A Job Pause Service under LAM/MPI+BLCR
for Transparent Fault Tolerance

Chao Wang, Frank Mueller
North Carolina State University

Christian Engelmann, Stephen L. Scott
Oak Ridge National Laboratory O AK

¥ RIDGE

National Laboratory

Outline

® Problem vs. Our Solution

® Overview of LAM/MPI and BLCR
® OQOur Design and Implementation
® Experimental Framework

® Performance Evaluation

® Related Work

® Conclusion

Problem Statement

® Trends in HPC: high end systems with thousands of processors
— Increased probability of node failure: MTTF becomes shorter

® \VIPI widely accepted in scientific computing
— But no fault recovery method in MPI standard

Today’s MPI Job C/R ® Extensions to MPI for FT exist but...
lamboot==}e===fp--d-- — Cannot dynamically add/delete nodes
- nop ntf 2 transparently at runtime
TR TT — Must reboot LAM RTE
‘;"h‘i;g;g‘;‘f,ﬁ? P--0--¢ — Must restart entire job
| v -Inefficient if only one/few node(s) fail
failure .
v o -Staging overhead
new _ |
(am reboot = =4 = e e L. — Requeuing penalty
n0O| n1| n2

restart = O‘Q]]_ @— %QD

Our Solution - Job-pause Service

® Integrate group communication
— Add/delete nodes
— Detect node failures automatically
® Processes on live nodes remain active (roll back to last checkpoint)

® Only processes on failed nodes dynamically replaced by spares

® resumed from the last checkpoint
Old Approach

lamboot

mpirun

coordinated
checkpoint

failure

restart = 0/@- \1@— 5@

1

n2

ﬂ

n1i

n2

lamboot

mpirun

coordinated
checkpoint

failure

|
pause = 1\:\'25\!
Vv 9

migrate

New Approach

AN

® Hence:
— no restart of entire job
— no staging overhead
— no job requeue penalty
— no Lam RTE reboot

Outline

® Qverview of LAM/MPI and BLCR
® OQOur Design and Implementation
® Experimental Framework

® Performance Evaluation

® Related Work

® Conclusion

LAM-MPI Overview

® Modular, component-based architecture

— 2 major layers

— Daemon-based RTE: lamd
— "Plug in” C/R to MPI SSI framework:
— Coordinated C/R & support BLCR

User Application

MPI Layer

LAM Layer

RTE: Run-time Environment

SSI: System Services Interface
RPI: Request Progression Interface

Node 0
| mpinn o @
lamd
MPI app
TCP . out-of-band
socket communication
channel

.e

Node 1

Ex: 2-node MPI job

BLCR Overview

® Process-level C/R facility: for single MPI application process
® [Kernel-based: saves/restores most/all resources

® Implementation: Linux kernel module

® allows upgrades & bug fixes w/o reboot

® Provides hooks used for distributed C/R: LAM-MPI jobs

Outline

® QOur Design and Implementation
® Experimental Framework

® Performance Evaluation

® Related Work

® Conclusion

Our Design & Implementation — LAM/MPI

® Decentralized scalable Membership
Node 0

and failure detector (ICS’06) o = of 0
H ‘- mpirun :

— Radix tree > scalability

new

— dynamically detects node failures

— NEW: Integrated into lamd ;
TCP . out-of- bandt
. SOCke commumca 10N
® NEW: Decentralized scheduler t . channel

— Integrated into lamd

— Periodic coordinated checkpointing
— Node failure = trigger

4. process migration (failed nodes) Node 1
5. job-pause (operational nodes)

lamd

schedulerd

New Job Pause Mechanism — LAM/MPI & BLCR

® Operational nodes: Pause

— BLCR: reuse processes

— restore part of state of
process from checkpoint

— LAM: reuse existing
connections

® Failed nodes: Migrate

— Restart on new node from
checkpoint file

— Connect w/ paused tasks

live node

paused MPI
process

existing
connection

paused MP}

process

live node

failed node

failed failed MPI
process

failed'
K process
b . .
[N migration
2
G

new connection migrated
MPI process
spare node

parallel file system

10

New Job Pause Mechanism - BLCR

Call-back kernel thread: e
coordinates user command — @ @.\ y
process and app. process y i i N
(In kernel: dashed lines/boxes) T “_____‘_f_m_n'jl'i&_n‘igfi_u‘f‘_‘_‘:_:_i blocked n o
1. app registers threaded callback Suumnnmgnmuy‘ iy functos
- spawns callback thread other work receives signal mns handlorsd | signa other threads
2. thread blocks in kernel _a“di““o

3. pause utility calls ioctl(), M_
unblocks callback thread I l o

4. All threads complete v emersiznas
callbacks & enter kernel '

5. New: All threads restore cleanup

part of their states l """""

6. Run regular application ontinue T et Iblock in ioetD

code from restored state 6 i

Process Migration — LAM/MPI

® Change addressing information of migrated process
— in process itself
— in all other processes

® Use node id (not IP) for addressing information

mpirun
® Update addressing information at run time
1. Migrated process tells coordinator
(mpirun) about its new location H Lam
2. Coordinator broadcasts new location is on n3
3. All processes update their process list ﬁg
X

n0 nl n2 n3
® No change to BLCR for Process Migration

12

Outline

® Experimental Framework
® Performance Evaluation
® Related Work

® Conclusion

13

Experimental Framework

® Experiments conducted on
— Opt cluster: 16 nodes, 2 core, dual Opteron 265, 1 Gbps Ether
— Fedora Core 5 Linux x86_64
— Lam/MPI + BLCR w/ our extensions

® Benchmarks
— NAS V3.2.1 (MPI version)
- run 5 times, results report avg.
— Class C (large problem size) used
- BT, CG, EP, FT, LU, MG and SP benchmarks
— IS run is too short

14

Relative Overhead (Single Checkpoint)

< o r [1 [[-

rhea

¢ ([[[[[T [=

cknnint O

Bhe

1tion Time

= o r [1 [[-

O Ever

® Checkpoint overhead < 10%

® Except FT, MG (explained late)

15

Seconds

Absolute Overhead (Single Checkpoint)

;’)’)2 6652;

30

25

20

15

10

5

0

< o
= B
m M

<t o0
O O
o 0O

BT16
G16
EP 4
EP 8
EP16
FT 4
FT 8
FT16
LU 4
LU
LU16

MG 4

MG 8

MG16
SP 4
SP9
SP16

@)

® Short: ~ 10 secs
® Checkpoint times increase linearly with checkpoint file size

® EP: small+const. chkpt file size = incr. communication overhead
® Except FT (explained next)

16

Analysis of Outliers

1400
1200 4‘ B No Checkpoint B Single Checkpoint }
1000
S 800
5
3
» 600
400
200
0
BT CG EP FT LU SP
on 4 nodes
Node # BT CG EP LU MG SP
4 406.9 250.88 1.33 1841.02 185.51 V 619.46 355.27
8 186.68 127.17 1.33 920.82 99.5 310.36 170.47
16 111.12 63.5 1.33 460.73 52.61 157.31 100.39

Size of checkpoint files [MB]

® Large Checkpoint files
® [T: thrashing/swap (BLCR problem)

® MG: large checkpoint files, but short overall exec time

Q
A 300

4 B No Checkpoint B Single Checkpoint |

on 8 nodes

BT CG EP FT LU M

G

SP

{ B No Checkpoint ® Single Checkpoint |

BT CG EP FT LU
on 16 nodes

MG

17

SP

Job Migration Overhead

® job Pause and Migrate O 1AM Reboot O Job Restart
10
9
g [
.-
5 6 |
(e
8 5[
(D]
ZE
3
2
1
0
BT CG EP FT LU MG SP
on 16 nodes
69.6% < job restart + lam reboot
® NO LAM Reboot ® Transparent continuation of exec

® No requeue penalty — Less staging overhead .

Related Work

FT - Reactive approach

® Transparent
— Checkpoint/restart
- LAM/MPI w/ BLCR [S.Sankaran et.al LACSI 03]

— Process Migration: scan & update checkpoint files
[J. Cao, Y. Li and M.Guo, ICPADS, 2005]
-2 still requires restart of entire job

— CoCheck [G.Stellner, IPPS ’ 96]
— Log based (Log msg + temporal ordering)
- MPICH-V [G.Bosilica , Supercomputing, 2002]

® Non-transparent
— Explicit invocation of checkpoint routines
- LA-MPI [R.T.Aulwes et. Al, IPDPS 2004]
- FT-MPI [G. E. Fagg and J. J. Dongarra, 2000]

19

Conclusion

Job-Pause for fault tolerance in HPC

Design generic for any MPI implementation / process C/R
Implemented over LAM-MPI w/ BLCR
Decentralized P2P scalable membership protocol & scheduler
High-performance job-pause for operational nodes
_] _ New Approach
Process migration for failed nodes
lamboOte=pee ol oo ae =4 -
n0l n1} n2| n3
Completely transparent I L
Low overhead: 69.6% < job restart + lam reboot coordinated NP
_ checkpoint \
— No job requeue overhead _ & |
. failure \'\
— Less staging cost pause ~0—@ \g
— No LAM Reboot Yy v
migrate

Suitable for proactive fault tolerance with diskless migration

20

Questions?

Thank you!

