatched kernel source package:
kernel-source-2.6.9-42.0.3.EL_lustre.1.4.8.1686.rpm

The Lustre source package:
lustre-source-1.4.8-2.6.9_42.0.3.EL_lustre.1.4.8smp.1686.rpm

The installed source trees can be found in the following directory:

/usr/src/

Now, the kernel source tree needs to be configured and installed. The following com-

mands must be performed in the kernel source directory.

clean the source tree:

make distclean

copy config file into source tree:

cp /boot/config-‘uname -r¢ .config

configure the kernel:

make oldconfig || make menuconfig

build the kernel and install the kernel modules:

make oldconfig dep bzImage modules modules_install install

Lustre download: http://www.clusterfs.com/download.html

137

http://www.clusterfs.com/download.html

A. Appendix

modify the boot menu in order to reboot with the new kernel:

vi /boot/grub/menu.lst
Now, the machine needs to be rebooted with the new kernel.

After this step Lustre can be built. This is done with the following two commands called
from the Lustre source directory:
./configure -with-linux=/your/patched/kernel/sources

make rpms

If run successfully, Lustre builds rpm packages and places them in the following directory:
/usr/src/redhat/RPMS/1386/

To install Lustre on the system, two packages from this directory need to be installed.

The Lustre package itself and the Lustre kernel modules.

After the installation of Lustre the prototypes must be built. This can be done with
the source code and the makefile provided in Section A.1. How to build the different

components required for the tests is described in the makefile.

Figure 3.9 gives and overview of the needed prototype components and the network
address setup. On the client (USR1) and the first MDS (MDS1) node IP aliasing must be
used to establish the two IP addresses.

Lustre must be configured with help three XML files. One XML file for each component
of the file system. How to create and configure these XML files is described in Section
3.1.

For proper functionality of the prototypes the group communication system Transis
needs to be downloaded? and built from source. This can be easily done with the make

command called in the source directory.

Transis needs to know the addresses of all possible group members. A plain text file
called config, only including all [P addresses of the interceptors of the MDS group must

be created in the directory of the Transis daemon executable.

Now, all components needed are installed and configured. Last thing to do, in order to

2Transis download: http://www.cs.huji.ac.il/labs/transis/software.html

138

http://www.cs.huji.ac.il/labs/transis/software.html

A.4. User Manuals

replicate the results, is to start the test setup. This process requires several steps.
Fist, the Transis daemon has to be started on all relevant nodes.

Then all for the test required prototype components need to be started. This is done by

just starting the built executable.

Last, Lustre can be started. This is done in three steps. Therefore, the following

commands have to be performed on the respective nodes in the directory in which the
XML file lies.

First, the OSTs are started:

lconf -reformat -node ost config_O0ST.xml

Then, the MDS is started:

lconf -reformat -node mds config_ MDS.xml

At last, the client can be started:

lconf -node usr config USR.xml

If no errors occur, the test setup is up and running. To use the file system or to perform

tests, the benchmark program described in Section A.4.1 can be used.

In order to shutdown Lustre, the following commands must be used on the respective

nodes in the given order.

First the OSTs are stopped:

lconf -cleanup -node ost config_OST.xml

Then the MDS is shutdown:

lconf -cleanup -node mds config_MDS.xml

Last, the client is unmounted:

lconf -cleanup -node usr config_USR.xml

After Lustre has exited, the prototype components and the Transis daemon can be

stopped.

139

1.1.
1.2.
1.3.

1.4.
1.5.

1.6.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.
2.10.
2.11.
2.12.
2.13.
2.14.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.

List of Figures

Lustre Overview [8] L
Lustre Failover Mechanism [8]
Advanced Beowulf Cluster Architecture with Symmetric Active/Active
High Availability for Head Node System Services [21]
Active/Active Metadata Servers in a Distributed Storage System [18] . .
Write Request Throughput Comparison of Single vs. Multiple Metadata
Servers, A/A means Active/Active Servers [18] L.
Read Request Throughput Comparison of Single vs. Multiple Metadata
Servers |18]

Interactions between Lustre Subsystems [8]
Lustre Module Dependencies
Path of Metadata Client Request
Lustre Connection Initialisation
Lustre Acceptor Request Message
Lustre LNET Hello Message
Ordinary Lustre Message
Scheme of Internal Replication Method
Scheme of External Replication Method
Standard Lustre Setup
Scheme of Active/Active HA oo
Preliminary System Design
Prototype 1 o
Prototype 2

Lustre Configuration Script L.
Message Forwarding using one Thread
Message Forwarding using Multithreading
Test Setup: Standard Lustre,
Test Setup: MDS Interceptor
Test Setup: Client Interceptor
Test Setup: MDS Interceptor and Client Interceptor
Test Setup: Prototype 1

141

List of Figures

142

3.9.

3.10.
3.11.
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

Test Setup: Prototype 2 48
Performance Test Results 100MBit 52
Performance Test Results 1GBit 53
100MBit, 1File Test Runs 58
100MBit, 100Files Test Runs 58
1GBit, 1File Test Runs 59
1GBit, 100Files Test Runs 59
File Creation Performance of Lustre 60

File Creation Performance using MDS Interceptor and Client Interceptor 60

Connection Table oo 63
Message Routing, Request from Client to MDS 65
Message Routing, Response from MDS to Client 65
Single Instance Execution Problem 66
Single Instance Execution Problem Solved 67
Connection Failover 71

1.1.

1.2.

1.3.

2.1.

3.1.
3.2.
3.3.

List of Tables

Job Submission Latency Comparison of Single vs. Multiple Head Node

HPC Job and Resource Management [21] 7
Write Request Latency (ms) Comparison of Single vs. Multiple Metadata

Servers [18] 7
Requirements and Milestones Overview 14
Lustre Module Description 17
Delay Time of IP Aliasing 54
100MBit Network Latency 55
1GBit Network Latency 56

143

	Acknowledgment
	Abstract
	Contents
	Introduction
	Background
	High Performance Computing
	The Lustre File System

	Previous Work
	High Availability Computing
	Virtual Synchrony

	Key Problems and Specification
	Software System Requirements and Milestones

	Preliminary System Design
	Analysis of Lustre
	Lustre Design
	Lustre Networking

	Replication Method
	Feasibility of Internal Replication
	Feasibility of External Replication

	System Design Approach
	Standard Lustre Setup
	Lustre using External Replication of the MDS

	Final System Design
	Prototype 1
	Prototype 2

	Implementation Strategy
	Lustre Configuration
	Messaging Mechanisms
	Implementation Challenges
	System Tests
	Functionality
	Performance

	Detailed Software Design
	Message Routing
	Single Instance Execution Problem
	Dynamic Group Reconfiguration
	Connection Failover

	Conclusions
	Results
	Future Work

	References
	Appendix
	Lustre HA Daemon Source Code
	lustreHAdaemon.c
	lustreHAdaemon.h
	transis.c
	transis.h
	lustreMessageAdjust.c
	lustreMessageAdjust.h
	Makefile

	Benchmark Program Source Code
	benchmarkProgram.c
	benchmarkProgram.h

	Lustre XML Config File
	User Manuals
	Benchmark Program
	Lustre HA Prototypes

	List of Figures
	List of Tables

