Hybrid Checkpointing for MPI Jobs
in HPC Environments

Chao Wang, Frank Mueller
North Carolina State University

Christian Engelmann, Stephen L. Scott
Oak Ridge National Laboratory OAK

ICPADS’10 Dec. 9/10 Shanghai, China RIDGE

National Laboratory

Outline

e Problem vs. Our Solution

e Overview of LAM/MPI and BLCR
e Our Design and Implementation
e Experimental Framework

e Performance Evaluation

e Related Work

e Conclusion

Problem Statement

e Trends in HPC: MTBF/I becomes shorter, Failure a norm!

— Hi gh en d SYSTZmS Wl'l'h System # Cores MTBF/I Outage source
N IOO OOO processing ASCI Q 8,192 6.5 hrs Storage, CPU
COI"ZS’ ASCI White 8,192 40 hrs Storage, CPU

PSC Lemieux 3,016 6.5 hrs
o MTBF/I 65_40 hOUI"S Google 15,000 20 reboots/ Storage, memory
— Peta-scale systems: days
MTBF 1.25 hours Jaguar 23,416 375 hrs Storage, memory
. . . o . Nodes
e MPI widely accepted in scientific computing, .amboo%r-mr-&j?y.-
Frequently deployed C/R helps but... mpirun == == of e
o . full chkpt
— 60% overhead on C/R: 100 hrs job -> 251 hrs i chket

— C/R efficiency: 55-85% ruleniet

full chkpt

— Coordinated C/R: all job tasks checkpointed full chit

- Inefficient if only a subset of process e !
image changes b/w checkpoints lamboot == -;1.1-’1.2.],_-

- Extremely high I/O bandwidth demand osiart —dg- 55y

<@I—A_w_lo_-—-_o
e <t 1\ e) o | O

0
|
1
|
2
|
3
|
4
|

Our Solution — Hybrid Checkpointing

e Hybrid full/incr. Chkpt Nodes Nodes

over LAM/MPI+BLCR lamboot e ap = ahe e s 1- lamboot = ap = e sp =5 l'
mp|run-- ccchee mplrun-- ceepee-
e Incremental checkpoint g ot @--0--@ full chipt - @ c|>
Dirty pages saved only full chkpt - - 1 - - @ incr Chth-$ $ [
I I | incr chkpt = >
full chkpt = @« 2 - - @
e Fast restart B full chlgpt = <17 = 1 }
full chkpt =<3 3 3 incr chkpt"(? (? |
full chkpt 4! ! LI‘ failure
* Hence: failure I ' | \y ‘!' \!' v
— Reduced I/O * * v |amboot..1...t...t.
bandwidth requirement 1 1 | n0f n1{ n2
— Less storage space n01 n11 nZt restart = k@{@—] J
— Lower rate of full restart —4@“@‘4@ (b) New Full/Incr C/R
checkpoint (a) Old Full C/R

— Less overhead of C/R

Outline

Overview of LAM/MPI and BLCR
Our Design and Implementation
Experimental Framework
Performance Evaluation

Related Work

Conclusion

LAM-MPI Overview

e Modular, component-based architecture
— 2 major layers

— Daemon-based RTE: lamd T .,)
>

— “Plug in" C/R to MPT SST

framework: :
TCP out-of-band
— Coordinated C/R & support BLCR cocket | commmeeton
User Application Q MPI API > N channel
MPI Layer =----f\-----------------------:
2 SR :
| / , ’ (Y
LAM Layer] RPI ‘)OO O !
] N/ : Node 1
Operating System L ______ ILAFEES_I_F_TTI_-"TTJ_TE _______ -;J

e Example: A two-way

RTE: Run-time Environment MPI job onh two hodes

SSI: System Services Interface
RPT: Request Progression Interface
MPI: Message Passing Interface
LAM: Local Area Multi-computer

BLCR Overview

e Kernel-based C/R: Can save/restore almost all resources

e Implementation: Linux kernel module, allows upgrades & bug
fixes w/o reboot

e Process-level C/R facility: single MPT application process

e Provides hooks used for distributed C/R: LAM-MPI jobs

Outline

e Our Design and Implementation
e Experimental Framework

e Performance Evaluation

e Related Work

e Conclusion

Scheduler & Incremental Chkpt @ LAM/MPI

e A decentralized scheduler: issues Full/Incr. chkpt commands

nodes

e MPI RTE setup n0 (lamd) n2
e MPI Job running (MP app

full/incremental gheckpoints omittefd

e Incr.Chkpt @ ma@

(2) drain in-flight data

MPI app @ app @ app >

|3 process incr . chkp

shared
storage

e Job exec. resume @ @

restore in-flight data* resume normal opera¢on
|

Incremental Checkpoint @ BLCR

Call-back kernel thread:
coordinates user command
process and app. process

inct_chkpt

(In kernel: dashed lines/boxes) (

chkpt reqQ
unblocks
handler thr

1. app registers threaded callback

- spawns callback thread
2. thread blocks in kernel

3. incr_chkpt utility calls ioctl(),

other work

unblocks callback thread
4. All threads complete

callbacks & enter kernel
5. Only save dirty pages

block

cleanup

6. Run regular application

code from restored state eontioue

l

receives signal runshandlerss™
and ioctl)

first thread saves
dirty pages
shared resource

s1 gnal other threads

registers/sign
registers/signals

mark checkpoint as complete

|

normal execution

|block inioct,

L

)

|

10

Checkpoint Files & Fast Restart

Recovery scans all
checkpoints in
reverse sequence

1. Allows the
recovery of the
last stored
version of a page

2. Any page only
heeds to be
written once

Overhead ~= that of
restoring from a
single, full
checkpoint

incr incr incr
full chkpt chkpt 1 chkpt 2 chkpt 3

Pi: content of memory pagei Ai: address of memory page i
Oi: offset in file a of the corresponding memory page

Structure of Checkpoint Files
chkpt r
file |

incr incr incr
full :hkpt chkpt 1 chkpt 2 chk»pt 3

11

Outline

Experimental Framework
Performance Evaluation
Related Work

Conclusion

12

Experimental Framework

e Experiments conducted on
— Opt cluster: 18 nodes, 2 cores, dual Opteron 265, 1 Gbps Ether
— Fedora Core 5 Linux x86_64 w/ our dirty bit patch
— Lam/MPT + BLCR w/ our hybrid full/incremental C/R extensions

e Benchmarks
— NPB V3.3 (MPT version)
— mpiBLAST (parallel implementation of NCBI BLAST)

13

Full Chkpt Overhead vs. Execution Time

0 Execution time [Full checkpoint overﬁad

o © o © 0 \©) o ©
= (G o R G A,
= [a ¥

mpiBLAST.4
mpiBLAST 8
mpiBLAST.16

NPB-D&mpiBLAST Full Checkpoint Overhead
e One full chkpt overhead vs. base execution time < 1% (MG except)

e MG: large checkpoint files, but short overall exec time

14

Checkpoint overhead (seconds)

Checkpoint overhead (seconds)

Full/Incremental Checkpointing Overhead

60
50
40
30
20

100

NPB-C-4/8/9/16 checkpoint time

=

—| @ Full chkpt
L @ Incr. chkpt]

Ials.

<+ oo v T 0 YW + o« v F 0 WV <F o Vv
—~ B Y — - o
B &R £ O O B (i £ 5 85 5B v v b
mpiBLAST checkpoint time
O Full chkpt
@ Incr. chkpt

B

4(6)

8(10)

16(18)

Number of workers (number of compute nodes)

Checkpoint overhead (seconds)

NPB-D-16 checkpoint time

45 O Full chkpt |—
40 [W Incr. chkpt ||
35 [] T
30 —
25—
20 — 1

15 +—

10 —

5]

0

BT CG LU MG SP

e Incr. chkpt overhead less
significant, thus:

hybrid Full/Incr. chkpt reduces
chkpt overhead compared to full
chkpt throughout

Checkpoint file size (ME

Checkpoint file size (IVB)

Checkpoint File Size (=> Chkpt Overhead)

2000

1500

1000

500

10000

1000

100

NPB-C-4/8/9/16 checkpoint file size

@ Full chkpt
B Incr. chkpt

|_| | | 1
.) EE MR o T = S - TR PR
I @] n n K
& o B [R 2 o

mpiBLAST checkpoint file size

10

—_

O Full chkpt
W Incr. chkpt |—
4(6) 8(10) 16(18)

Number of workers (number of compute nodes)

QMB

Checkpoint file size

NPB-D-16 checkpoint file size

1800
1600 O Full chkpt
1400 B Incr. chkpt
1200 | ___]
1000 |
800
600 |]
400 |
200
0 . . .
cG LU MG SP

e Full/Incr. chkpt overhead

proportional o chkpt file size

o Full chkpt overhead nearly same

at any time of job exec.

e Incr. chkpt overhead nearly

same at any interval

e Incr. chkpt overhead lower than

full chkpt overhead, except EP

16

Restart Overhead

Restart overhead (seconds

O — 1O W A oy] 0 O

Restart overhead (seconds)

NPB-C-4/8/9/16 restart overhead

O From full

® From full+3incr. chkpt |_

chkpt

EN V) o)) ~

(@] - N W

BT 4
BT.9

e} <t [e] o <+ [oe) e} <+ (o)
MR & B & B -
5 © O B kR S

mpiBLAST restart overhead

LU.16
SP4
SP.9

SP.16

O From full chkpt —

E From full+3incr. chkpt|(—

=

N

4(6) 8(10)

16(18)

Number of workers (;zmimber of compute nodes

NPB-D-16 restart overhead

16

14 O From full chkpt 1
"g 12 B From full+3incr. chkpf—
&0
g
£ s
R
E:
3 4
[%4

0 1 1 1 1

BT CG LU MG SP

e Restart time: Full+3Incr. is 68%

(1.17secs) larger restart from Full,
but chkpt file size of Full+3Incr.
185% larger than that of Full

e Chkpt time of 3Incr is 16.64
secs shorter that for 3Full

17

Benefit of Hybrid C/R Mechanism

1000

e Overall savings:

S, =n x (Of —0;) — (Rf+n,~ - Rf) 100 //

Sn: saving w/ n incr. chkpts b/w two full chkpts

Savings (seconds)
=)

Rf: restart overhead from one full chkpt

——CG.D
===SP.D
——BT.D
mpiBLAST
===LUD
==CG.C
——FT.C
==BT.C
-==MG.D
——LU.C
== SP.C

Of: full chkpt overhead /

Oi: incr. chkpt overhead 3 /B/B_,,,@-—’—a

Rf+ni: restart overhead from full+n incr. chkpts | /;"’*
=

o
o
IS
(I
o

Number of incremental checkpoints between two full checkpoints
.

e incr. chkpt overhead W -> chkpt frequency M -> job work lost WV
e Restart cost (Rf+ni - Rf) is low, compared to (Of - Oi)
o All benchmarks benefit from hybrid Full/Incr. C/R mechanism

e Naksinehaboon et al. provide a model/formula for optimal n
— n = 9 with our results - more savings

Outline

e Problem vs. Our Solution

e Overview of LAM/MPI and BLCR
e Our Design and Implementation
e Experimental Framework

e Performance Evaluation

e Related Work

e Conclusion

19

Related Work

e Checkpoint/Restart
— Coordinated: LAM/MPI w/ BLCR [5.5ankaran et.al LACSI 03]
— Uncoordinated: MPICH-V [SC 2002]: Log based
— Both checkpoint entire process image - high overhead

e Incremental checkpoint:
— for single process, not for MPI tasks:
- TICK [SC05]
- Pickpt [ACM Symposium on Applied computing 05], etc.
— Language specific solutions:
- Charm++ [Chakravorty et. Al, HIPCO6], etc.
e Checkpoint Interval Model:
— Young [26]: model for fixed chkpt interval; Daly [27]: improve it
— Liu et al. [IPDPS0O8]: model for optimal full C/R stategy
— Naksinehaboon et al. [CC6rid08]: model/formula used here

20

Conclusion

e Novel hybrid C/R mechanism over LAM-MPT + BLCR
— Decentralized scheduler
— Lower rates for full chkpt
— Dirty bit mechanism to track and save modified pages
— Reduced I/0 bandwidth & storage requirement
— Fast restart from Full+nIncr. Checkpoints
-any page only written once

e Better performance of hybrid C/R mechanism over original full C/R
— Savings by 3Full > 3Incr.: 15.47 seconds
(= 16.64 savings on chkpt - 1.17 cost on restart)
— 1:9 b/w Full&Incr. checkpoints > optimal balance

e On-going work: OpenMPT extensions + BLCR release for incr. Chkpts

21

Questions?

Thank youl

This work was supported in part by:

e NSF Grants: CCR-0237570, CNS-0410203, CCF-0429653
e DOE GRANT: DE-FG02-08ER25837

e Office of Advanced Scientific Computing Research

e DOE Contract: DE-AC05-000R22725

Project websites:
NCSU: http://moss.csc.ncsu.edu/~mueller/

22

