
Hybrid Checkpointing for MPI Jobs
in HPC Environments

Chao Wang, Frank Mueller

North Carolina State University

Christian Engelmann, Stephen L. Scott

Oak Ridge National Laboratory

ICPADS’10 Dec. 9/10 Shanghai, China

 2

Outline

  Problem vs. Our Solution
  Overview of LAM/MPI and BLCR
  Our Design and Implementation
  Experimental Framework
  Performance Evaluation
  Related Work
  Conclusion�

 3

Problem Statement

  MPI widely accepted in scientific computing,
Frequently deployed C/R helps but…

  Trends in HPC: MTBF/I becomes shorter, Failure a norm!
System # Cores MTBF/I Outage source

ASCI Q 8,192 6.5 hrs Storage, CPU

ASCI White 8,192 � 40 hrs Storage, CPU

PSC Lemieux 3,016 6.5 hrs

Google 15,000 20 reboots/
days

Storage, memory

Jaguar 23,416 37.5 hrs Storage, memory

— High end systems with
> 100,000 processing
cores

— MTBF/I: 6.5-40 hours
—  Peta-scale systems:

MTBF 1.25 hours

—  60% overhead on C/R: 100 hrs job -> 251 hrs
—  C/R efficiency: 55-85%
—  Coordinated C/R: all job tasks checkpointed

–  Inefficient if only a subset of process
image changes b/w checkpoints
–  Extremely high I/O bandwidth demand �

 4

Our Solution – Hybrid Checkpointing

  Incremental checkpoint
Dirty pages saved only

  Hence:
—  Reduced I/O

bandwidth requirement
—  Less storage space
—  Lower rate of full

checkpoint
—  Less overhead of C/R

  Fast restart

  Hybrid full/incr. Chkpt
over LAM/MPI+BLCR �

 5

Outline

  Problem vs. Our Solution
  Overview of LAM/MPI and BLCR
  Our Design and Implementation
  Experimental Framework
  Performance Evaluation
  Related Work
  Conclusion

 6

LAM-MPI Overview

  Modular, component-based architecture
—  2 major layers
— Daemon-based RTE: lamd
— “Plug in” C/R to MPI SSI

framework:
—  Coordinated C/R & support BLCR

  Example: A two-way
MPI job on two nodes RTE: Run-time Environment

SSI: System Services Interface
RPI: Request Progression Interface
MPI: Message Passing Interface
LAM: Local Area Multi-computer

 7

BLCR Overview

  Kernel-based C/R: Can save/restore almost all resources

  Implementation: Linux kernel module, allows upgrades & bug
fixes w/o reboot

  Process-level C/R facility: single MPI application process

  Provides hooks used for distributed C/R: LAM-MPI jobs

 8

Outline

  Problem vs. Our Solution
  Overview of LAM/MPI and BLCR
  Our Design and Implementation
  Experimental Framework
  Performance Evaluation
  Related Work
  Conclusion

 9

Scheduler & Incremental Chkpt @ LAM/MPI

  MPI RTE setup

  MPI Job running

  Incr. Chkpt

  Job exec. resume

  A decentralized scheduler: issues Full/Incr. chkpt commands

 10

Incremental Checkpoint @ BLCR

(In kernel: dashed lines/boxes) �
1. app registers threaded callback
 spawns callback thread

4. All threads complete
callbacks & enter kernel

6. Run regular application
code from restored state

5. Only save dirty pages

Call-back kernel thread:
coordinates user command
process and app. process

2. thread blocks in kernel
3. incr_chkpt utility calls ioctl(),
unblocks callback thread

 11

Checkpoint Files & Fast Restart

  Recovery scans all
checkpoints in
reverse sequence
1.  Allows the

recovery of the
last stored
version of a page

2.  Any page only
needs to be
written once

  Overhead ~= that of
restoring from a
single, full
checkpoint

Structure of Checkpoint Files�

 12

Outline

  Problem vs. Our Solution
  Overview of LAM/MPI and BLCR
  Our Design and Implementation
  Experimental Framework
  Performance Evaluation
  Related Work
  Conclusion

 13

Experimental Framework

  Experiments conducted on
— Opt cluster: 18 nodes, 2 cores, dual Opteron 265, 1 Gbps Ether
—  Fedora Core 5 Linux x86_64 w/ our dirty bit patch
—  Lam/MPI + BLCR w/ our hybrid full/incremental C/R extensions

  Benchmarks
— NPB V3.3 (MPI version)
— mpiBLAST (parallel implementation of NCBI BLAST)

 14

Full Chkpt Overhead vs. Execution Time

NPB-D&mpiBLAST Full Checkpoint Overhead

  MG: large checkpoint files, but short overall exec time
  One full chkpt overhead vs. base execution time < 1% (MG except)

 15

Full/Incremental Checkpointing Overhead

  Incr. chkpt overhead less
significant, thus:

 hybrid Full/Incr. chkpt reduces
chkpt overhead compared to full
chkpt throughout�

NPB-C-4/8/9/16 checkpoint time NPB-D-16 checkpoint time

mpiBLAST checkpoint time

 16

Checkpoint File Size (=> Chkpt Overhead)

  Full/Incr. chkpt overhead
proportional to chkpt file size

NPB-C-4/8/9/16 checkpoint file size NPB-D-16 checkpoint file size

mpiBLAST checkpoint file size

  Full chkpt overhead nearly same
at any time of job exec.

  Incr. chkpt overhead nearly
same at any interval

  Incr. chkpt overhead lower than
full chkpt overhead, except EP

 17

Restart Overhead

NPB-C-4/8/9/16 restart overhead NPB-D-16 restart overhead

mpiBLAST restart overhead   Restart time: Full+3Incr. is 68%
(1.17secs) larger restart from Full,
but chkpt file size of Full+3Incr.
185% larger than that of Full

  Chkpt time of 3Incr is 16.64
secs shorter that for 3Full

 18

Benefit of Hybrid C/R Mechanism

  Overall savings:

—  Sn: saving w/ n incr. chkpts b/w two full chkpts
—  Of: full chkpt overhead
—  Oi: incr. chkpt overhead
—  Rf+ni: restart overhead from full+n incr. chkpts
—  Rf: restart overhead from one full chkpt

  incr. chkpt overhead  -> chkpt frequency  -> job work lost 
  Restart cost (Rf+ni – Rf) is low, compared to (Of – Oi)
  All benchmarks benefit from hybrid Full/Incr. C/R mechanism
  Naksinehaboon et al. provide a model/formula for optimal n

—  n = 9 with our results  more savings

 19

Outline

  Problem vs. Our Solution
  Overview of LAM/MPI and BLCR
  Our Design and Implementation
  Experimental Framework
  Performance Evaluation
  Related Work
  Conclusion

 20

Related Work
  Checkpoint/Restart

—  Coordinated: LAM/MPI w/ BLCR [S.Sankaran et.al LACSI ’03]
— Uncoordinated: MPICH-V [SC 2002]: Log based
—  Both checkpoint entire process image  high overhead

  Incremental checkpoint:
—  for single process, not for MPI tasks:

–  TICK [SC05]
–  Pickpt [ACM Symposium on Applied computing 05], etc.

—  Language specific solutions:
–  Charm++ [Chakravorty et. Al, HiPC06], etc.

  Checkpoint Interval Model:
—  Young [26]: model for fixed chkpt interval; Daly [27]: improve it
—  Liu et al. [IPDPS08]: model for optimal full C/R stategy
— Naksinehaboon et al. [CCGrid08]: model/formula used here

 21

Conclusion

  Novel hybrid C/R mechanism over LAM-MPI + BLCR
— Decentralized scheduler
—  Lower rates for full chkpt
— Dirty bit mechanism to track and save modified pages
—  Reduced I/O bandwidth & storage requirement
—  Fast restart from Full+nIncr. Checkpoints

– any page only written once
  Better performance of hybrid C/R mechanism over original full C/R

— Savings by 3Full  3Incr.: 15.47 seconds
 (= 16.64 savings on chkpt - 1.17 cost on restart)
—  1:9 b/w Full&Incr. checkpoints  optimal balance

  On-going work: OpenMPI extensions + BLCR release for incr. Chkpts

 22

Questions?

Thank you!�
This work was supported in part by:
  NSF Grants: CCR-0237570, CNS-0410203, CCF-0429653
  DOE GRANT: DE-FG02-08ER25837
  Office of Advanced Scientific Computing Research
  DOE Contract: DE-AC05-00OR22725

Project websites:
NCSU: http://moss.csc.ncsu.edu/~mueller/

