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Abstract cycles are spent on C/R alone [3]. Recent investigations [4]
revealed that checkpoint/restart efficiencyg. the ratio of

As the core count in high-performance computing systenpskeereasing, (seful vs. scheduled machine time, can be as high as 85%
faults are becoming common place. Checkpointing addressels faults but 0 .
captures full process images even though only a subset girtduess image and as low as 55% on current-generation HPC systems.
changes between checkpoints. However, only a subset of the process image changes between

We have designed haybrid checkpointing technique for MPI tasks Ofcheckpoints. In particular, large matrices that are onhdrieut
high-performance applications. This technique altersabetween full and . . .
incremental checkpoints: At incremental checkpointsy diatta changed since NEVEr wr|tter_1, which are common in HPC (_:Odes' do nOt. hajve to
the last checkpoint is captured. Our implementation iraégs new BLCR be checkpointed repeatedly. Also, coordinated checkipgint
and LAM/MPI features that complement traditional full ckeeints. This for MPI jObS, which is Commomy deployed, requires all the
results in significantly reduced checkpoint sizes and el with only . LT . .
moderate increases in restart overhead. After accountingdst and savings, MPI tasks to save their ChECkpomt files at the same time, lwhic
benefits due to incremental checkpoints are an order of niagmilarger leads to extremely high I/O bandwidth demand.
than overheads on restarts. We further derive qualitatesuits indicating an Contributions: (1) This paper contributes a novel approach
optimal balance between full/incremental checkpoints wfrmovel approach . Lo .
at a ratio of 1:9, which outperforms both always-full and al-incremental TOI’ hybrid c;heckpomtmg of MPl tasks that is transp:_;lrently
checkpointing. integrated into an MPI environment. In contrast, prior ap-
proaches only considered full or incremental checkpoints i
isolation [5], [6]. Our hybrid mechanism complements full

L . checkpoints with incremental ones, which is superior tbegit
Recent progress in high-performance computing (HPC) h@ﬁeckpointing scheme in isolation

resulted in remarkable Terascale systems with 10,000s OZZ) We contribute a full-fledged implementation of our

even 100,000s of procgssing cores. At such Igrgg Coumsn? chanisms over LAM (Local Area Multicomputer)/MPI’s
cores, faults are becoming common place. Reliability déta R support [7] through Berkeley Labs C/R (BLCR) [8]. Tra-

cqntemporary sys_tems llustrates th_at_ the mean time betw ftional LAM/MPI+BLCR [9] only supports full checkpoint-
failures (MTB'.:) /'interrupts (MTBI) Is in the range of 6.'5'40i g. While implemented within LAM/MPI and BLCR, our
hours depending on the maturity / age of the installation | echanisms are applicable to any process-migration saluti
The most common causes of failure are processor, memaqr the Open MPI FT mechanisms [10]

and storage errors / failures. Table 1 presents an excer :’3) We keep the overhead of a restart operation low via a
from a De_partment of Energy (DOE) study that SUMMANZER,\ersal mechanism that ensures linear overhead in the num
the reliability of several state-of-the-art supercompatend

- . ber ofdisjoint pages over a set of full/incremental checkpoints
distributed computing systems [1], [2]. When extrapolafiog (rather than in the total number of pages saved). While the

’ System ‘# Coreq VITBE/] ‘ Outage source\ Igltest memory mappipg information is maintained and usgd
y the restart operation, the pages saved by the preceding

ASCI Q 8,192 6.5 hrs Storage, CPU|  checkpoints but unmapped later are skipped.

ASCI White | 8,192 40 hrs Storage, CPU (4) We conduct experiments on a cluster that quantitatively

PSC Lemieux 3,016 6.5 hrs show significant reductions in the size of checkpoint fileg an
Google | 15,000|20 reboots/dayStorage, memory the overhead of checkpoint operations for our hybrid C/R.

Jaguar 4Core|150,152  37.5 hrs |Storage, memory  Hybrid checkpoints save 16 seconds wallclock time on aeerag

TABLE 1. Reliability of HPC Clusters for all the cases by_ replacing three full che_ckpoin_ts with
incremental ones while overheads of restarts (if requiszd)

current systems in such a context, the MTBF for peta-scat8 order of magnitude smaller for our experiments.

systems is predicted to be as short as 1.25 hours [3] (5) From these experiments and an abstract cost model, we
In such systems, frequently deployéd checkpoin.t/restg‘?rive an optimal balance of full/incremental checkpoatts

(GIR) mechanisms perosicaly checkpoint he enire ace(%10 o 19, it aPpedrs o be he it e s retes have

image of all MPI tasks. The wall-clock time of a 100-hour jo . ' . '

could well increase to 251 hours due to the C/R overheadé?f-rhe paper is structured as follows. Section 2 presents the

contemporary fault tolerant technigues implving that 6084 esign of our hybrid C/R mechanism. Section 3 identifies
horary q pying ° and describes the implementation details. Subsequehgy, t
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1. Introduction
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2. Design

Fig. 2. Incremental Checkpoint at LAM/MPI

This section presents an overview of the design of ourUpon a node failure, the scheduler initiates a “job pause”
hybrid C/R mechanism with LAM/MPI and BLCR. In contrastmechanism in a coordinated manner that effectively freaites
to prior work, we view incremental checkpoints as compléMPI tasks on functional nodes and migrates processes etifail
mentary to full checkpoints in the following sense. Every nodes [5]. All nodes, functional (paused ones) and mignatio
th checkpoint will be a full checkpoint to capture an applitargets (replaced failed ones), are restarted from thefudist
cation without prior checkpoint data while any checkpointglus n incremental checkpoints, as explained in Section 2.
in between are incremental, as illustrated in Fig. 1(b).hSuc
process-based incremental checkpointing reduces chietkpslybrid Checkpointing at the Job Level
bandwidth and storage space requirements, and it leads to a = o _ ) )
lower rate of full checkpoints. Yet, it keeps storage reguir 1YPrid checkpointing at the job level is performed in a

ments and restore overhead at bay as any full or incremerigfiuence of steps depilcte(:] inkFig_. 2 and de§cribﬁd be:\ow.
checkpoints prior to a full one are no longer required. Step 1: Incremental Checkpoint Trigger: When the

In the following, we first discuss scheduler integration Oﬁcheduler decides to engage in an incremental checkpbint, |

hybrid C/R. We then detail system-level aspects of hybrlﬁ.sges a corresponding Co”.‘ma.“d to ‘hp'“‘” Process, the.
checkpoints at two levels. First, the synchronization aod c'n'tIal LAM/MP! process at job invocation. This process, in
ordination operations (such as the in-flight message dyain&urgt’ br02<':.1dlcafs|_tshtth§/| commanDd to all MBPIftasks. ¢

among all the MPI tasks to reach a consistent global statel) ep 2. In-1g essage Drainage:belore we stop any

at the job level are provided. Second, dirty pages and Kblafe OCESS and save the remaining dirty pages and the corgkspon

meta-data image information saved at the process/MPI t4QR Process state in checkpoint files, all MP! tasks cootdiaa

. P . L istent global state equivalent to an internal barBaesed
level, as depicted in Fig. 3, are discussed. We employ filgeri consis : o
DT ; on our LAM/MPI+BLCR design, message passing is handled
of “dirty” pages at the memory management leved,, mem- . L
Y bag y 9 %the MPI level while the process-level BLCR mechanism is

ory pages modified (written to) since the last checkpoint al . ,
regtgre% after node f(ailures to )restart from the compgsidib pot aware (.Jf messaging at aII._Hence, we employ LAM/MPI's
full and incremental checkpoints. Job-centr.|c |r'1teract|on'mechan|sm for the respectlve MBks
to clear in-flight data in the MPI communication channels.
Step 3: Process-level Incremental CheckpointsOnce all
the MPI tasks (processes) reach a globally consistent, state
) ) , all of them engage in process-level incremental checkpoint
We designed a decentralized scheduler, which can be ependently (see below).
ployed as a stand-alone component or as an integral progen 4. Messages Restoration and Job Continuation:
cess of an MPI daemon, such as the LAM daemon (lam@pce the process-level incremental checkpoint has been com
The scheduler will issue the full or incremental CheCkpo'%itted, drained in-flight messages are restored, and all pro

commands based on user-configured intervals or the systgmses resume execution from their point of suspension.
environment, such as the execution time of the MPI job,

storage constraints for checkpoint files and the overhead [9brid Checkpointing at the Process Level

preceding checkpoints. The algorithms to periodicallgger

full/incremental checkpoints are not quatitatively azaly this Hybrid checkpointing of MPI tasks (step 3 in Fig. 2) is
paper. performed at the process level, which is shown in detail

Scheduler



in Fig. 3. Compared to a full checkpoint, the incremental File a andfile b maintain their data in a log-based append
variant lowers the checkpoint overhead by saving only thosgde for successive incremental checkpoints. The lasafdl
memory pages modified since the last (full or incrementadubsequent incremental checkpoints will only be disctthrge
checkpoint. This is accomplished via our BLCR enhancemerftaarked for potential removal) once the next full checkpoin
by activating a handler thread (on right-hand side of Fig. B)as been committed. Their availability is required for the
that signals compute threads to engage in the incremematential restart up until a superseding checkpoint istemit
checkpoint. One of these threads subsequently saves nibdif@ stable storage. In contrast, only the latest versiofil®fc
pages before participating in a barrier with the other ttisea is maintained since all the latest information is saved as on
as further detailed in Section 3. meta-data record, which is sufficient for the next restart.
In addition, memory pages saved file a by an older
checkpoint can be discharged once they are captured in a
l

subsequent checkpoint due to page modifications (writasgsi
! checkpoint_req() |

[ |

the last checkpoint. For example, in Fig. 4, memory page
4 saved by the full checkpoint can be discharged when the
first incremental checkpoint saves the same page. Later, the
same page saved by the first incremental checkpoint can
be discharged when it is saved by the second incremental
checkpoint. In our on-going work, we are developing a gagbag
collection thread for this purpose. Similar to segment ruiieg

in log-structured file systems [11], the file is divided into
segments (each of equal size as they represent memory pages)
that are written sequentially. A separate garbage cafiecti
thread tracks these segments within the file, removes old
segments (marked appropriately) from the end and puts new

vgg/ﬁg checkpointed memory data into the next segment. As a result,

I the file morphs into a large circular buffer as the writer #ure

| DAt | adds new segments to the front and the cleaner thread removes
old segments from the end toward the front (and then wraps
around). Meanwhile, checkpoifite bis updated with the new
offset information relative tdile a.

unblocks R IR SIS ES R
handler_thr
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Fig. 3. BLCR with Incremental Checkpoint in Bold Frame

A set of three files serve as storage abstraction for awe utilize a Linux kernel-level memory management mod-
checkpoint snapshot, as depicted in Fig. 4: ule that has been extended by a page-table dirty bit scheme
(1) Checkpoint file acontains the memorpage contenti.e, to track modified pages between checkpoints [12]. This is
the data of only those memory pages modified since the lagicomplished by duplicating the dirty bit of the page-table
checkpoint. entry (PTE) and extending kernel-level functions that asce
(2) Checkpoint file bstores memorypage addresses.e, the PTE dirty bit so that the duplicate bit is set with nedflgi
address and offset of the saved memory pages for each ewigrhead (see [12] for details).
in file a.

(3) Checkpoint file ccovers othermeta information e.g,
linkage of threads, register snapshots, and signal infiioma
pertinent to each thread within a checkpointed process / MPlUpon a node failure, the scheduler coordinates the restart
task. operation on both the functional nodes and the spare nodes.
First, the process ahpirunis restarted, which, in turn, issues
the restart command to all the nodes for the MPI tasks.

continue normal execution

Modified Memory Page Management

MPI Job Restart from Hybrid Checkpoints
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full chkpt chkpt 1 chkpt 2 chkpt 3
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I e T |
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Pi: content of memory page i  Ai: address of memory page i
Oi: offset in file a of the corresponding memory page

Fig. 4. Structure of Checkpoint Files

Thereafter, recovery commences on each node by restoeng th
last incremental checkpoint image, followed by the memory
pages from the preceding incremental checkpoints in revers
order up to the pages from the last full checkpoint image, as
depicted in Fig. 5. The reverse-order scan over all incréaten
checkpoints and the last full checkpoint allows the recpver
of the last stored version of a page in linear complexity
relative to the number of pages to be restores. While the
meta-information of repeatedly stored pages is traversed f



pages that had been modified between checkpoints, the tonténThis triggers arioctl call, thereby resuming the callback
of any page only needs to be written once to facilitate thread that was previously blocked in the kernel. After the
fast restart. After process-level restart has been comegpletcallback thread invokes the individual callback for each of
drained in-flight messages are restored, and all the presedhe other threads, it reenters the kernel and sends a signal t
resume execution from their point of suspension. Furthezmoeach thread. These threads, in response, engage in exgecutin
some pages saved in preceding checkpoints may be invdhé callback signal handler and then enter the kernel throug
(unmapped) in subsequent ones and need not be restored. ar@herioctl call.

latest memory mapping information savedcimeckpoint file ¢ =~ Once in the kernel, the first thread saves the dirty memory

is also used for this purpose. i  iner incr pages modified since the last checkpoint. Then, threads take
full chikpt chkpt 1 chkpt2 chkpt3d turns saving their register and signal information to theoth
AN AN N NN N N NN N NN point files. After a final barrier, the process exits the keamsl
hkpt file a | ! L . .
o Ieal___l enters user space, at which point the checkpoint mechanism

has completed.

BLCR'’s full checkpoint command performs similar work,
Fig. 5. Fast Restart from a Hybrid Checkpoint except that once the kernel is entered, the first thread sdives
non-empty memory pages rather than only the dirty ones.

Pi: content of memory page i restart

3. Implementation Issues
Restart from Hybrid Checkpoints

Our hybrid full/incremental checkpoint/restart mechamis
is implemented with LAM/MPI and BLCR. The overall Newly developed commands perform the restart work (1)
design and implementation allows adaptation of this solt the job level with LAM/MPI and (2) at the process level
tion to arbitrary MPI implementations, such as MPICH angithin BLCR. In concert, the two commands implement the
Open MPI. Next, we present the implementation details @éstart from the three checkpoint files and resume the normal
the full/incremental C/R mechanism, including the MPIgEv execution of the MPI job as discussed in Section 2.
communication/coordination realized within LAM/MPI and
the process-level fundamental capabilities of BLCR. 4. Experimental Framework

Hybrid Checkpointing at the Job Level Experiments were conducted on a dedicated Linux cluster
comprised of 18 compute nodes, each equipped with two AMD
We developed new commands to issue full and incremen@pteron-265 processors (each dual core) and 2 GB of memory.
checkpoint commands, which are relayed by a decentralizede nodes are interconnected by two networks, both with 1
scheduler to thenpirun process of the MPI job. SubsequentlyGbps Ethernet. The OS used is Fedora Core 5 Linux 886
mpirun broadcasts full/incremental checkpoint commands tgith our dirty bit patch as described in Section 2. We extende
each MPI tasks. At the LAM/MPI level, we also drain in-flight AM/MPI and BLCR with our hybrid full/incremental C/R
messages to reach a consistent internal state before chegkchanism of this platform.
pointing (see step 2 in Fig. 2). We restore in-flight messageFor all following experiments we use the MPI version of the
data and resume normal operation after the checkpointing INPB suite [13] (version 3.3) as well as mpiBLAST [14]. NPB

completed (see step 4 in Fig. 2). is a suite of programs widely used to evaluate the performanc
of parallel system, while the latter is a parallel implenaioin
Hybrid Checkpointing at the Process Level of NCBI BLAST, which splits a database into fragments and

distributes the query tasks to workers by query segmentatio
We integrated several new BLCR features to extend itefore the BLAST search is performed in parallel.
process-level checkpointing facilities to trigger full damn-
cremental checkpoints at the process level within BLCR with. Experimental Results
corresponding writes of the respective portion of a process
snapshot to one of the three files (see Section 2 and Fig. 4).Experiments were conducted to assess (a) overheads, (b) file
Fig. 3 depicts the steps involved in issuing an incrementsizes, (c) restart overheads, and (d) the relationship deatw
checkpoint in reference to BLCR. Our focus is on the enhanagheckpoint interval and checkpoint overhead.
ments to BLCR (large dashed box). In the figure, time flows Out of the NPB suite, the BT, CG, FT, LU and SP
from top to bottom, and the processes and threads involveeinchmarks were exposed to class C data inputs running on 4,
in the checkpoint are placed from right to left. Activities8 or 9 and 16 nodes, and to class D data inputs on 8 or 9 and
performed in the kernel are surrounded by dotted lines. 6 nodes. Some NAS benchmarks have 2D, others have 3D
callback thread (right side) is spawned as the applicatitayouts for2? or 32 nodes, respectively. The NAS benchmark
registers a threaded callback and blocks in the kernel uriiP is exposed to class C, D and E data inputs running on
a checkpoint has been committeghpirun invokes a new 4, 8 and 16 nodes. All the other NAS benchmarks were not
command extension to BLCR, parametrized with the processitable for our experiments since they execute for tootshor

4



period to be periodically checkpointed, such as IS, as tegpic Checkpoint Times and File Size

in Fig. 7(a), or they have excessive memory requirement) suc

as the benchmarks with class D data inputs on 4 nodes. We also assessed the actual footprint of the checkpointing
Since this version of mpiBLAST assigns one process &te. Figs. 7(c), 8(c), 9(c) and 10(c) depict the size of theakh

the master and another to perform file output, the numbgeoint files for one process of each MPI application. Writing

of actual worker processes performing parallel input is thmany files of such size to shared storage synchronously may

total process number minus two. Each worker process redws feasible for high-bandwidth parallel file systems. In the

several database fragments. With our experiments, we abtence of sufficient bandwidth for simultaneous writes, we

the mpiBLAST-specific argumentuse-virtual-frags which provide a multi-stage solution where we first checkpoint to

enables caching of database fragments in memory (rather thacal storage. After local checkpointing, files will be asyn

local storage) for quicker searches. chronously copied to shared storage, an activity goveryed b
the scheduler. This copy operation can be staggered (again
Checkpointing Overhead governed by the scheduler) between nodes. Upon failure, a

spare node restores data from the shared file system while the

The first set of experiments assesses the overhead incum@@aining nodes roll back using the checkpoint file on local
due to one full or incremental checkpoint. Figs. 7(a), 8%@) storage, which results in less network traffic.
and 10(a) depict the base execution time of a job (benchmark)Overall, the experiments show that:
without checkpointing while Figs. 7(b), 8(b), 9(b) and 1)0(b(1) the overhead of full/incremental checkpointing of th®M
depict the checkpoint overhead. As these results show, {bB is largely proportional to the size of the checkpoint;file
checkpoint overhead is uniformly small relative to the a¥ler (2) the overhead of full checkpointing is nearly the same at
execution time, even for a larger number of nodes. Prior woghy time of the execution of the job;
[5] already compared the overhead of full checkpointinghwit(3) the overhead of incremental checkpointing is nearly the
the base execution, and the ratio is below 10% for moséme at any interval; and
NPB benchmarks with Class C data inputs. Fig. 6 depicts t#) the overhead of incremental checkpointing is lower than
measured overhead for single full checkpointing relatiwe that of full checkpointing (except some cases of EP, which
the base execution time of NPB with Class D data inputs aage lower than 0.45 seconds, which is excessively short. If
mpiBLAST (without checkpointing). The ratio is below 1% equired at this sort rate, one can employ full checkpogntin

except for MG, as discussed in the following. only).

[ Excoution time M Full checkpoint overhead] The first observation indicates that the ratio of communica-
100% tion overhead to computation overhead for C/R of the MPI job
99% is relatively low. Since checkpoint files are, on averageyda
zjoj the time spent on storing/restoring checkpoints to/frosk di
06% accounts for most of the measured overhead. This overhead is
95% further reduced by the potential savings through increaient
94% checkpointing.
93% For full/incremental checkpointing of EP (Fig. 9(c)), in-

92%

cremental checkpointing of CG with Class C data inputs
(Fig. 7(c)) and incremental checkpointing of mpiBLAST (Fig
10(c)), the footprint of the checkpoint file is small (smalle
than 13MB), which results in a relatively small overhead.
Fig. 6. Full Checkpt. Overhead: NPB Class D, mP'BLAST Thus, the checkpoint overhead mainly reflects the variance
MG has a larger checkpoint overhead (large checkpoint fil@f the communication overhead inherent to the benchmark,
but the ratio is skewed due to a short overall execution tinehich increases with the node count. However, the overall
(see Fig. 8(a)). In practice, with more realistic and longeheckpoint overhead for these cases is smaller than 1 sec-
checkpoint intervals, a checkpoint would not be necessitatond. Hence, communication overhead of the applications did
within the application’s execution. Instead, the applmat not significantly contribute to the overhead or interferehwi
would have been restarted from scratch. For longer runs witheckpointing. This indicates a high potential of our hgbri
larger inputs of MG, the fraction of checkpoint/migratiorfull/incremental checkpointing solution to scale to largkis-
overhead would have been much smaller. ters, and we have analyzed our data structures and algagrithm
Figs. 7(b), 8(b), 9(b) and 10(b) show that the overhead assure suitability for scalability. Due to a lack of large
of incremental checkpointing is smaller than that of fulbcale experimentation platforms flexible enough to deploy
checkpointing, so the overhead of incremental checkpairis our kernel modifications, new BLCR features and LAM/MPI
less significant. Hence, a hybrid full/incremental cheékpo enhancements, such larger scale experiments cannot tyrren
ing mechanism reduces runtime overhead compared to fod realized, neither at National Labs nor at larger-scaistets
checkpointing throughout, i.e., under varying number afe® within universities where we have access to resources.
and input sizes. The second observation about full checkpoint overheads

BT.9
BT.16
CG.8
CG.16
LU.8
LU.16
MG.8
MG.16
SP.9
SP.16
mpiBLAST.4
. mpiBLAST.8
mpiBLAST.16
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above indicated that the size of the full checkpoint file remaa i.e., our hybrid approach reduces the cost along the critical
stable during job execution. The benchmarks do not allomatepath of checkpointing. For mpiBLAST and CG, the footprint
free heap memory dynamically within timesteps of execytionf incremental checkpointing is comparatively so smallt tha
instead, all allocation is performed during initializatjovhich the overhead of restarting from full plus three incremental
is typical for many parallel codes. checkpoints is almost the same as that of restarting from
The third observation is obtained by measuring the chealtre full checkpoint. Yet, the time saved by three incremlenta
point file size with different checkpoint intervals for ikenen- checkpoints over three full checkpoints is 16.64 seconds on
tal checkpointing, i.e., with intervals of 30, 60, 90, 12601 average for all cases. Even for BT under class D inputs for
and 180 seconds for NPB Class C and intervals of 2, 4, 6,58 nodes (which has the largest restart cost loss ratio), the
10 and 12 minutes for NPB Class D and mpiBLAST. saving is 23.38 seconds while the loss is 10.6 seconds. We
Thus, we can assume the time spent on checkpointingcisn further extend the benefit by increasing the incremental
constant. This assumption is critical to determine thenogki checkpointing count between two full checkpoints.
full/incremental checkpoint frequency. The fourth obsgion We can also assess the accumulated checkpoint file size of
verifies the superiority and justifies the deployment of owne full checkpoint plus three incremental checkpointsictvh

hybrid full/incremental checkpointing mechanism. is 185% larger than that of one full checkpoint. However, as
just discussed, the overhead of restarting from one fulg plu
Restart Overhead three incremental checkpoint is only 68% larger. This is due

to the following facts:

Figs. 7(d), 8(d) and 10(d) compare the restart overhead @ a page saved by different checkpoints is only restoree;on
our hybrld full/lincremental solution from one full ChECkpo (2) file reading for restarting is much faster than file Wgtin
plus three incremental checkpoints with that of the oribingor checkpointing; and
solution restarting from one full ChECprint. The resultdii (3) some pages saved in preceding Checkpoints may be invalid
cate that the wall clock time for restart from full plus thregnd need not be restored at a later checkpoint.
incremental checkpoints exceeds that of restart from olte fu
checkpoint by 0-253% depending on the application, and it Benefits of the Hybrid C/R Mechanism
68% larger (1.17seconds) on average for all cases. Thestarge
additional cost of 253% (10.6 seconds) was observed for BTFig. 11 depicts sensitivity results of the overall savinide (
under class D inputs for 16 nodes due to its comparativetpst saved by replacing full checkpoints with incremente
large memory footprint of the incremental checkpointingninus the loss on the restore overhead) for different number
Yet, this overhead is not on the critical path as failuresf incremental checkpoints between any adjacent full ones.
occur significantly less frequently than periodic checkp®i Savings increase proportional to the number of incremental
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1000

Savings (second:
S

checkpoints (as the y axis in the figure is on a logarithm

limited by stable storage capacity (without segment-sty o0 | /// :;‘;ﬁ;

cleanup). The results are calculated by using the followir; L moLAST

formulae: '

where S,, is the saving withn incremental checkpoints be-’ __LU'_C

tween two full checkpointsQ; is the full checkpoint over- L —+spc

head,O; is the incremental checkpoint overhedg;,; is the //

overhead of restarting from fulldincremental checkpoints and

mpIBLAST and CG’ we may even perform Only incrementé Number of incremental checkpoints between two full checkpoints

checkpointing after the first full checkpoint is captureitialy

we will not run out of drive space at all (or, at least, fofiST for NPB and mpiBlast on 16 Nodes

a very long time). Not only should a node failure be theavings by replacing full checkpoints with incremental ®ne

of a single incremental checkpoint provides opportunit®s benchmarks; (2) the restart cost is nearly proportionahto t

increase checkpoint frequencies compared to an applicatifle size (except that some pages are checkpointed twicetkat bo

checkpoint frequencies reduce the amount of work lost whed thus lead to no extra cost); (3) for all the benchmarks, we

a restart is necessitated by a node failure. Hence, thechyhthn benefit from the hybrid full/incremental C/R mechanism,

the overall overhead relative to C/R. access characteristics of the application.
Table 2 presents detailed measurements on the savingslaksinehabooet al. provide a model that aims at reducing

full plus incremental checkpoints, the relationship befwe checkpoints between two consecutive full checkpoints .[15]

the checkpoint file size and restart overhead, and the dverpthey further develop a method to determine the optimal

benchmarks are sorted by the benefit. The table shows thatthgy obtain

the cost caused by restart from one full plus one incremental Flw)xof - 1"

base), but the amount of incremental checkpoints is si

secae
Sp=nx(0f —0;) — (Rpi — Ry) -we
Ry is the overhead of restarting from one full checkpoint. F¢ o1
since the footprint of incremental checkpoints is so sniadt t Fig. 11. Savings of Hybrid Full/incremental C/R Mecha-
exception over the set of all nodes, but the lower overheaghich is Of - 0;), and can be ignored for most of the
running with full checkpoints only. Such shorter increngént full and incremental checkpoints but later only restoredeon
full/incremental checkpointing mechanism effectivelyluees and the performance improvement depends on the memory
of incremental checkpointing, the overhead of restart frofall checkpoint overhead by performing a set of incremental
benefit from the hybrid full/incremental C/R mechanism. Theumber of incremental checkpoints between full checkjgoint
checkpoints (which isR;,; - Ry) is low, compared to the Pixd
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| Benchmarks [CG.D] SP.D | BT.D |mpiBLAST | LU.D [CG.C[ FT.C [ BT.C [ MG.D [LU.C[SP.C]

Savings Qs - O;) 36.20, 6.73 | 7.79 3.34 2.81|1.85| 1.69| 1.22 | 1.51 |0.38|0.28

Restart overhead (= Ryy1 - Ry) | 0.03| 1.28 | 3.45 0.01 0.59 | 0.01| 0.20 | -0.02| 0.81 | 0.02| 0.04
File increases for 1 incr. chkjMB]|17.26/1151.881429.14 10.45 |561.46 2.10|384.41100.611205.2341.0980.98
Benefit of hybrid C/R §,) 36.17| 5.45 | 4.34 3.33 221 |1.84| 150 | 1.25| 0.70 | 0.36| 0.24

TABLE 2. Savings by Incremental Checkpoint vs. Overhead on Restart

wherem is the number of incremental checkpoints betweeguently deployed in HPC environments can be divided
two consecutive full checkpoinyy is the incremental check- into two categories: coordinated (LAM/MPI+BLCR [9], [8],
point overhead ratiol(= O;/Oy), P; is the probability that a CoCheck [16], etc.) and uncoordinated (MPICH-V [17], [18])
failure will occur after the second full checkpoint and brefo Coordinated techniques commonly rely on a combination of
the next incremental checkpoint, ands additional recovery OS support to checkpoint a process imageg( via the
cost per incremental checkpoint. With the data from Table BLCR Linux module [8]) or user-level runtime library suppor
we obtain averages ab; — O; = 5.8 and = 0.58, which, Collective communication among MPI tasks is used for the

after transformation, gives us coordinated checkpoint negotiation [9]. UncoordinatedR C/
o 0. techniques generally rely on logging messages and possibly
m = { ,:’;ix(;‘ - 1-‘ Lpii'g% - 1-‘ their temporal ordering for asynchronous non-coordinated

] ] S checkpointinge.g, MPICH-V [17], [18] that uses pessimistic
Since0 < PZ < 1, a lower _bound form is 9, Wh_lch |pd|cates message logging. The framework of Open MPI [19], [10] is
the potgntlal for even higher savings at nine '”Crem?”t@ésigned to allow both coordinated and uncoordinated tgpes
checkpoints between any full checkpoints for an optim@}otocols. However, conventional C/R techniques cheekpoi
balance. _ _ the entire process image leading to high checkpoint ovelthea

_Overall, the overhead of the hybrid C/R mechanism ge4yy /0 bandwidth requirements and considerable have dri
S|g_n|f|cantly lower than _the original p_er!od|cal full C/Rete  ressure, even though only a subset of the process image of
anism, and the resulting checkpointing frequency can B vpj tasks changes between checkpoints. With our hybrid
increased to reduce the loss of computation should a ngg®/incremental C/R mechanism, we mitigate the situatiyn

fail. checkpointing only the modified pages and at a lower rate than
required for full checkpoints.
6. Related Work

Incremental Checkpointing: Recent studies focus on in-
Checkpoint/Restart: C/R techniques for MPI jobs fre- cremental checkpointing [20], [21], [22]. TICK (Transpate
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Incremental Checkpointer at Kernel Level) [20] is a systenemployed, namely page protection mechanisms or page-table
level checkpointer implemented as a kernel thread. It sugitty bits. Different implementation variants build on #ee
ports incremental and full checkpoints. However, it does nechemes. One is the bookkeeping and saving scheme that,
checkpoint dynamically loaded shared libraries. Dejavl [®ased on the dirty bit scheme, copies pages into a buffer [20]
integrates TICK within MVAPICH over sockets and InfinibandAnother solution is to exploit page write protection, such a
for incremental checkpoints. In contrast, our solutiomsra in Pickpt [21] and XtreemOS for Grids [25], to save only
parently supportdybrid full/incremental checkpoints for an modified pages as a new checkpoint. The page protection
MPI job, which is unprecedente®ickpt[21] is a page-level scheme has certain draw-backs. Some address ranges, such
incremental checkpointing facility. It provides spac@esfnt as the stack, can only be write protected if an alternate
techniques for automatically removing useless checkpoirsignal stack is employed, which adds calling overhead and
aiming to minimizing the use of disk space that differ front ouincreases cache pressure. Furthermore, the overhead ref use
garbage collection thread technique.éefial. [23] develop an level exception handlers is much higher than kernel-leirgt-d
adaptive page-level incremental checkpointing faciligséd bit shadowing. Thus, we selected the dirty bit scheme in our
on the dirty page count as a threshold heuristic to determidesign, yet in our own implementation within the Linux kdrne
whether to checkpoint now or later, a feature complemerttaryOur approach is unique among this prior work in its ability to
our work that we could adopt within our scheduler componerttapture and restore hybrid checkpoints ofertire MPI job
However, Pickpt and Yi's adaptive scheme are constrainedwdth all its tasks, including all relevant process inforinatand
C/R of a single process while we cover an entire MPI job wit®S kernel-specific data. Hence, our scheme is more general
all its processes and threads within processes. Agagtval. than language specific solutions (as in Charm++), yet lighte
[24] provide a different adaptive incremental checkpaigti weight than OS virtualization C/R techniques.
mechanism to reduce the checkpoint file size by using acheckpoint Interval Model: Aiming at optimality for
secure hash function to uniquely identify changed blocks gheckpoint frequency, overhead and rollback time over a set
memory. Their solution not only appears to be specific {& Mmp] jobs, several models have been developed to deter-
IBM’s compute node kernel on BG/L, it also requires hashegine job-specific intervals for full or incremental checkgs.
for each memory page to be computed, which tends to be M&Sung [26] presented a checkpoint model and obtained a
costly than OS-level dirty-bit support as caches are tle@shfixed optimal checkpoint interval. Based on Young's work,
when each memory location of a page has to be read in thglgy [27] improved the model to an optimal checkpoint
approach. placement from a first order to a higher order approximation.
A prerequisite of incremental checkpointing is the avaikiu et al. provide a model for an optimal full C/R strategy
ability of a mechanism to track modified pages during eacbward minimizing rollback and checkpoint overheads [28].
checkpoint. Two fundamentally different approaches may HAédneir scheme focuses on the fault tolerance challenge, es-



pecially in a large-scale HPC system, by providing optimals]
checkpoint placement techniques that are derived from the
actual system reliability. Naksinehaboenal. (see Section 5) g
provide a model to perform a set of incremental checkpoints
between two consecutive full checkpoints [15] and a metho
to determine the optimal number of incremental checkpoint
between full checkpoints. While their work is constrained
to simulations based on log data, our work focuses on thél
design and implementation of process-level increment&® C/q,
for MPI tasks. Their work is complementary in that their
model could be utilized to fine-tune our incremental C/R.rate
In fact, the majority of their results on analyzing failuratd
logs show that the full/incremental C/R model outperforms
full checkpointing. Furthermore, our reverse scanningarés
mechanism is superior to the one used in their model.

/]

(11]

7. Conclusion (12]
. . . : : Ll3]
This work contributes a novel hybrid C/R mechanism wit
a concrete implementation within LAM/MPI and BLCR with
the following features: (1) It provides a dirty bit mechanis
track modified pages between checkpoints; (2) only the $ubgg)
of modifiedpages is appended to the checkpoint file together
with page metadata updates for incremental checkpoinjs; (3
incremental checkpoints complement full checkpoints by rge
ducing 1/0O bandwidth and storage space requirements while
allowing lower rates for full checkpoints; (4) a restarteafa
node failure requires a scan over all incremental checkgoin
and the last full checkpoint to recover from the last stordd/]
version of a pageie. the content of any page only needs to
be written to memory once for fast restart; (5) a decenidliz[1g]
scheduler coordinates the hybrid C/R mechanism among the
MPI tasks. Results indicate that the performance of theidybhg]
C/R mechanism is significantly better than that of the oagin
full C/R. For the NPB suite and mpiBLAST, the average
savings due to replacing three full checkpoints with threé®
incremental checkpoints is 16.64 seconds — at the cost of
only 1.17 seconds if a restart is required after a node filuR1]
due to restoring one full plus three incremental checkpgoint
Hence, the overall saving amounts to 15.47 seconds. Oyergl
our hybrid checkpointing approach is not only novel but also
superior to prior non-hybrid techniques as an optimal bzdan 23]
is reached around a ratio of 1:9 between full/incremental
checkpoints. These results illustrate that the resultimeck-
pointing frequency can be increased to reduce the poten{?é'l]
loss of computational work should a node fail.
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