
Hybrid Checkpointing for MPI Jobs in HPC Environments
Chao Wang1, Frank Mueller1, Christian Engelmann2, Stephen L. Scott2

1 Department of Computer Science, North Carolina State University, Raleigh, NC (mueller@cs.ncsu.edu)
2 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN

Abstract

As the core count in high-performance computing systems keeps increasing,
faults are becoming common place. Checkpointing addressessuch faults but
captures full process images even though only a subset of theprocess image
changes between checkpoints.

We have designed ahybrid checkpointing technique for MPI tasks of
high-performance applications. This technique alternates between full and
incremental checkpoints: At incremental checkpoints, only data changed since
the last checkpoint is captured. Our implementation integrates new BLCR
and LAM/MPI features that complement traditional full checkpoints. This
results in significantly reduced checkpoint sizes and overheads with only
moderate increases in restart overhead. After accounting for cost and savings,
benefits due to incremental checkpoints are an order of magnitude larger
than overheads on restarts. We further derive qualitative results indicating an
optimal balance between full/incremental checkpoints of our novel approach
at a ratio of 1:9, which outperforms both always-full and always-incremental
checkpointing.

1. Introduction

Recent progress in high-performance computing (HPC) has
resulted in remarkable Terascale systems with 10,000s or
even 100,000s of processing cores. At such large counts of
cores, faults are becoming common place. Reliability data of
contemporary systems illustrates that the mean time between
failures (MTBF) / interrupts (MTBI) is in the range of 6.5-40
hours depending on the maturity / age of the installation [1].
The most common causes of failure are processor, memory
and storage errors / failures. Table 1 presents an excerpt
from a Department of Energy (DOE) study that summarizes
the reliability of several state-of-the-art supercomputers and
distributed computing systems [1], [2]. When extrapolatingfor

System # Cores MTBF/I Outage source
ASCI Q 8,192 6.5 hrs Storage, CPU

ASCI White 8,192 40 hrs Storage, CPU
PSC Lemieux 3,016 6.5 hrs

Google 15,000 20 reboots/dayStorage, memory
Jaguar 4Core 150,152 37.5 hrs Storage, memory

TABLE 1. Reliability of HPC Clusters

current systems in such a context, the MTBF for peta-scale
systems is predicted to be as short as 1.25 hours [3].

In such systems, frequently deployed checkpoint/restart
(C/R) mechanisms periodically checkpoint the entire process
image of all MPI tasks. The wall-clock time of a 100-hour job
could well increase to 251 hours due to the C/R overhead of
contemporary fault tolerant techniques implying that 60% of

This work was supported in part by NSF grants CCR-0237570 (CA-
REER), CNS-0410203, CCF-0429653, CCF-1058779 and DOE DE-FG02-
08ER25837. The research at ORNL was supported by Office of Advanced
Scientific Computing Research and DOE DE-AC05-00OR22725 with UT-
Battelle, LLC.

cycles are spent on C/R alone [3]. Recent investigations [4]
revealed that checkpoint/restart efficiency,i.e., the ratio of
useful vs. scheduled machine time, can be as high as 85%
and as low as 55% on current-generation HPC systems.
However, only a subset of the process image changes between
checkpoints. In particular, large matrices that are only read but
never written, which are common in HPC codes, do not have to
be checkpointed repeatedly. Also, coordinated checkpointing
for MPI jobs, which is commonly deployed, requires all the
MPI tasks to save their checkpoint files at the same time, which
leads to extremely high I/O bandwidth demand.

Contributions: (1) This paper contributes a novel approach
for hybrid checkpointing of MPI tasks that is transparently
integrated into an MPI environment. In contrast, prior ap-
proaches only considered full or incremental checkpoints in
isolation [5], [6]. Our hybrid mechanism complements full
checkpoints with incremental ones, which is superior to either
checkpointing scheme in isolation.

(2) We contribute a full-fledged implementation of our
mechanisms over LAM (Local Area Multicomputer)/MPI’s
C/R support [7] through Berkeley Labs C/R (BLCR) [8]. Tra-
ditional LAM/MPI+BLCR [9] only supports full checkpoint-
ing. While implemented within LAM/MPI and BLCR, our
mechanisms are applicable to any process-migration solution,
e.g., the Open MPI FT mechanisms [10].

(3) We keep the overhead of a restart operation low via a
traversal mechanism that ensures linear overhead in the num-
ber ofdisjoint pages over a set of full/incremental checkpoints
(rather than in the total number of pages saved). While the
latest memory mapping information is maintained and used
by the restart operation, the pages saved by the preceding
checkpoints but unmapped later are skipped.

(4) We conduct experiments on a cluster that quantitatively
show significant reductions in the size of checkpoint files and
the overhead of checkpoint operations for our hybrid C/R.
Hybrid checkpoints save 16 seconds wallclock time on average
for all the cases by replacing three full checkpoints with
incremental ones while overheads of restarts (if required)are
an order of magnitude smaller for our experiments.

(5) From these experiments and an abstract cost model, we
derive an optimal balance of full/incremental checkpointsat a
ratio of 1:9, which appears to be the first time such rates have
been reported based on concrete, hybrid experiments.

The paper is structured as follows. Section 2 presents the
design of our hybrid C/R mechanism. Section 3 identifies
and describes the implementation details. Subsequently, the
experimental framework is detailed and measurements for our
experiments are presented in Section 4 and 5, respectively.Our
contributions are contrasted with prior work in Section 6. The
work is then summarized in Section 7.



Nodes

failure

restart

lamboot
n0 n2n1

mpirun

0 00full chkpt

lamboot
n0 n2n1

4 44

(b) New Full/Incr C/R

(a) Old Full C/R

1 11

2 22

3 33

4 44

n3

full chkpt

full chkpt

full chkpt

full chkpt

Nodes

failure

restart

lamboot
n0 n2n1

mpirun

0 00full chkpt

lamboot
n0 n2n1

1 11

1 11

n3

incr chkpt

full chkpt

incr chkpt

incr chkpt

Fig. 1. Full vs. Hybrid C/R Mechanisms

2. Design

This section presents an overview of the design of our
hybrid C/R mechanism with LAM/MPI and BLCR. In contrast
to prior work, we view incremental checkpoints as comple-
mentary to full checkpoints in the following sense. Everyn-
th checkpoint will be a full checkpoint to capture an appli-
cation without prior checkpoint data while any checkpoints
in between are incremental, as illustrated in Fig. 1(b). Such
process-based incremental checkpointing reduces checkpoint
bandwidth and storage space requirements, and it leads to a
lower rate of full checkpoints. Yet, it keeps storage require-
ments and restore overhead at bay as any full or incremental
checkpoints prior to a full one are no longer required.

In the following, we first discuss scheduler integration of
hybrid C/R. We then detail system-level aspects of hybrid
checkpoints at two levels. First, the synchronization and co-
ordination operations (such as the in-flight message drainage
among all the MPI tasks to reach a consistent global state)
at the job level are provided. Second, dirty pages and related
meta-data image information saved at the process/MPI task
level, as depicted in Fig. 3, are discussed. We employ filtering
of “dirty” pages at the memory management level,i.e., mem-
ory pages modified (written to) since the last checkpoint are
restored after node failures to restart from the composition of
full and incremental checkpoints.

Scheduler

We designed a decentralized scheduler, which can be de-
ployed as a stand-alone component or as an integral pro-
cess of an MPI daemon, such as the LAM daemon (lamd).
The scheduler will issue the full or incremental checkpoint
commands based on user-configured intervals or the system
environment, such as the execution time of the MPI job,
storage constraints for checkpoint files and the overhead of
preceding checkpoints. The algorithms to periodically trigger
full/incremental checkpoints are not quatitatively analyzed this
paper.

nodes

n0 n2n1lamd

MPI app MPI app MPI app

1. incr. cmd

3. process incr. chkpt

MPI app

shared

storage

MPI app MPI app

2. drain in-flight data

MPI app MPI app

4. restore in-flight data, resume normal operation

mpirun

lamd lamd

mpirun

MPI app MPI app MPI app

MPI app

Fig. 2. Incremental Checkpoint at LAM/MPI
Upon a node failure, the scheduler initiates a “job pause”

mechanism in a coordinated manner that effectively freezesall
MPI tasks on functional nodes and migrates processes of failed
nodes [5]. All nodes, functional (paused ones) and migration
targets (replaced failed ones), are restarted from the lastfull
plus n incremental checkpoints, as explained in Section 2.

Hybrid Checkpointing at the Job Level

Hybrid checkpointing at the job level is performed in a
sequence of steps depicted in Fig. 2 and described below.

Step 1: Incremental Checkpoint Trigger: When the
scheduler decides to engage in an incremental checkpoint, it
issues a corresponding command to thempirun process, the
initial LAM/MPI process at job invocation. This process, in
turn, broadcasts the command to all MPI tasks.

Step 2: In-flight Message Drainage:Before we stop any
process and save the remaining dirty pages and the correspond-
ing process state in checkpoint files, all MPI tasks coordinate a
consistent global state equivalent to an internal barrier.Based
on our LAM/MPI+BLCR design, message passing is handled
at the MPI level while the process-level BLCR mechanism is
not aware of messaging at all. Hence, we employ LAM/MPI’s
job-centric interaction mechanism for the respective MPI tasks
to clear in-flight data in the MPI communication channels.

Step 3: Process-level Incremental Checkpoints:Once all
the MPI tasks (processes) reach a globally consistent state,
all of them engage in process-level incremental checkpoints
independently (see below).

Step 4: Messages Restoration and Job Continuation:
Once the process-level incremental checkpoint has been com-
mitted, drained in-flight messages are restored, and all pro-
cesses resume execution from their point of suspension.

Hybrid Checkpointing at the Process Level

Hybrid checkpointing of MPI tasks (step 3 in Fig. 2) is
performed at the process level, which is shown in detail

2



in Fig. 3. Compared to a full checkpoint, the incremental
variant lowers the checkpoint overhead by saving only those
memory pages modified since the last (full or incremental)
checkpoint. This is accomplished via our BLCR enhancements
by activating a handler thread (on right-hand side of Fig. 3)
that signals compute threads to engage in the incremental
checkpoint. One of these threads subsequently saves modified
pages before participating in a barrier with the other threads,
as further detailed in Section 3.

thread1

thread2

running normally
blocked in ioctl()

handler_thr

block in ioctl()

run handler functions

checkpoint_req()

unblocks 

handler_thr

incr_checkpoint

still running normally

receives signal, runs handlers, 

and ioctl()

signal other threadsother work

barrier

barrier

cleanup

block

first thread restores

dirty pages

 shared resource

 registers/signals

reg/sig

registers/signals

mark checkpoint as complete

continue normal execution

Fig. 3. BLCR with Incremental Checkpoint in Bold Frame

A set of three files serve as storage abstraction for a
checkpoint snapshot, as depicted in Fig. 4:
(1) Checkpoint file acontains the memorypage content, i.e.,
the data of only those memory pages modified since the last
checkpoint.
(2) Checkpoint file bstores memorypage addresses, i.e.,
address and offset of the saved memory pages for each entry
in file a.
(3) Checkpoint file ccovers othermeta information, e.g.,
linkage of threads, register snapshots, and signal information
pertinent to each thread within a checkpointed process / MPI
task.

chkpt file a

incr

chkpt 1

P6P5P1P4P3P4P2P4P3P2P1P0

full chkpt
incr

chkpt 2

incr

chkpt 3

Pi: content of memory page i

chkpt file b

chkpt file c

A0

O0

A5

O10

A6

O11

A1

O1

A2

O2

A3

O3

A4

O4

A2

O5

A4

O6

A3

O7

A4

O8

A1

O9

Ai: address of memory page i

Oi: offset in file a of the corresponding memory page

structure info of file b register info signal info etc.

Fig. 4. Structure of Checkpoint Files

File a andfile b maintain their data in a log-based append
mode for successive incremental checkpoints. The last fulland
subsequent incremental checkpoints will only be discharged
(marked for potential removal) once the next full checkpoint
has been committed. Their availability is required for the
potential restart up until a superseding checkpoint is written
to stable storage. In contrast, only the latest version offile c
is maintained since all the latest information is saved as one
meta-data record, which is sufficient for the next restart.

In addition, memory pages saved infile a by an older
checkpoint can be discharged once they are captured in a
subsequent checkpoint due to page modifications (writes) since
the last checkpoint. For example, in Fig. 4, memory page
4 saved by the full checkpoint can be discharged when the
first incremental checkpoint saves the same page. Later, the
same page saved by the first incremental checkpoint can
be discharged when it is saved by the second incremental
checkpoint. In our on-going work, we are developing a garbage
collection thread for this purpose. Similar to segment cleaning
in log-structured file systems [11], the file is divided into
segments (each of equal size as they represent memory pages)
that are written sequentially. A separate garbage collection
thread tracks these segments within the file, removes old
segments (marked appropriately) from the end and puts new
checkpointed memory data into the next segment. As a result,
the file morphs into a large circular buffer as the writer thread
adds new segments to the front and the cleaner thread removes
old segments from the end toward the front (and then wraps
around). Meanwhile, checkpointfile b is updated with the new
offset information relative tofile a.

Modified Memory Page Management

We utilize a Linux kernel-level memory management mod-
ule that has been extended by a page-table dirty bit scheme
to track modified pages between checkpoints [12]. This is
accomplished by duplicating the dirty bit of the page-table
entry (PTE) and extending kernel-level functions that access
the PTE dirty bit so that the duplicate bit is set with negligible
overhead (see [12] for details).

MPI Job Restart from Hybrid Checkpoints

Upon a node failure, the scheduler coordinates the restart
operation on both the functional nodes and the spare nodes.
First, the process ofmpirun is restarted, which, in turn, issues
the restart command to all the nodes for the MPI tasks.
Thereafter, recovery commences on each node by restoring the
last incremental checkpoint image, followed by the memory
pages from the preceding incremental checkpoints in reverse
order up to the pages from the last full checkpoint image, as
depicted in Fig. 5. The reverse-order scan over all incremental
checkpoints and the last full checkpoint allows the recovery
of the last stored version of a page in linear complexity
relative to the number of pages to be restores. While the
meta-information of repeatedly stored pages is traversed for

3



pages that had been modified between checkpoints, the content
of any page only needs to be written once to facilitate a
fast restart. After process-level restart has been completed,
drained in-flight messages are restored, and all the processes
resume execution from their point of suspension. Furthermore,
some pages saved in preceding checkpoints may be invalid
(unmapped) in subsequent ones and need not be restored. The
latest memory mapping information saved incheckpoint file c
is also used for this purpose.

chkpt file a

restart

incr

chkpt 1

P6P5P1P4P3P4P2P4P3P2P1P0

full chkpt
incr

chkpt 2

incr

chkpt 3

Pi: content of memory page i

Fig. 5. Fast Restart from a Hybrid Checkpoint

3. Implementation Issues

Our hybrid full/incremental checkpoint/restart mechanism
is implemented with LAM/MPI and BLCR. The overall
design and implementation allows adaptation of this solu-
tion to arbitrary MPI implementations, such as MPICH and
Open MPI. Next, we present the implementation details of
the full/incremental C/R mechanism, including the MPI-level
communication/coordination realized within LAM/MPI and
the process-level fundamental capabilities of BLCR.

Hybrid Checkpointing at the Job Level

We developed new commands to issue full and incremental
checkpoint commands, which are relayed by a decentralized
scheduler to thempirunprocess of the MPI job. Subsequently,
mpirun broadcasts full/incremental checkpoint commands to
each MPI tasks. At the LAM/MPI level, we also drain in-flight
messages to reach a consistent internal state before check-
pointing (see step 2 in Fig. 2). We restore in-flight message
data and resume normal operation after the checkpointing has
completed (see step 4 in Fig. 2).

Hybrid Checkpointing at the Process Level

We integrated several new BLCR features to extend its
process-level checkpointing facilities to trigger full and in-
cremental checkpoints at the process level within BLCR with
corresponding writes of the respective portion of a process
snapshot to one of the three files (see Section 2 and Fig. 4).

Fig. 3 depicts the steps involved in issuing an incremental
checkpoint in reference to BLCR. Our focus is on the enhance-
ments to BLCR (large dashed box). In the figure, time flows
from top to bottom, and the processes and threads involved
in the checkpoint are placed from right to left. Activities
performed in the kernel are surrounded by dotted lines. A
callback thread (right side) is spawned as the application
registers a threaded callback and blocks in the kernel until
a checkpoint has been committed.mpirun invokes a new
command extension to BLCR, parametrized with the process

id. This triggers anioctl call, thereby resuming the callback
thread that was previously blocked in the kernel. After the
callback thread invokes the individual callback for each of
the other threads, it reenters the kernel and sends a signal to
each thread. These threads, in response, engage in executing
the callback signal handler and then enter the kernel through
anotherioctl call.

Once in the kernel, the first thread saves the dirty memory
pages modified since the last checkpoint. Then, threads take
turns saving their register and signal information to the check-
point files. After a final barrier, the process exits the kernel and
enters user space, at which point the checkpoint mechanism
has completed.

BLCR’s full checkpoint command performs similar work,
except that once the kernel is entered, the first thread savesall
non-empty memory pages rather than only the dirty ones.

Restart from Hybrid Checkpoints

Newly developed commands perform the restart work (1)
at the job level with LAM/MPI and (2) at the process level
within BLCR. In concert, the two commands implement the
restart from the three checkpoint files and resume the normal
execution of the MPI job as discussed in Section 2.

4. Experimental Framework

Experiments were conducted on a dedicated Linux cluster
comprised of 18 compute nodes, each equipped with two AMD
Opteron-265 processors (each dual core) and 2 GB of memory.
The nodes are interconnected by two networks, both with 1
Gbps Ethernet. The OS used is Fedora Core 5 Linux x8664
with our dirty bit patch as described in Section 2. We extended
LAM/MPI and BLCR with our hybrid full/incremental C/R
mechanism of this platform.

For all following experiments we use the MPI version of the
NPB suite [13] (version 3.3) as well as mpiBLAST [14]. NPB
is a suite of programs widely used to evaluate the performance
of parallel system, while the latter is a parallel implementation
of NCBI BLAST, which splits a database into fragments and
distributes the query tasks to workers by query segmentation
before the BLAST search is performed in parallel.

5. Experimental Results

Experiments were conducted to assess (a) overheads, (b) file
sizes, (c) restart overheads, and (d) the relationship between
checkpoint interval and checkpoint overhead.

Out of the NPB suite, the BT, CG, FT, LU and SP
benchmarks were exposed to class C data inputs running on 4,
8 or 9 and 16 nodes, and to class D data inputs on 8 or 9 and
16 nodes. Some NAS benchmarks have 2D, others have 3D
layouts for23 or 32 nodes, respectively. The NAS benchmark
EP is exposed to class C, D and E data inputs running on
4, 8 and 16 nodes. All the other NAS benchmarks were not
suitable for our experiments since they execute for too short a

4



period to be periodically checkpointed, such as IS, as depicted
in Fig. 7(a), or they have excessive memory requirement, such
as the benchmarks with class D data inputs on 4 nodes.

Since this version of mpiBLAST assigns one process as
the master and another to perform file output, the number
of actual worker processes performing parallel input is the
total process number minus two. Each worker process reads
several database fragments. With our experiments, we set
the mpiBLAST-specific argument-use-virtual-frags, which
enables caching of database fragments in memory (rather than
local storage) for quicker searches.

Checkpointing Overhead

The first set of experiments assesses the overhead incurred
due to one full or incremental checkpoint. Figs. 7(a), 8(a),9(a)
and 10(a) depict the base execution time of a job (benchmark)
without checkpointing while Figs. 7(b), 8(b), 9(b) and 10(b)
depict the checkpoint overhead. As these results show, the
checkpoint overhead is uniformly small relative to the overall
execution time, even for a larger number of nodes. Prior work
[5] already compared the overhead of full checkpointing with
the base execution, and the ratio is below 10% for most
NPB benchmarks with Class C data inputs. Fig. 6 depicts the
measured overhead for single full checkpointing relative to
the base execution time of NPB with Class D data inputs and
mpiBLAST (without checkpointing). The ratio is below 1%,
except for MG, as discussed in the following.

92%

93%

94%

95%

96%

97%

98%

99%

100%

B
T

.9

B
T

.1
6

C
G

.8

C
G

.1
6

L
U

.8

L
U

.1
6

M
G

.8

M
G

.1
6

S
P

.9

S
P

.1
6

m
p

iB
L

A
S

T
.4

m
p

iB
L

A
S

T
.8

m
p

iB
L

A
S

T
.1

6

Execution time Full checkpoint overhead

Fig. 6. Full Checkpt. Overhead: NPB Class D, mpiBLAST

MG has a larger checkpoint overhead (large checkpoint file),
but the ratio is skewed due to a short overall execution time
(see Fig. 8(a)). In practice, with more realistic and longer
checkpoint intervals, a checkpoint would not be necessitated
within the application’s execution. Instead, the application
would have been restarted from scratch. For longer runs with
larger inputs of MG, the fraction of checkpoint/migration
overhead would have been much smaller.

Figs. 7(b), 8(b), 9(b) and 10(b) show that the overhead
of incremental checkpointing is smaller than that of full
checkpointing, so the overhead of incremental checkpointing is
less significant. Hence, a hybrid full/incremental checkpoint-
ing mechanism reduces runtime overhead compared to full
checkpointing throughout, i.e., under varying number of nodes
and input sizes.

Checkpoint Times and File Size

We also assessed the actual footprint of the checkpointing
file. Figs. 7(c), 8(c), 9(c) and 10(c) depict the size of the check-
point files for one process of each MPI application. Writing
many files of such size to shared storage synchronously may
be feasible for high-bandwidth parallel file systems. In the
absence of sufficient bandwidth for simultaneous writes, we
provide a multi-stage solution where we first checkpoint to
local storage. After local checkpointing, files will be asyn-
chronously copied to shared storage, an activity governed by
the scheduler. This copy operation can be staggered (again
governed by the scheduler) between nodes. Upon failure, a
spare node restores data from the shared file system while the
remaining nodes roll back using the checkpoint file on local
storage, which results in less network traffic.

Overall, the experiments show that:
(1) the overhead of full/incremental checkpointing of the MPI
job is largely proportional to the size of the checkpoint file;
(2) the overhead of full checkpointing is nearly the same at
any time of the execution of the job;
(3) the overhead of incremental checkpointing is nearly the
same at any interval; and
(4) the overhead of incremental checkpointing is lower than
that of full checkpointing (except some cases of EP, which
are lower than 0.45 seconds, which is excessively short. If
required at this sort rate, one can employ full checkpointing
only).

The first observation indicates that the ratio of communica-
tion overhead to computation overhead for C/R of the MPI job
is relatively low. Since checkpoint files are, on average, large,
the time spent on storing/restoring checkpoints to/from disk
accounts for most of the measured overhead. This overhead is
further reduced by the potential savings through incremental
checkpointing.

For full/incremental checkpointing of EP (Fig. 9(c)), in-
cremental checkpointing of CG with Class C data inputs
(Fig. 7(c)) and incremental checkpointing of mpiBLAST (Fig.
10(c)), the footprint of the checkpoint file is small (smaller
than 13MB), which results in a relatively small overhead.
Thus, the checkpoint overhead mainly reflects the variance
of the communication overhead inherent to the benchmark,
which increases with the node count. However, the overall
checkpoint overhead for these cases is smaller than 1 sec-
ond. Hence, communication overhead of the applications did
not significantly contribute to the overhead or interfere with
checkpointing. This indicates a high potential of our hybrid
full/incremental checkpointing solution to scale to larger clus-
ters, and we have analyzed our data structures and algorithms
to assure suitability for scalability. Due to a lack of large-
scale experimentation platforms flexible enough to deploy
our kernel modifications, new BLCR features and LAM/MPI
enhancements, such larger scale experiments cannot currently
be realized, neither at National Labs nor at larger-scale clusters
within universities where we have access to resources.

The second observation about full checkpoint overheads

5



0

200

400

600

800

1000

1200

BT CG FT IS LU MG SP

Jo
b

 e
x

ec
u

ti
o

n
 t

im
e 

(s
ec

o
n

d
s)

on 4 nodes

on 8/9 nodes

on 16 nodes

(a) Job Execution Time

0

10

20

30

40

50

60

B
T

.4

B
T

.9

B
T

.1
6

C
G

.4

C
G

.8

C
G

.1
6

F
T

.4

F
T

.8

F
T

.1
6

L
U

.4

L
U

.8

L
U

.1
6

S
P

.4

S
P

.9

S
P

.1
6

C
h

ec
k

p
o

in
t 

o
v

er
h

ea
d

 (
se

co
n

d
s)

Full chkpt

Incr. chkpt

(b) Checkpoint Time

0

200

400

600

800

1000

1200

1400

1600

1800

2000

B
T

.4

B
T

.9

B
T

.1
6

C
G

.4

C
G

.8

C
G

.1
6

F
T

.4

F
T

.8

F
T

.1
6

L
U

.4

L
U

.8

L
U

.1
6

S
P

.4

S
P

.9

S
P

.1
6

C
h

ec
k

p
o

in
t 

fi
le

 s
iz

e 
(M

B
)

Full chkpt

Incr. chkpt

(c) Checkpoint File Size

0

1

2

3

4

5

6

7

8

9

B
T

.4

B
T

.9

B
T

.1
6

C
G

.4

C
G

.8

C
G

.1
6

F
T

.4

F
T

.8

F
T

.1
6

L
U

.4

L
U

.8

L
U

.1
6

S
P

.4

S
P

.9

S
P

.1
6

R
es

ta
rt

 o
v

er
h

ea
d

 (
se

co
n

d
s)

From full chkpt

From full+3incr. chkpt

(d) Restart Time

Fig. 7. Evaluation with NPB Class C on 4, 8/9, and 16 Nodes

above indicated that the size of the full checkpoint file remains
stable during job execution. The benchmarks do not allocateor
free heap memory dynamically within timesteps of execution;
instead, all allocation is performed during initialization, which
is typical for many parallel codes.

The third observation is obtained by measuring the check-
point file size with different checkpoint intervals for incremen-
tal checkpointing, i.e., with intervals of 30, 60, 90, 120, 150
and 180 seconds for NPB Class C and intervals of 2, 4, 6, 8,
10 and 12 minutes for NPB Class D and mpiBLAST.

Thus, we can assume the time spent on checkpointing is
constant. This assumption is critical to determine the optimal
full/incremental checkpoint frequency. The fourth observation
verifies the superiority and justifies the deployment of our
hybrid full/incremental checkpointing mechanism.

Restart Overhead

Figs. 7(d), 8(d) and 10(d) compare the restart overhead of
our hybrid full/incremental solution from one full checkpoint
plus three incremental checkpoints with that of the original
solution restarting from one full checkpoint. The results indi-
cate that the wall clock time for restart from full plus three
incremental checkpoints exceeds that of restart from one full
checkpoint by 0-253% depending on the application, and it is
68% larger (1.17seconds) on average for all cases. The largest
additional cost of 253% (10.6 seconds) was observed for BT
under class D inputs for 16 nodes due to its comparatively
large memory footprint of the incremental checkpointing.
Yet, this overhead is not on the critical path as failures
occur significantly less frequently than periodic checkpoints,

i.e., our hybrid approach reduces the cost along the critical
path of checkpointing. For mpiBLAST and CG, the footprint
of incremental checkpointing is comparatively so small that
the overhead of restarting from full plus three incremental
checkpoints is almost the same as that of restarting from
one full checkpoint. Yet, the time saved by three incremental
checkpoints over three full checkpoints is 16.64 seconds on
average for all cases. Even for BT under class D inputs for
16 nodes (which has the largest restart cost loss ratio), the
saving is 23.38 seconds while the loss is 10.6 seconds. We
can further extend the benefit by increasing the incremental
checkpointing count between two full checkpoints.

We can also assess the accumulated checkpoint file size of
one full checkpoint plus three incremental checkpoints, which
is 185% larger than that of one full checkpoint. However, as
just discussed, the overhead of restarting from one full plus
three incremental checkpoint is only 68% larger. This is due
to the following facts:
(1) a page saved by different checkpoints is only restored once;
(2) file reading for restarting is much faster than file writing
for checkpointing; and
(3) some pages saved in preceding checkpoints may be invalid
and need not be restored at a later checkpoint.

Benefits of the Hybrid C/R Mechanism

Fig. 11 depicts sensitivity results of the overall savings (the
cost saved by replacing full checkpoints with incremental ones
minus the loss on the restore overhead) for different number
of incremental checkpoints between any adjacent full ones.
Savings increase proportional to the number of incremental

6



0

2000

4000

6000

8000

10000

12000

BT CG LU MG SP

Jo
b

 e
x

ec
u

ti
o

n
 t

im
e 

(s
ec

o
n

d
s)

on 8/9 nodes

on 16 nodes

(a) Job Execution Time on 8/9 and 16 Nodes

0

5

10

15

20

25

30

35

40

45

50

BT CG LU MG SP

C
h

ec
k

p
o

in
t 

o
v

er
h

ea
d

 (
se

co
n

d
s)

Full chkpt

Incr. chkpt

(b) Checkpoint Time on 16 Nodes

0

200

400

600

800

1000

1200

1400

1600

1800

BT CG LU MG SP

C
h

ec
k

p
o

in
t 

fi
le

 s
iz

e 
(M

B
)

Full chkpt

Incr. chkpt

(c) Checkpoint File Size on 16 Nodes

0

2

4

6

8

10

12

14

16

BT CG LU MG SP

R
es

ta
rt

 o
v

er
h

ea
d

 (
se

co
n

d
s)

From full chkpt

From full+3incr. chkpt

(d) Restart Time on 16 Nodes

Fig. 8. Evaluation with NPB Class D

checkpoints (as the y axis in the figure is on a logarithmic
base), but the amount of incremental checkpoints is still
limited by stable storage capacity (without segment-style
cleanup). The results are calculated by using the following
formulae:
Sn = n × (Of − Oi) − (Rf+i − Rf )
where Sn is the saving withn incremental checkpoints be-
tween two full checkpoints,Of is the full checkpoint over-
head,Oi is the incremental checkpoint overhead,Rf+i is the
overhead of restarting from full+i incremental checkpoints and
Rf is the overhead of restarting from one full checkpoint. For
mpiBLAST and CG, we may even perform only incremental
checkpointing after the first full checkpoint is captured initially
since the footprint of incremental checkpoints is so small that
we will not run out of drive space at all (or, at least, for
a very long time). Not only should a node failure be the
exception over the set of all nodes, but the lower overhead
of a single incremental checkpoint provides opportunitiesto
increase checkpoint frequencies compared to an application
running with full checkpoints only. Such shorter incremental
checkpoint frequencies reduce the amount of work lost when
a restart is necessitated by a node failure. Hence, the hybrid
full/incremental checkpointing mechanism effectively reduces
the overall overhead relative to C/R.

Table 2 presents detailed measurements on the savings
of incremental checkpointing, the overhead of restart from
full plus incremental checkpoints, the relationship between
the checkpoint file size and restart overhead, and the overall
benefit from the hybrid full/incremental C/R mechanism. The
benchmarks are sorted by the benefit. The table shows that (1)
the cost caused by restart from one full plus one incremental
checkpoints (which isRf+1 - Rf ) is low, compared to the

0.1

1

10

100

1000

1 2 3 4 5 6

Number of incremental checkpoints between two full checkpoints

S
av

in
g

s 
(s

ec
o

n
d

s)

CG.D

SP.D

BT.D

mpiBLAST

LU.D

CG.C

FT.C

BT.C

MG.D

LU.C

SP.C

Fig. 11. Savings of Hybrid Full/Incremental C/R Mecha-
nism for NPB and mpiBlast on 16 Nodes

savings by replacing full checkpoints with incremental ones
(which is Of - Oi), and can be ignored for most of the
benchmarks; (2) the restart cost is nearly proportional to the
file size (except that some pages are checkpointed twice at both
full and incremental checkpoints but later only restored once
and thus lead to no extra cost); (3) for all the benchmarks, we
can benefit from the hybrid full/incremental C/R mechanism,
and the performance improvement depends on the memory
access characteristics of the application.

Naksinehaboonet al. provide a model that aims at reducing
full checkpoint overhead by performing a set of incremental
checkpoints between two consecutive full checkpoints [15].
They further develop a method to determine the optimal
number of incremental checkpoints between full checkpoints.
They obtain

m =

⌈

(1−µ)×Of

Pi×δ
− 1

⌉

7



1

10

100

1000

10000

100000

Class C Class D Class E

Jo
b

 e
x

ec
u

ti
o

n
 t

im
e 

(s
ec

o
n

d
s)

on 4 nodes

on 8 nodes

on 16 nodes

(a) Job Execution Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

C.4 C.8 C.16 D.4 D.8 D.16 E.4 E.8 E.16

C
h

ec
k

p
o

in
t 

o
v

er
h

ea
d

 (
se

co
n

d
s)

Full chkpt

Incr. chkpt

(b) Checkpoint Time

0.1

0.3

0.5

0.7

0.9

1.1

1.3

C.4 C.8 C.16 D.4 D.8 D.16 E.4 E.8 E.16

C
h

ec
k

p
o

in
t 

fi
le

 s
iz

e 
(M

B
)

Full chkpt Incr. chkpt

(c) Checkpoint File Size

Fig. 9. Evaluation with NPB EP Class C/D/E on 4, 8 and 16 nodes

Benchmarks CG.D SP.D BT.D mpiBLAST LU.D CG.C FT.C BT.C MG.D LU.C SP.C
Savings (Of - Oi) 36.20 6.73 7.79 3.34 2.81 1.85 1.69 1.22 1.51 0.38 0.28

Restart overhead (δ = Rf+1 - Rf ) 0.03 1.28 3.45 0.01 0.59 0.01 0.20 -0.02 0.81 0.02 0.04
File increases for 1 incr. chkpt[MB] 17.26 1151.881429.14 10.45 561.46 2.10 384.41100.671205.2341.09 80.98

Benefit of hybrid C/R (S1) 36.17 5.45 4.34 3.33 2.21 1.84 1.50 1.25 0.70 0.36 0.24

TABLE 2. Savings by Incremental Checkpoint vs. Overhead on Restart

wherem is the number of incremental checkpoints between
two consecutive full checkpoint,µ is the incremental check-
point overhead ratio (µ = Oi/Of ), Pi is the probability that a
failure will occur after the second full checkpoint and before
the next incremental checkpoint, andδ is additional recovery
cost per incremental checkpoint. With the data from Table 2,
we obtain averages ofOf − Oi = 5.8 and δ = 0.58, which,
after transformation, gives us

m =

⌈

Of−Oi

Pi×δ
− 1

⌉

=

⌈

5.8
Pi×0.58 − 1

⌉

Since0 < Pi < 1, a lower bound form is 9, which indicates
the potential for even higher savings at nine incremental
checkpoints between any full checkpoints for an optimal
balance.

Overall, the overhead of the hybrid C/R mechanism is
significantly lower than the original periodical full C/R mech-
anism, and the resulting checkpointing frequency can be
increased to reduce the loss of computation should a node
fail.

6. Related Work

Checkpoint/Restart: C/R techniques for MPI jobs fre-

quently deployed in HPC environments can be divided
into two categories: coordinated (LAM/MPI+BLCR [9], [8],
CoCheck [16], etc.) and uncoordinated (MPICH-V [17], [18]).
Coordinated techniques commonly rely on a combination of
OS support to checkpoint a process image (e.g., via the
BLCR Linux module [8]) or user-level runtime library support.
Collective communication among MPI tasks is used for the
coordinated checkpoint negotiation [9]. Uncoordinated C/R
techniques generally rely on logging messages and possibly
their temporal ordering for asynchronous non-coordinated
checkpointing,e.g., MPICH-V [17], [18] that uses pessimistic
message logging. The framework of Open MPI [19], [10] is
designed to allow both coordinated and uncoordinated typesof
protocols. However, conventional C/R techniques checkpoint
the entire process image leading to high checkpoint overhead,
heavy I/O bandwidth requirements and considerable hard drive
pressure, even though only a subset of the process image of
all MPI tasks changes between checkpoints. With our hybrid
full/incremental C/R mechanism, we mitigate the situationby
checkpointing only the modified pages and at a lower rate than
required for full checkpoints.

Incremental Checkpointing: Recent studies focus on in-
cremental checkpointing [20], [21], [22]. TICK (Transparent

8



0

2000

4000

6000

8000

10000

12000

14000

4(6) 8(10) 16(18)

Number of workers (number of compute nodes)

Jo
b

 e
x

ec
u

ti
o

n
 t

im
e 

(s
ec

o
n

d
s)

(a) Job Execution Time

0.1

1

10

100

4(6) 8(10) 16(18)

Number of workers (number of compute nodes)

C
h

ec
k

p
o

in
t 

o
v

er
h

ea
d

 (
se

co
n

d
s) Full chkpt

Incr. chkpt

(b) Checkpoint Time

1

10

100

1000

10000

4(6) 8(10) 16(18)

Number of workers (number of compute nodes)

C
h

ec
k

p
o

in
t 

fi
le

 s
iz

e 
(M

B
)

Full chkpt

Incr. chkpt

(c) Checkpoint File Size

0

1

2

3

4

5

6

7

4(6) 8(10) 16(18)

Number of workers (number of compute nodes)
R

es
ta

rt
 o

v
er

h
ea

d
 (

se
co

n
d

s)

From full chkpt

From full+3incr. chkpt

(d) Restart Time

Fig. 10. Evaluation with mpiBLAST

Incremental Checkpointer at Kernel Level) [20] is a system-
level checkpointer implemented as a kernel thread. It sup-
ports incremental and full checkpoints. However, it does not
checkpoint dynamically loaded shared libraries. Dejavu [6]
integrates TICK within MVAPICH over sockets and Infiniband
for incremental checkpoints. In contrast, our solution trans-
parently supportshybrid full/incremental checkpoints for an
MPI job, which is unprecedented.Pickpt [21] is a page-level
incremental checkpointing facility. It provides space-efficient
techniques for automatically removing useless checkpoints
aiming to minimizing the use of disk space that differ from our
garbage collection thread technique. Yiet al. [23] develop an
adaptive page-level incremental checkpointing facility based
on the dirty page count as a threshold heuristic to determine
whether to checkpoint now or later, a feature complementaryto
our work that we could adopt within our scheduler component.
However, Pickpt and Yi’s adaptive scheme are constrained to
C/R of a single process while we cover an entire MPI job with
all its processes and threads within processes. Agarwalet al.
[24] provide a different adaptive incremental checkpointing
mechanism to reduce the checkpoint file size by using a
secure hash function to uniquely identify changed blocks in
memory. Their solution not only appears to be specific to
IBM’s compute node kernel on BG/L, it also requires hashes
for each memory page to be computed, which tends to be more
costly than OS-level dirty-bit support as caches are thrashed
when each memory location of a page has to be read in their
approach.

A prerequisite of incremental checkpointing is the avail-
ability of a mechanism to track modified pages during each
checkpoint. Two fundamentally different approaches may be

employed, namely page protection mechanisms or page-table
dirty bits. Different implementation variants build on these
schemes. One is the bookkeeping and saving scheme that,
based on the dirty bit scheme, copies pages into a buffer [20].
Another solution is to exploit page write protection, such as
in Pickpt [21] and XtreemOS for Grids [25], to save only
modified pages as a new checkpoint. The page protection
scheme has certain draw-backs. Some address ranges, such
as the stack, can only be write protected if an alternate
signal stack is employed, which adds calling overhead and
increases cache pressure. Furthermore, the overhead of user-
level exception handlers is much higher than kernel-level dirty-
bit shadowing. Thus, we selected the dirty bit scheme in our
design, yet in our own implementation within the Linux kernel.
Our approach is unique among this prior work in its ability to
capture and restore hybrid checkpoints of anentire MPI job
with all its tasks, including all relevant process information and
OS kernel-specific data. Hence, our scheme is more general
than language specific solutions (as in Charm++), yet lighter
weight than OS virtualization C/R techniques.

Checkpoint Interval Model: Aiming at optimality for
checkpoint frequency, overhead and rollback time over a set
of MPI jobs, several models have been developed to deter-
mine job-specific intervals for full or incremental checkpoints.
Young [26] presented a checkpoint model and obtained a
fixed optimal checkpoint interval. Based on Young’s work,
Daly [27] improved the model to an optimal checkpoint
placement from a first order to a higher order approximation.
Liu et al. provide a model for an optimal full C/R strategy
toward minimizing rollback and checkpoint overheads [28].
Their scheme focuses on the fault tolerance challenge, es-

9



pecially in a large-scale HPC system, by providing optimal
checkpoint placement techniques that are derived from the
actual system reliability. Naksinehaboonet al. (see Section 5)
provide a model to perform a set of incremental checkpoints
between two consecutive full checkpoints [15] and a method
to determine the optimal number of incremental checkpoints
between full checkpoints. While their work is constrained
to simulations based on log data, our work focuses on the
design and implementation of process-level incremental C/R
for MPI tasks. Their work is complementary in that their
model could be utilized to fine-tune our incremental C/R rate.
In fact, the majority of their results on analyzing failure data
logs show that the full/incremental C/R model outperforms
full checkpointing. Furthermore, our reverse scanning restart
mechanism is superior to the one used in their model.

7. Conclusion

This work contributes a novel hybrid C/R mechanism with
a concrete implementation within LAM/MPI and BLCR with
the following features: (1) It provides a dirty bit mechanism to
track modified pages between checkpoints; (2) only the subset
of modifiedpages is appended to the checkpoint file together
with page metadata updates for incremental checkpoints; (3)
incremental checkpoints complement full checkpoints by re-
ducing I/O bandwidth and storage space requirements while
allowing lower rates for full checkpoints; (4) a restart after a
node failure requires a scan over all incremental checkpoints
and the last full checkpoint to recover from the last stored
version of a page,i.e., the content of any page only needs to
be written to memory once for fast restart; (5) a decentralized
scheduler coordinates the hybrid C/R mechanism among the
MPI tasks. Results indicate that the performance of the hybrid
C/R mechanism is significantly better than that of the original
full C/R. For the NPB suite and mpiBLAST, the average
savings due to replacing three full checkpoints with three
incremental checkpoints is 16.64 seconds — at the cost of
only 1.17 seconds if a restart is required after a node failure
due to restoring one full plus three incremental checkpoints.
Hence, the overall saving amounts to 15.47 seconds. Overall,
our hybrid checkpointing approach is not only novel but also
superior to prior non-hybrid techniques as an optimal balance
is reached around a ratio of 1:9 between full/incremental
checkpoints. These results illustrate that the resulting check-
pointing frequency can be increased to reduce the potential
loss of computational work should a node fail.

References

[1] C.-H. Hsu and W.-C. Feng, “A power-aware run-time system for high-
performance computing,” inSupercomputing, 2005.

[2] O. R. N. Laboratory, “National center for computational sciences,”
http://info.nccs.gov/resources/jaguar, Jun. 2007.

[3] I. Philp, “Software failures and the road to a petaflop machine,” in
Workshop on High Performance Computing Reliability Issues, 2005.

[4] J. T. Daly, L. A. Pritchett-Sheats, and S. E. Michalak, “Application
MTTFE vs. platform MTTF: A fresh perspective on system reliability
and application throughput for computations at scale,” inWorkshop on
Resiliency in High Performance Computing, May 2008, pp. 19–22.

[5] C. Wang, F. Mueller, C. Engelmann, and S. Scott, “A job pause service
under LAM/MPI+BLCR for transparent fault tolerance,” inInternational
Parallel and Distributed Processing Symposium, Apr. 2007.

[6] J. Ruscio, M. Heffner, and S. Varadarajan, “Dejavu: Transparent user-
level checkpointing, migration, and recovery for distributed systems,” in
International Parallel and Distributed Processing Symposium, 2007.

[7] J. M. Squyres and A. Lumsdaine, “A Component Architecture for
LAM/MPI,” in European PVM/MPI Users’ Group Meeting, ser. Lecture
Notes in Computer Science, no. 2840, Sep. 2003, pp. 379–387.

[8] J. Duell, “The design and implementation of berkeley lab’slinux
checkpoint/restart,” Lawrence Berkeley National Laboratory, TR, 2000.

[9] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P. Har-
grove, and E. Roman, “The LAM/MPI checkpoint/restart framework:
System-initiated checkpointing,” inLACSI Symposium, Oct. 2003.

[10] J. Hursey, J. M. Squyres, T. I. Mattox, and A. Lumsdaine, “The design
and implementation of checkpoint/restart process fault tolerance for
Open MPI,” in Workshop on Dependable Parallel, Distributed and
Network-Centric Systems, 03 2007.

[11] M. Rosenblum and J. K. Ousterhout, “The design and implementation
of a log-structured file system,” inACM Trans. on Computer Systems,
Vol. 10, No. 1, Feb. 1992.

[12] C. Wang, F. Mueller, C. Engelmann, and S. Scott, “Proactive process-
level live migration in hpc environments,” inSupercomputing, 2008.

[13] F. Wong, R. Martin, R. Arpaci-Dusseau, and D. Culler, “Architectural
requirements and scalability of the NAS parallel benchmarks,” in Su-
percomputing, 1999.

[14] A. Darling, L. Carey, and W. Feng, “The design, implementation, and
evaluation of mpiBLAST,” inClusterWorld Conference and Expo, 2003.

[15] N. Naksinehaboon, Y. Liu, C. B. Leangsuksun, R. Nassar,M. Paun, and
S. Scott, “Reliability-aware approach: An incremental checkpoint/restart
model in hpc environments,” inSymposium on Cluster Computing and
the Grid, 2008, pp. 783–788.

[16] G. Stellner, “CoCheck: checkpointing and process migration for MPI,”
in Proceedings of IPPS ’96. The 10th International Parallel Processing
Symposium: Honolulu, HI, USA, 15–19 April 1996, IEEE, Ed. 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA: IEEECom-
puter Society Press, 1996, pp. 526–531.

[17] G. Bosilca, A. Boutellier, and F. Cappello, “MPICH-V: Toward a
scalable fault tolerant MPI for volatile nodes,” inSupercomputing, Nov.
2002.

[18] B. Bouteiller, F. Cappello, T. Herault, K. Krawezik, P.Lemarinier, and
M. Magniette, “MPICH-V2: a fault tolerant MPI for volatile nodes based
on pessimistic sender based message logging,” inSupercomputing, 2003.

[19] B. Barrett, J. M. Squyres, A. Lumsdaine, R. L. Graham, and G. Bosilca,
“Analysis of the component architecture overhead in Open MPI,” in
European PVM/MPI Users’ Group Meeting, September 2005.

[20] R. Gioiosa, J. C. S., S. Jiang, and F. Petrini, “Transparent, incremental
checkpointing at kernel level: a foundation for fault tolerance for parallel
computers,” inSupercomputing, 2005.

[21] J. Heo, S. Yi, Y. Cho, J. Hong, and S. Y. Shin, “Space-efficient page-level
incremental checkpointing,” inACM Symposium on Applied computing,
2005, pp. 1558–1562.

[22] S.-T. Hsu and R.-C. Chang, “Continuous checkpointing:joining the
checkpointing with virtual memory paging,”Softw. Pract. Exper., vol. 27,
no. 9, pp. 1103–1120, 1997.

[23] S. Yi, J. Heo, Y. Cho, and J. Hong, “Adaptive page-level incremental
checkpointing based on expected recovery time,” inACM Symposium
on Applied computing, 2006, pp. 1472–1476.

[24] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive incre-
mental checkpointing for massively parallel systems,” inInternational
Conference on Supercomputing. New York, NY, USA: ACM, 2004,
pp. 277–286.

[25] J. Mehnert-Spahn, E. Feller, and M. Schoettner, “Incremental check-
pointing for grids,” inLinux Symposium, Jul. 2009.

[26] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Commun. ACM, vol. 17, no. 9, pp. 530–531, 1974.

[27] J. T. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,”Future Gener. Comput. Syst., vol. 22, no. 3, pp. 303–
312, 2006.

[28] Y. Liu, R. Nassar, C. B. Leangsuksun, N. Naksinehaboon,M. Paun,
and S. Scott, “An optimal checkpoint/restart model for a largescale
high performance computing system,” inInternational Parallel and
Distributed Processing Symposium, Apr. 2008.

10


