Virtual System Environments

Geoffroy Vallée and Thomas Naughton and Hong Ong and Anégtatdkar and
Christian Engelmann and Wesley Bland and Ferrol Aderhaldt$tephen L. Scott

Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
{valleegr, naughtont, hongong, tikotekaraa, engelmariaogdib, aderholtwf,
scotts}@ornl.gov
http://www.ornl.gov

Abstract. Distributed and parallel systems are typically managed Vgtatic”
settings: the operating system (OS) and the runtime envieon (RTE) are spec-
ified at a given time and cannot be changed to fit an applicativeeds. This
means that every time application developers want to usedpplication on a
new execution platform, the application has tgioetedto this new environment,
which may be expensive in terms of application modificatemd developer time.
However, the science resides in the applications and ndterQS or the RTE.
Therefore, it should be beneficial anlapt the OS and the RTE to the application
instead of adapting the applications to the OS and the RTE

This document presents the concept of Virtual System Enkients (VSE), whi-
ch enables application developers to specify and creatéumbvenvironment that
properly fits their application’s needs. For that four chafjes have to be ad-
dressed: (i) definition of the VSE itself by the applicatievelopers, (ii) deploy-
ment of the VSE, (iii) system administration for the platfgrand (iv) protection
of the platform from the running VSE. We therefore preseningggrated tool for
the definition and deployment of VSESs on top of traditional aimtual (.e.,using
system-level virtualization) execution platforms. Thasltprovides the capability
to choose the degree délegatiorfor system administration tasks and the degree
of protection from the applicatiore(g.,using virtual machines).

To summarize, the VSE concept enables the customizatiameddS/RTE used
for the execution of application by users without comprangdocal system ad-
ministration rules and execution platform protection d¢raists.

1 Introduction

The architecture for modern distributed and parallel eienwlatforms differ from
single head node/multiple compute nodes Beowulf clusterdigtributed Grids and
large-scale system with specialized nodeg (/O nodes). Several tools are available
for the management of such platforms [6, 8, 10, 11].

Furthermore, as different system solutions emerge on tagaditional computing
platforms, such as system-level virtualization, systemagament tools have also been
extended [15]. While these enhancements allow for the gepdat of environments on

! ORNL's research sponsored by the Laboratory Directed Relsead Development Program
of Oak Ridge National Laboratory (ORNL), managed by UT-Biégt LLC for the U. S. De-
partment of Energy under Contract No. DE-AC05-000R22725.

new platforms like virtual machines, they are lacking inmerof customizability —
specifically from the perspective of application develeper

Because of that, with current system management solutiqmication developers
do not gain any flexibility. Applications still have to lported every time developers
want to use a new execution platform. However, the sciergides in the applications,
not in the system software for the execution platforms. Base this contrast, it is
critical to provide a solution that allows application degers to customize their ex-
ecution environment that will then be deployed on top of tkecation platforms. In
other wordsthe operating system (OS) and the runtime environment (R&&) to be
adapted to the application and not the application adaptethe OS and the RTE of a
specific platform

To address this issue we propose the conceptofaal system environme(SE),
which decomposes these challenges into two different ésp@cthe definition of the
environment needed to run the application, both accordiagplication developers and
system administrators perspective — this high-level dgson is actually very agnostic
about the system configuration of the target system for egipdin execution, and (ii)
the deployment of a defined VSE on a target environment. Wetly support disk-
full/disk-less and physical/virtual systems; and alsdesyspartitioning €.9.,1/0 nodes
versus login nodes versus compute nodes).

The remainder of this paper is organized as follows: Se&@ipresents how a VSE
can be defined by both application developers and systemnéstrators. Section 3
presents a tool for the deployment of VSEs on top of variossesy configurations
(i.e., physicallvirtual, disk-less/disk-full). Section 4 prese VSE benefits for system
administration. Section 5 presents the effect of the VSEephon system protection.
Section 7 concludes.

2 Virtual System Environment Definition

An application is typically designed to be executed with ecsfic version of an OS and
RTE. For instance, an MPI application can be designed to nuop of RedHat Enter-
prise Linux 4.0 with LAM/MPI 7.1.3. This kind of informatiois decided by developers
in order to simplify development. It also means that evanetanother environment has
to be used, most likely the application will have to be modifigorted.

On the other hand, computing centers today provide difterecution platforms:
clusters, shared memory systems, or even large-scalgeijormance systems such as
Cray XT or IBM BlueGene systems. Each of these systems tipjoeovide a different
execution environmentand applications have to be “adapaeshch of them. However,
the science resides in the applications and thereforecgtighh developers should not
have to deal with such porting issues, and should be ablectssfon the science.

It is important to decouple the definition of the applicatiomeeds in term of RTE
and what components system administrators want to havemexaironment used by
applications.

System-level virtualization provides a first step in thakediion, decoupling the
environment used for the execution of the applications &edenvironment used on
top of the hardware (virtual machines versus host OS). Fgiairce, it is possible to

create avirtual appliance i.e., a specialized virtual machine for the execution of a
given application. However, the concept of appliance dassease the definition of
the application environment; the system within the VM stilled to be more or less
manually installed. Furthermore, because of the lack ofardeta defining what the
application environment s, it is not possible to deploy &isting virtual appliance on
top of a standard systemd., disk-less or disk-full system).

Additionally, as discussed in Section 6, system managetoeig have been ex-
tended to support virtual environments but suffer from saigmificant limitation.
OSCAR-V [15] is such a tool, managing virtual machines arehting images for vir-
tual machines with a minimal system footprint (only needeftivgare is included into
the image), but it is not possible for administrators andsigeeasily express their def-
inition of execution environments (OSCAR-V recognizesyoReowulf clusters [14],
and not Grids or large-scale systems) and it is still diffiéat users & application
developers to define their execution environment

The VSE concept aims to address these challenges and hasiiptemented as an
extension of the OSCAR-V prototype: (i) the VSE fits applicatneeds, no unneces-
sary system footprint in included,; (ii) the OS type & versimd the RTE are chosen
by application developers and not by system administrafiijssystem administrators
can check the VSE before deployment; (iv) application davets can define their VSE
off-line from the execution platform; and (v) the VSE can leplbyed automatically by
system administrators. Because the VSE implementaticrtusily a non-intrusive ex-
tension of OSCAR-V, performance for VSE creation and deplest is actually similar
to OSCAR-V performance. Thus, we do not present performagmats in this docu-
ment, only the VSE architecture and implementation is diesdiin details. Application
developers define their RTE needs using a high-level larggbaged on XML, which
describes a set of software packageadckage SejsA package is an abstraction for
the local management of software that aims at easing thedlatstn, configuration and
removal of software in a given local system. More detailspaesented in Section 2.2.
In mathematical terms, our notion of sets follows the Zeo¥elaenkel set theory, with
the axiom of choice (ZFC). It means that a collection of “gtiems” are available for
the package set mechanism. From the usage point of viewaapset of “operations”
are important: it is possible to combine package sets anthgentersection of pack-
age sets. These operations provide a very flexible methatdadefinition of complex
VSEs.

2.1 Package Sets Definition

Package Set Combinatioh is possible to combine package sets together:
PackageSet 4 U PackageSetp

This enables the combination of VSE definitions from appiccadevelopers and sys-
tem administrators (see Figure 1).

! This may lead to conflicts between applications’ needs astksy administrators’ needs; we
do not provide an automatic solution to manage these canfliote most of the time there are
policy issues.

Application's Developers || System Administration

Needs & Constraints Needs & Constraints
VSE Definition
0S & RTE Definition
‘ Image Generation
Image on the
Management VSE Golden Image
Node
Deployed Beowulf Diskless Large-scale
VSEs Cluster Cluster Systems

Fig. 1. VSE Definition and Management

For instance, if system administrators, based on locatpolvant to include the
Moab software [9] in all VSEs because it is the chosen workimanager used by the
computing center, they can create a VSE definition that wiltbmbined with an appli-
cation’s developers definition. The resulting specifiaafiocorporates the constraints
from both the application and system administrators.

Package Set Intersectioh is also possible to define the intersection of package sets

PackageSet 4 N PackageSetp

The intersection operation is more suitable for advancedluiities rather than the
strict definition of a new VSE. For instance, the intersettiperation can be used to
identify common software components between several VEE#t can be used later
on by system administrators in order to identify currentdseaf application developers
in term of settings of the execution environment, and tlereefry to address more
efficiently present needs and anticipate future needs.

Package Set Validatiormhe package set mechanisms also include basic validation ca
pabilities in order to ensure that package sets can be ¢lyrceenbined. This validation
tool is based on a versioning mechanisms (comparison okaodtversion), and a de-
pendency mechanism (set A depends on set B but conflicts etith)s

If users combine several package sets together the systerolacks that the Linux
distribution from the different package sets are the same.

Versioning Users can specify the version of each package within a packeiy This
allows for fine grain software management. For instancelicgijon developers can
specify that their application needs a specific version dfraty. We provide standard
operators to deal with versioningqual (eq) superior to (gt) inferior to (It), superior
or equal to (gte)andinferior or equal to (Ite)

2.2 Package Sets Usage

Package sets define a VSE and are used to create a “golderi intdgle is agnostic of
the target platform execution configuration. The currenE\f&plementation relies on
OSCAR [10], a system management software.

The package sets implementation actually directly rellet®8CAR Packagd©P-
KGs) which allow one to define a software package for softviastallation in dis-
tributed or parallel systems, including information suchaalist of binary packages,
configuration scripts and versioning information. It tygdlg extends the standard no-
tion of binary packages, adding information about what lwabd done to have the
software setup at the global level of the distributed or &raystems. Note that we
assume application developers provide their applicatiaran OSCAR package.

The current implementation supports the definition of sraackage sets and the
combination of package sets. The package set intersegberation has not yet been
implemented.

Package Set AnalysiB1 order to ease system administration tasks and to trackfimod
cations, information about package sets are stored in dastathe OSCAR Database
(ODA).

The first step for the creation of a VSE is therefore the pgreirthe VSE’'s XML
file, its validation via XML tools and the update of the OSCARa@base. We will see
later that information in the database is used to updateia lmaage, which ultimately
results in a golden image that matches the VSE definition.

The validation is composed of two phases: (i) the basic a#iid of the XML
file using standard XML tools, (ii) the validation of the list OPKGs from the pack-
age set. OSCAR provides a tool (OSCAR Package DownloadeD) @® managing
OPKG repositories, which can be used to download OPKGs. QEfcially devel-
oped for the VSE support, allows us to get the list of all thailable OPKGs, for
all supported Linux distributions. OPD2 also saves infdioraabout OPKGs into the
database. Based on this list, it is possible to validate agelsets€.g.,checking if
OPKGs are available).

Creation of a Basic Golden ImagBased on package sets, a “golden image” [2, 10] can
be created and used for the actual deployment of a given V@&EhEt, we (i) analyze
the package set(s), (ii) create a basic golden image foatlyettLinux distribution, and
(iii) install the different OPKGs based on the package séhiien.

The creation of basic golden image relies on the OSCAR vedithe Systeminst-
aller software [2]. The creation of the basic image is basetthe Linux distribution and
the architecture specified in the package set(s). Duringniage creation, the OSCAR
database (ODA) is updated in order to initialize informataoout the new image.

Once the basic image is created, and based on informatiart #i® package set
from ODA, it is possible to finalize the golden image instailthe OPKGs associated
to the package set.

2 OSCAR packages are based on binary packaggsRPMs or Debian packages), the creation
of new OSCAR packages is fairly simple if application depelis already provide binary
packages for their application.

OSCAR did not have a stand alone tool for OPKG managemetigliniall OPKGs
were installed directly into the image, using SystemImstalvithout using information
in ODA. We therefore implemented tH@SCAR Package Managé®PM) tool. This
tool queries the database to know the exact status of im@g¥s(Gs and nodes. Based
on this information, OPM installs OPKGs into images but @essemote nodes if nodes
have already been deployed. The image is then ready to beyeéephnd the database
up-to-date for management purpose.

3 Virtual System Environment Deployment

We target three different platform architectures: (i) Betwlusters, (ii) disk-less clus-
ters, and (iii) large-scale systenig(, platforms with specialized nodes).

We saw in Section 2 that it is possible to have an XML file whieletibes the VSE
that has to be deployed and to create the associated goldgeiBecause we do not
want to have to recreate the image every time we deploy itiffance to have image
persistence), we take care to separate tools for imagdamesid mechanisms to de-
ploy them. In other words, the VSE’s XML description is usedyenerate a “golden
image” on the management node. Then, this golden image &ptad” to fit the plat-
form architecture. This adaptation is based on the desmnipf the target platform.

3.1 Machine Sets

In order to express the topology of the target system, wedinired the notion of node
sets (also called node groups). This concept, like the gackats concept, follows the
Zermelo-Fraenkel set theory, with the axiom of choice (ZH®)s includes the support
of union and intersection operations on machine sets:

MachineSet 4 U MachineSetp

MachineSet 4 N MachineSetpg

A key characteristic of node sets is the need to express depeies between the ma-
chines in the set. To address this issue, we assume thaladibnships between nodes
can be expressed as server/client dependengesnore precisely as a one-to-one de-
pendency (sefl is dependent upon s&). For instance, for I/O nodes where three types
of nodes are used (meta-data server, data storage serveompdte nodes), two dif-
ferent node sets can be defined: (i) a set for the meta-dataersand the data storage
server where the meta-data implements the notion of sewvéré machine set, the data
storage server being the client; and (ii) a set for the dateeséboth meta-data and data
storage server) and the compute nodes. To define compleensy$€.g.,a large-scale
system composed of login nodes, compute nodes, and 1/0 hatifsrent machine
sets can be defined, one for each type of nodes.

3.2 Image Deployment

Figure 2 shows the overall architecture for VSE deploymestimanism for the support
of Beowulf clusters, disk-less systems and large-scalteesys Note that the figure
includes the relationship with the mechanism for the cogedif the golden image.

System Environment

Specification —
via Package Set(s.
User Interface
Hardware Topology

Specification
V|a Machine Set(s)

Disk-less System
Disk-full System >‘ D6p_|r90y0r|nent

Virtual System

Golden Image

Fig. 2. Overall Architecture for the Deployment of VSEs

Beowulf ClustersBeowulf clusters are still the standard architecture fostdring: a
headnode provides all clustering services and computesnal¢he application com-
putation using services from the headnode. This is a stdradi@ent/server architecture.

To describe this architecture only two node sets are nedietle headnode, and
(i) the compute nodes.

Disk-less ClustersDisk-less clusters may be deployed in many different ways:- C
rently, we use the standard NFS-ROOT [3] or RAMFS solutiartsch is sufficient for
small to medium sized clusters (we assume that for largke-syatems, the standard
design for such systems is used).

In this case, the system may be categorized into two groikesidr Beowulf clus-
ters: (i) the headnode, or server; (ii) the compute nodes.

The difference with Beowulf clusters is that the image is“deployed”: the image
is copied on the headnode, making the difference betweardltata and modified
data. Then compute nodes are booted and use their own image.

OSCAR did not initially support disk-less clusters. We deped an extension of
OSCAR for the support of NFS-ROOT and RAMFS based disk-leppart. This sup-
port is based on the tuning of images on the headnode. A gaidkge is divided into
two parts: (i) ashared imagédor the part of the file system that can be shared between
nodes (read-only), and (ii) private imagefor the part of the file that needs to be in
read/write mode. It is also possible to fall back to a disk<alution (logically merg-
ing the two images for deployment).

Large-Scale Systent=or large-scale systems, the situation is different bexthis kind
of architecture is no longer based on the idea of one singlesand many compute
nodes. Typically, for this kind of architecture, nodes areuped into different sets:
compute nodes, “service node€.q.,for the parallel file system), and “login nodes”.
Itis possible to describe a server/client dependencyioelstiip between the differ-
ent nodes involved in a single service (for instance the Uksgstem), combining node
groups together. For instance, PVFS [12] has three kindeadsin order to implement
the parallel file system: meta-data server, storage nodksliamts. It is possible to say
that the meta-data server has a server/client dependedchan combine these two

into a single node group and create a dependency betweagrthip and the compute
nodes.

The current implementation allows one to describe differeode groups and to
combine them together. Based on this mechanism and thenassig of one specific
image to a group of nodes, it is possible to deploy complegelacale systems.

Virtual SystemsAnother solution for the deployment of VSEs is the usage dtial
machines. In this context, the VSE can be instantiated viaali appliances that can
be viewed as a minimal system configuration specializedHereixecution of a given
application. Thus, VSEs can be considered as a specifidatibfor virtual appliances.

We previously extended OSCAR, creating OSCAR-V [15], topgrpsystem-level
virtualization. One of the benefits of OSCAR-V is the abititysupport several system-
level virtualization systems via the V2M abstraction lay#hmis allows one to switch
between virtualization solutions without re-deployingwal machines.

Combining the concept of VSEs and features from OSCAR-\fusan take full
advantage of virtualization, simplifying the managemdniidual systems and improv-
ing the customizability of execution environments.

4 System Management

The administration of computing systems must strike a lzadetween the required
system aspects and those which are strictly end-user spdtig ultimate goal being to
support users and their computational needs. Howevergponsibility of maintaining
the system typically doewotlie in the hands of the individual(s) most familiar with the
applications using the resources.

VSEs offer an interesting means by which system administraasks can be dele-
gated to the end-user who is most aware of the applicati@@gs The extent to which
these system administration tasks are delegated may béfed on the approach used
for implementing the VSEg.g.,node partitions, disk-less nodes, virtual machines. The
extent of delegation must be commensurate with the selgotgdction scheme. For
example, the VSE might be a common system image that usexantiae and deploy
on a set of disk-less nodes or could be entirely user genebaised upon virtual ma-
chine platform specifications. In either case, the propesllef privileges is matched
with the degree of customization by the system administrato

This provides a basis to use VSEs to improve user controffecialization, which
can be used for systems research testbeds or to simply pravidnsistent platform
environmentfor scientists. A VSE also provides a good asssnpower user expertise,
which is commonly found on large scientific systems. In matyasions these users
may require older libraries/compilers or even operatirgdesy kernels, which are easily
supported through the use of a VSE.

As presented in Section 2, both the system administratatshanusers can define
their own package set and machine sets. These sets are thgaditeedescribe both the
system environment and the hardware partitioning that &ite bystem administrators
and users needs. In summary, the VSE concept allows morkl#eranagement of the
environment used by applications without compromisingltioal system administra-
tion policies.

5 Protection

Because the VSE concept enables the customization ofelifféypes of systeme(g.,
disk-full & disk-less Beowulf clusters, virtualized systs), we provide a sliding scale
of protection. In other words, based on the system configuraescribed via package
sets and machine sets, it is possible to increase or dedteaskegree of protection
for both the user and system administrator: (i) system aidtnrtors can protect the
execution platform from malicious applications or trugplgation and give them direct
access to the hardware for performance purpose; and (i@ppkcation developers can
choose to run the application directly on top of the bare ward, with the risk to have
to modify the application, or to run in a virtual environménbrder to ensure a similar
execution environment on all the VSE enabled platforms.

The protection mechanism is typically tied to the degreausf@mization supported
by the systemi.e., the more you can change/customize the more likely you may wan
to dial the protection level up, ultimately using virtuaM@onments for maximum iso-
lation (see Table 5).

System Type Protection Level |System Administration Type
Disk-full Beowulf ClusterLow Central system administration
Disk-less Beowulf ClusteMedium Central system administration
Virtual System High Delegation possible

Table 1.System Characterization According to Protection and Sygtéministration Delegation
Capabilities

6 Related Work

The HARNESS project [5] studies the launch of a virtual eowinent at job start,
this virtual environment being installed by the runtime iemwment for a particular
application. This capability enables the deployment aiaxt RTESs that fit application’s
needs. However, this study suffers of limitations in ternflexibility for the creation
of a complete virtual RTE, especially in term of “virtual darare” (it is not possible
to support solutions based on system-level solutions) ahiNESS does not provide
integrated tools for system deployment.

The Modulessystem provide environment customization at the level ober's
command interpreter (shell) [4]. The Modules system is@asible for managing the
differences between command shedlgy.,bash, csh. A system administrator provides
the available software and configuration setting via a Tel filat may be loaded at
shell invocation. The users customize their executionrenment by loading the ap-
propriate “modules”e.g.,modul e | oad npi/l am 7. 0. 6. These command can
be made persistent using a higher level tool like Env-Swit¢h0]. While the Modules
system is widely used and quite useful, it is limited to chemthat can be made at

the command interpreter level. Therefore, alternate kerrsions or entirely different
operating systems are not an option with this approach.

VMPlants [8] is a solution for the managemenwatual execution environmeniis
a grid context. A virtual execution environmentis definedgraph which allows users
to customize their virtual execution that can be then degdoyithin virtual machines
(using VMWare [16] or User Mode Linux [7, 1]). However, VMPIs assumes that a
system already exists on each machine the user will use. ¥iM&tloes not provide any
solution for the management of this system but also doesrpuige tools and methods
for the interaction between the site system administratdrthe application’s users.
It is therefore not possible to enforce the use of specifiotngot within the virtual
machine (for instance the use of a checkpoint/restartisolytit is not possible to
check if the virtual environment defined by the applicatisens is compliant with local
system usage policies, and the management flexibility efféo users is not available
to system administrators. Finally, it is not possible toldgwarious type of execution
platforms based on VMPlants, the use of virtual machinesasdatory.

The Collective project [13] is based on the idea wirtual applianceswhich are
application specific bundles that an author (vendor) maistand end-users use with
limited or no administration responsibilities. They empkvirtual machine monitor
(VMM) to provide a trusted computing base and effectivelyaadware abstraction
layer (HAL) to ease appliance portability. An appliance spacialized single purpose
systeme.g.,word-processing-appliance, that a user may use but doesaiotain (ad-
ministration is done by the appliance author). This congepimilar to that of a VSE,
but differs in scope and how composition is achieved. The \&3Eimarily targeted at
HPC environments, whereas the virtual appliances are éabois general purpose desk-
top environments. The appliances are not extended or ctdngthe user to build up
their environment, instead a collection of separate appéa are used in concert (each
administered independently). Both approaches use \izatain to assist with portabil-
ity and enhance usability. However, the Collective assumdsiple appliances (virtual
machines) could be run simultaneously where the VSE woyit@yly encompass a
single virtual machine.

7 Conclusion

This document presents the concept Mraual System Environme(WSE), which has
been implemented via extensions and/or modifications o0 8EAR and OSCAR-V
system management suites. A VSE decouples the definitidmeoétecution environ-
ment from the actual deployment method. Users can therdédiee application needs
and constraints in a generic way. On their side, system ddirators, depending on the
degree of trust and local management policies, can dep®Y8E into various sys-
tem types €.g.,disk-less versus disk-full systems, physical versus alreystems) on
specific system partitions. Therefore, VSEs introduce & kliggree of customization
for application developers, end-users and system admatoss. For that, we introduce
the notion ofpackage setandmachine sets/hich provide a flexible way to define the
execution environment and the hardware topology, respyti

To summarize, through the VSE concept, it is possible tcsiethie traditional sys-
tem administration rules without compromising the platigorotection or increasing
the number of administration tasks. In fact, the systemgatain can even be increased
when using virtual environments, which can be done withogteat deal of manage-
ment effort (system-level virtualization is natively supfed by OSCAR-V). System
administration tasks can also be decreased, delegating tesks to application devel-
opers.

This is especially useful for virtual systems: the systemmiadstrator can define
whatis the host OS, without paying attention to the systewedlvirtualization solution;
and application developers can focus on the definition ofABE that will be deployed
into the virtual machines.

References

1. Joe BrockmeieriThe Definitive Guide to User Mode Linu&Press, 2004.

2. Sean Dague. System Installation Suite Massive Instildor Linux. In The4” Annual
Ottawa Linux Symposium (OLS'Q®)ttawa, Canada, June 26-29, 2002.

3. Hans de Goede. Root over nfs clients & server howto.
http://www.clusterresources.com/pages/
products/moab-cluster-suite/workload-manager.php.

4. John L. Furlani and Peter W. Osel. Abstract Yourself Witbhddles. InProceedings of
the 10th Large Installation Systems Administration Caariee (LISA'96)pages 193-204,
Chicago, IL, September 29 — October 4, 1996.

5. G. A Geist, J. A. Kohl, S. L. Scott, and P. M. Papadopoult8RNESS: Adaptable virtual
machine environment for heterogeneous clusteasallel Processing Letter9(2):253-273,
1999.

6. Yiannis Georgiou, Julien Leduc, Brice Videau, Johanrréely and Olivier Richard. A tool
for environment deployment in clusters and light grids. Second Workshop on System
Management Tools for Large-Scale Parallel Systems (SMI®.3Rhodes Island, Greece,
April 2006.

7. H.jorg, H. Oxer, H. Hoxer, K. Buchacker, and V. Sieh. Immpénting a user mode linux with
minimal changes from original kernel, 2002.

8. Ivan Krsul, Arijit Ganguly, Jian Zhang, Jose A. B. Fortasd Renato J. Figueiredo. Vm-
plants: Providing and managing virtual machine executigvirenments for grid comput-
ing. In SC '04: Proceedings of the 2004 ACM/IEEE conference on $opgsuting page 7,
Washington, DC, USA, 2004. IEEE Computer Society.

9. Moab workload manager. http://www.clusterresoura@s/pages/ products/moab-cluster-
suite/workload-manager.php.

10. John Mugler, Thomas Naughton, Stephen L. Scott, BrianeBaAndrew Lumsdaine, Jef-
frey M. Squyres, Benot des Ligneris, Francis Giraldeau, @hdkchai Leangsuksun. OS-
CAR Clusters. InProceedings of thé!" Annual Ottawa Linux Symposium (OLS'08)}-
tawa, Canada, July 23-26, 2003.

11. Philip M. Papadopoulos, Mason J. Katz, and Greg Brun@cNmcks: tools and techniques
for easily deploying manageable linux clustei@oncurrency and Computation: Practice
and Experiencel5(7-8):707—-725, 2003.

12. PVFS: Parallel virtual file system. Available at htywwAv. parl.clemson.edu/pvfs.

13. Constantine Sapuntzakis and Monica S. Lam. Virtual igpmgks in the Collective: A Road
to Hassle-free Computing. IRroceedings of HotOS’03: 9th Workshop on Hot Topics in
Operating System&JSENIX, 2003.

14. T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, \Ra#nawake, and C. V. Packer.
BEOWULF: A parallel workstation for scientific computatioln Proceedings of the 24th
International Conference on Parallel Processipgges 1:11-14, Oconomowoc, WI, 1995.

15. Geoffroy Vallee, Thomas Naughton, and Stephen L. Sc®ystem management software
for virtual environments. IfProceedings of ACM Conference on Computing Frontiers 2007
Ischia, Italy, May 7-9, 2007.

16. VMware, Inc. http://www.vmware.com.

