
System-Level Virtualization for High Performance Computing ∗

Geoffroy Vallée
Oak Ridge National Laboratory

Oak Ridge, TN 37830, USA
valleegr@ornl.gov

Thomas Naughton
Oak Ridge National Laboratory

Oak Ridge, TN 37830, USA
naughtont@ornl.gov

Christian Engelmann
Oak Ridge National Laboratory

Oak Ridge, TN 37830, USA
engelmannc@ornl.gov

Hong Ong
Oak Ridge National Laboratory

Oak Ridge, TN 37830, USA
hongong@ornl.gov

Stephen L. Scott
Oak Ridge National Laboratory

Oak Ridge, TN 37830, USA
scottsl@ornl.gov

Abstract

System-level virtualization has been a research topic
since the 70’s but regained popularity during the past few
years because of the availability of efficient solution such as
Xen and the implementation of hardware support in com-
modity processors (e.g. Intel-VT, AMD-V).

However, a majority of system-level virtualization
projects is guided by the server consolidation market. As a
result, current virtualization solutions appear to not be suit-
able for high performance computing (HPC) which is typi-
cally based on large-scale systems. On another hand there
is significant interest in exploiting virtual machines (VMs)
within HPC for a number of other reasons. By virtualiz-
ing the machine, one is able to run a variety of operating
systems and environments as needed by the applications.
Virtualization allows users to isolate workloads, improving
security and reliability. It is also possible to support non-
native environments and/or legacy operating environments
through virtualization. In addition, it is possible to balance
work loads, use migration techniques to relocate applica-
tions from failing machines, and isolate fault systems for
repair.

This document presents the challenges for the implemen-
tation of a system-level virtualization solution for HPC. It
also presents a brief survey of the different approaches and

∗ORNL’s research sponsored by the Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory (ORNL), man-
aged by UT-Battelle, LLC for the U. S. Department of Energy under Con-
tract No. DE-AC05-00OR22725.

techniques to address these challenges.

1 Introduction

Today several operating systems (OS) are used for high-
performance computing (HPC): Linux on clusters, CNK on
BlueGene/L [21], and Catamount on Cray [11, 12]. This
variety creates a gap between the initial application devel-
opment and ultimate execution platforms. For example, a
developer’s workstation may be used with a modest sized
cluster for initial development followed by a porting phase
to take the code to the HPC platform. That gap introduces
an additional cost every time users want to execute an appli-
cation on a new HPC platform. Also, as HPC systems grow
in size and promise greater performance, the rate of failure
increases stealing a portion of the increased performance
and thus impact an application’s time to solution.

One solution to address these issues is to use system-
level virtualization. System-level virtualization creates an
abstraction of the hardware and executes one or several vir-
tual machines (VMs) on top of this virtualized hardware; in
some instances, the virtual machine may also directly ac-
cess the hardware for performance purposes. Virtualization
solutions are today based on the concept of a Virtual Ma-
chine Monitor (VMM), also called a hypervisor. The VMM
is responsible for the hardware virtualization and execution
of VMs on top of the virtualized hardware. The VMM
is typically a small operating system that does not include
hardware drivers. To access physical resources, the VMM

1



is typically coupled with a standard operating system, such
as Linux, which provides device/hardware access.

There are two approaches employed, formalized by
Goldberg in the 1970’s [9] as: (i) type-I virtualization where
the VMM and VM run directly on the physical hardware,
and (ii) type-II virtualization where the VMM and VM run
on a host operating system (see Figure 1). Since the type-I

Figure 1. Classification of Virtualization Tech-
niques

virtualization has direct access to resources, performance is
comparable to that of native execution. In contrast, type-II
virtualization incurs additional overhead due to the layer-
ing of the VMM on top of the host OS when servicing re-
source requests from VMs. The type-II layering makes its
approach more suitable for the development phase, where
some performance may be reduced in exchange for greater
diagnostic and development capabilities.

Today, several system-level virtualization solutions are
available, for instance Xen [3] (type-I), QEMU [5] (type-II),
or VMWare [24] workstation & server (type-II). However,
these solutions are not suitable for HPC because they were
not designed to meet the specialized needs of HPC. For in-
stance, Xen has become a rather massive micro-kernel that
includes unneeded features for HPC, e.g., a network com-
munication bus; QEMU and VMWare do not support direct
access to high-performance network solutions, e.g., Infini-
Band.

A system-level virtualization solution for HPC requires
only a small set of system services, such as migration,
suspend/resume, and checkpoint/restart of VMs. In ad-
dition, the solution should afford developers efficient ac-
cess to resources, a VM adapted scheduling policy, and be
lightweight in order to: (a) minimize the system footprint,
and (b) guarantee performance prediction and isolation for
running VMs. The core of a system-level virtualization so-
lution for HPC is a HPC Hypervisor as shown in Figure 2.
Surrounding the core are the five areas of enhancement,
which we describe in the remainder of this paper.

Figure 2. The System-Level Virtualization
Components

2 System-Level Virtualization for High Per-
formance Computing

In this section we present the challenges for the imple-
mentation of a system-level virtualization solution: a hy-
pervisor for HPC, virtual system environments, high avail-
ability and fault tolerance, system management and admin-
istration, resource management, and I/O & storage. We also
present a brief survey for each of these challenges.

2.1 Hypervisor for High Performance
Computing

Current VMM has been initially designed for the server
consolidation market. Because of this context and because
of the lack of hardware support for virtualization, current
VMMs have huge system footprint.

This important system footprint is created by two differ-
ent factors: (i) the VMM is always coupled to a HostOS
which is a full operating system, (ii) for virtualization pur-
pose the VMM store a large dataset (such as the memory
map of virtual machines) in memory.

VMM Memory Footprint Typical system-level virtual-
ization solutions typically have a “view” of the virtual ma-
chine memory space. This view is used to translate the
memory access from the virtual machine to the physical



memory. For instance Xen and KVM [14] implements the
concept of shadow that shadows a VM’s page tables.

Because the VMM keeps a map of the VM’s memory
space (at least of the page tables, the VMM potentially has
a memory footprint of several megabytes. This memory
footprint has a direct impact on modern execution platform
which are most of the time composed of multicore proces-
sors with shared cache. Typically if the core non-shared
cache is smaller than the VMM memory footprint, and if
the application is memory constrained, cache misses and
flushes generated by the VMM execution will interfere di-
rectly with the application execution (generating a lot of
cache misses and flushes).

In order to address this issue, two approaches are pos-
sible: (i) assign the VMM to a specific core and decrease
its memory footprint to make it fit in the none-shared mem-
ory associated to the core where the VMM is running, (ii)
include some hardware support to store part of the VM’s
“memory map” directly on the hardware. For instance,
some AMD processors implemented the concept of nested
page tables (NPT) [1] in order to eliminate the need for the
VMM to implement shadow pages. IO memory manage-
ment units (IOMMU) are also hardware components that
can be used to decrease the memory footprint of the VMM.
IOMMUs are typically used to translate memory addresses
at the hardware level, in a secure way. Therefore IOMMUs
can be used to directly translate memory addresses from
the virtual machine memory space to the physical mem-
ory space, in a transparent manner for both the VM and the
VMM.

System Footprint of the Tuple VMM/HostOS The
VMM needs to be coupled to an HostOS which is needed
to host the hardware drivers. Everytime an application run-
ning inside a virtual machine wants to access the hardware
(e.g. for network communications), it has to go be default
through the HostOS (which explains why network commu-
nications suffer a important overhead, the HostOS being
used as a network bridge).

The system footprint of a system-level virtualization so-
lution is therefore not only composed of the system foot-
print of the VMM itself. The system footprint is actually
mostly composed by the HostOS. For instance, using Xen,
the HostOS is by default a full desktop Linux distribution
(e.g. Fedora Core). Note that this Linux distribution may
not even be tuned for HPC, enabling several system ser-
vices, which at the end create a important operating system
noise, critical overhead in large-scale systems [22, 4].

Therefore, in order to achieve high performance comput-
ing, the HostOS footprint has to be minimized in order to
limit the interference with the application execution. This
effort is similar to the standard OS tuning effort for HPC
platforms, which includes eviction of unnecessary daemons

and services.

2.2 Virtual System Environments

Current efforts in operating systems (OS) research and
development at vendors, such as Cray Inc., and within the
DOE Forum to Address Scalable Technology for Runtime
and Operating Systems (FAST-OS) concentrate on numer-
ous approaches ranging from custom lightweight solutions,
such as Catamount, to scalable Linux variants, like Zep-
toOS [2] and Cray’s Rainier. In order to address petascale
HPC OS issues, such as noise and interference, performance
measurement, and profiling, large-scale testbeds for OS re-
search and development are needed. Furthermore, deploy-
ing today’s HPC systems to production state is time con-
suming. For example, for an order of ten-teraflop commod-
ity cluster, the delivery-to-production time may range up-
wards of 6-months; as for more exotic supercomputer class
machines, those reaching a few hundred-teraflops, the time
to reach stable production status may exceed 12-months or
more. Consequently, early evaluation testbeds will help to
resolve OS and system software issues before production
system deployment.

Another great disappointment is that most scientific ap-
plications today are still written to only take advantage
of one computer architecture and its specific architectural
traits. This means as computer architectures evolve into bet-
ter/faster machines, we must continually rewrite our scien-
tific applications, further draining funds and personnel that
should be put to a better use furthering the science. Simi-
lar to OS and system software issues of new systems, early
evaluation testbeds can help application scientists port and
test their code for the next-generation systems and enable
them to assure day-one operation of their codes. Further-
more, it has become clear that there is no one-size-fits-all
OS solution. Each OS has its own advantages and tar-
geted scientific applications. Flexibility in OS deployment
is needed as these applications need to be able to run on the
OS they were designed for.

System-level virtualization technology is capable of pro-
viding these testbeds for OS and application development
and deployment, and customized system environments for
applications by allowing the interchanging of the OS and
its runtime environment (RTE) component on demand. One
possible solution is to interface system-level virtualization
technology with the job and resource management in order
to permit specifying the OS and RTE requirements of an ap-
plication with the actual job submission. At job start, a vir-
tual system environment is installed just for this particular
job run. Furthermore, customized OS/RTE combinations
may be deployed to fit specific application needs or to en-
able monitoring and profiling. Performance isolation may
be assured by trading off processor cores and by pinning



customized virtual machines to them.
The virtual system environment concept decouples the

entire HPC software stack from specific hardware solutions,
thus allowing OS and application development and deploy-
ment to progress more independently from HPC system de-
ployment. Furthermore, it enables one to fit the OS to an in-
dividual scientific application’s needs instead of trying to fit
scientific applications to specific OS and architectural prop-
erties.

HARNESS [8] aims at providing an adaptable virtual
machine environment that enables OS/RTE specification
in order to fit application needs. However HARNESS is
not based on system-level virtualization. Other projects,
such as VMPlants [13] allows grid users to define their
workspace. However, the system administrator cannot en-
force any features in the VM, only the user specification is
used to create the virtual system environment. It is then very
difficult for HPC system administrator to implement local
platform usage policies (for instance enforce the use of a
checkpoint/restart mechanism for a given class of applica-
tions). System administrator should be able to define the
constraints on the VMs, based on the usage policies, which
have to be “merged” with the virtual system environment
definition from the user. Doing so, a single virtual system
environment defines both system administrator’s and user’s
constraints.

2.3 High Availability & Fault Tolerance

Large-scale systems are composed of thousands of dis-
tributed components, and each of these components is sub-
ject to failure. Furthermore, the availability of these large-
scale systems is directly dependent on the availability of
each of their components.

Two fault tolerance (FT) approaches are traditionally se-
lected to address this issue: reactive fault handling and
proactive fault avoidance. The reactive FT approaches are
useful for recovering application state after a failure. On
the other hand, a proactive approach to fault tolerance is
more suitable to situations where system interruption may
be anticipated. Although not all system interruptions are
predictable, a certain level of fault prediction is possible
by carefully monitoring the workloads and system compo-
nents. In situations where faults are predictable, substan-
tial performance improvements may be achieved through a
proactive approach.

The current approach to implement proactive fault toler-
ance is at the (i) application, (ii) middleware, or (iii) operat-
ing system (OS) layer. The implementation decision usually
depends on the degree of transparency. Proactive fault tol-
erance with system-level virtualization provides the greatest
degree of transparency and encompasses all three software
layers. Three mechanisms are used to implement proac-

tive fault avoidance mechanisms: virtual machine check-
point/restart, suspend/resume, and migration. Based on
these mechanisms, different policies may be implemented
in order to provide proactive fault avoidance in large-scale
systems. These policies are also tied to application needs in
terms of resource access and execution behavior, and there-
fore may be different for each application/execution plat-
form.

Current studies focus on proactive fault avoidance rather
than reactive fault tolerance. Even if system-level virtu-
alization supports virtual machine checkpoint/restart, the
use of this capability for reactive fault tolerance gener-
ates important challenges: we already know that process-
level checkpoin/restart, solution currently used on large-
scale systems, does not scale very well [17], and system-
level virtualization because of the important I/O generated
by the VM’s checkpoint, will aggrave the problem. How-
ever, in [16] authors show that system-level virtualization
can be used for proactive fault avoidance. In that case, the
idea is to migrate VMs from compute nodes where a fault is
predicted. However, it is not possible to assume that proac-
tive fault tolerance alone is a suitable solution for system
resilency because all the failures cannot be predicted. Reac-
tive fault tolerance can be coupled with proactive fault tol-
erance in order to decrease the checkpoint frequency (and
therefore decrease the number of I/O operations) but, based
on our knowledge, no system current provides this capabil-
ity. Furthermore, the fault tolerance policy based on system-
level virtualization are still very naive, partially because still
based on basic fault prediction mechanisms.

2.4 System Management & Administra-
tion

In general, a new set of scalable tools is needed for effi-
cient system management and administration for petascale
machines. Particularly, scalable tools are needed for con-
figuring and managing virtual system environments, which
may consists of a large set of virtual machines comprised of
customized OS/RTE. Furthermore, current system policies
and procedures need to be adapted to the virtual system en-
vironment, including mapping physical machines to virtual
machines for accurate resource accounting.

While the introduction of system-level virtualization
technology poses a new challenge for scalable system man-
agement and administration, existing tools can be revised to
handle virtual instead of physical machine instances. For
example, the deployment of VMs across a system is similar
to a system network boot, and the pre-deployment configu-
ration of VMs is comparable to pre-deployment OS config-
uration for commodity cluster systems.

In summary, future research and development efforts
should focus on adapting existing scalable system manage-



ment and administration tools, and on providing efficient
mechanisms for virtualized system environments. Current
efforts go in that direction. For instance, OSCAR-V [23]
provides an integrated solution for the management of vir-
tual machines but also HostOSes and VMMs. However, the
current prototype does not support complex system archi-
tecture such as large-system systems which are composed
of various node types (e.g. login nodes, I/O nodes and com-
pute nodes).

2.5 Resource Management

With the recent deployment of multi-core processors and
the increase of distributed resources in large-scale systems,
resource management is a critical topic that must be ad-
dressed in order to achieve efficient petascale resource uti-
lization. For example, the deployment of a parallel applica-
tion within a system composed of thousands of processors,
utilizing tens of thousands of cores and each of these as-
sociated with banks of memory is quite a complex issue.
Batch systems in conjunction with system partitioning are
two typical solutions addressing this complex task. Another
solution may be via the use of system-level virtualization,
which could be used to partition the system and simplify
resource exposure to applications.

One approach is to utilize virtual machine (VM) isola-
tion to concurrently execute several VMs on a single pro-
cessor composed of multiple cores without causing inter-
ference between the VMs. In this case, the use of local
resources is maximized and the isolation is transparent to
applications. This partitions a system into simple comput-
ing resources that are exposed to applications through vir-
tual machines, requiring that the VMMs and batch system
can effectively map this view of the system to the resource
abstractions provided by the VMs.

Another approach directly maps virtual machine re-
sources to the hardware. In this case, to guarantee effi-
ciency, virtual machines should have direct access to re-
sources without interference from the VMM, i.e., VMM-
bypass [15, 10]. The guest OS running within the VMs is
responsible for the management of local resources in order
to enable a more efficient application execution. However, it
is also possible to take advantage of existing resource man-
agement solutions developed for use outside of the virtual-
ization environment.

Resource management is performed at two levels: VM
and VMM. One concept to address this issue is to inter-
face virtual environment management with the batch sys-
tem. Two variants are then possible: (i) deployment of vir-
tual machines on demand, when applications are deployed
through the batch system; (ii) deployment of virtual ma-
chines before application submission with the application
being pushed to virtual machines that fit application needs.

Distributed Virtual Clustering (DVS) [7] is an extension
of the MOAB scheduler for automatic deployment of virtual
machines at application deployment time. Typically a job
is associated to a virtual machine image which is deployed
on compute node before the actual application deployment
phase. It means that the job submission is decomposed into
two phases: (i) the deployment of the virtual machines and
(ii) the effective application execution using the standard
MOAB capabilities.

2.6 I/O & Storage

Modern computers support a huge collection of I/O de-
vices from numerous vendors with varying programming
interfaces. Consequently, the task of providing a system-
level virtualization layer that communicates efficiently to
all these I/O devices is difficult. Additionally, the I/O de-
vices may contain specialized processors, such as graphics
engines and/or signal processors, which aim to move com-
putation away from the main CPU. These I/O devices nor-
mally have extremely high performance requirements. This
inevitably makes low-overhead I/O devices a critical pre-
requisite.

I/O device virtualization means that the virtualization
layer must be able to communicate with the computer’s I/O
device using a uniform interface. In the system-level vir-
tualization concept, each I/O request from a GuestOS (OS
running in a VM) must transfer control to the HostOS (OS
running in cooperation with the VMM) and then transition
through the HostOS’s software stack to access the I/O de-
vices. For computing environments with high-performance
network and disk subsystems, the resulting overhead can be
unacceptably high and do not enable the use of networking
solutions for high-performance computing, such as Infini-
Band, which uses capabilities such as remote direct memory
access (RDMA) [20]. Another problem is that the HostOS
(such as a Linux-based VMM) does not provide efficient
I/O scheduling and resource management to support perfor-
mance isolation and quality of service (QoS) to the virtual
machines.

Current solutions to these problems focus on advanced
techniques, such as VMM-bypass I/O and uniform virtual
I/O device interface. VMM-bypass I/O employs an I/O by-
pass from the VM to communicate directly to the device,
which significantly reduces virtualization overhead for I/O
devices. The other performance optimization is to export
highly specialized virtual devices that do not directly corre-
spond to any existing I/O devices. The VMM in turn inter-
cepts all I/O requests from VMs to virtual devices and maps
them to the correct physical I/O devices. This reduces the
GuestOS’s overhead from communication I/O commands
and yields higher performance. It is not clear which solu-
tion is more efficient but recent trends in I/O subsystems



indicate hardware support for high performance I/O device
virtualization.

The RDMA support in virtualized environment gen-
erates challenges slightly different. In order to perform
RDMA operations, the sender and the receiver needs first to
register the memory. It typically means that some memory
will be “shared” between the network card and the process
memory space. In a virtualized environment, that implies
two points: (i) memory can be “shared” between the virtual
machine and the network card (but by default the VMM
concept assumes that the virtual machine is completely iso-
lated and that all hardware accesses have to go through the
HostOS via the VMM), (ii) everytime the virtual machine
access the memory, it is possible to translate memory ad-
dresses (physical address space versus virtual machine’s ad-
dress space).

In short, virtualized I/O devices will need to interface
with the VMM to maintain isolation between hardware and
software, and ensure VMM support for VM migration and
checkpointing. A virtualized I/O device approach must also
ensure minimum overhead, allowing the use of VMs for
even the most I/O intensive workloads.

In terms of storage, high performance parallel file sys-
tems such as Lustre [6], GPFS [19], or PVFS [18] are typ-
ically required by the demands of the HPC environment.
Along with high performance, these file systems provide an
abstraction between logical and physical storage. Because
of the diversity of storage and networking technologies,
these file systems must in turn constantly deal with interop-
erability issues associated with the various vendor storage
solutions. Thus, there is clearly a need to support system-
level storage virtualization providing both a hardware and
software level of abstraction. System-level storage virtual-
ization can be loosely defined as creating a uniform view
of multiple physical storage solutions networked together
and provide a single logical storage view. It enables ad-
vanced high-end storage concepts, such as data fail-over be-
tween various storage solutions and data staging from per-
manent storage to temporary intermediate storage to com-
pute nodes. Currently there are still a number of open ques-
tions regarding which layer of storage software stack should
be virtualized and how to implement it.

3 Impact of System-Level Virtualization for
High Performance Computing

If the challenges previously presented can be addressed
in a suitable way, system-level virtualization can become a
disruptive technology, modifying the way high performance
platforms are today used.

System-level virtualization enables capabilities than can
modify the way high performance computing platforms are
today used. These capabilites include VM live migration,

VM checkpoint/restart, and VM pause/unpause, in a com-
plete transparent manner. It also clear that virtualization and
emulation have similar concepts and could be used together
in order to extend features we presented in Section 2 to em-
ulated architecture.

Because of that system-level virtualization can be a dis-
ruptive technology for HPC programming, HPC application
development, HPC system administration and research.

Programming Paradigm High performance computing
is facing today critical issues because of the scale of the
modern execution platforms. A typical execution platform
is composed of thousands of distributed components and
the development of applications for such platforms lead to
three challenges: How to move data (which is on the stor-
age subsystem) to/from the application? How to parallelize
applications to hundreds or even thousand of nodes? How
to checkpoint/restart applications in order to guarantee re-
siliency?

Instead of explicitely expressing communications be-
tween processes, like when using MPI, virtual machines can
be moved across the execution platform and the application
can then assume data is always local.

Furthermore the hybrid programming paradigm (for in-
stance MPI+OpenMP or MPI+PThread), which is a more
and more popular solution for the programming of large
scale systems, can be extended. Hybrid programming con-
sists of using for the same application both the message
passing and the shared memory programming paradigm in
order to express different level of parallelism and take a full
benefit of local multi-cores or multi-processors capabilities.

Application Development Operating system adaptation
instead of application adaptation. Currently the application
has to be “ported” everytime it has to be executing on a new
execution platform (mostly because of different operating
systems and runtime environments). Thanks to system-level
virtualization users will be able to define their own execu-
tion environments which will be easily deployed on high-
performance computing platforms.

Therefore application developers will be able to focus
on the science of their application instead of focusing on
the execution platform.

System Administration System administrator can isolate
the application and its execution environment; they only
have to focus on system administration of the virtualization
solution (i.e. the VMM and the HostOS).

Furthermore, because virtual machine can be managed
independently to the physical platform, software and hard-
ware updates are simpler: (i) virtual machines can be up-
dated offline and effective after a simple redeployment, (ii)



virtual machines can be moved away from nodes for hard-
ware or software update.

Finally because virtual machine is isolated from the
physical platform, the HostOS can be used to monitor the
virtual machine execution and therefore the application.
Thanks to capabilities such as virtual machine migration
and checkpoint, it is even possible to have a transparent ap-
plication execution management. For instance, if the appli-
cation has an execution time slot of t minutes, the system
administrators can setup the system to automatically check-
point the running virtual machine. Doing so, system ad-
ministrator can enforce usage policies, without application
modifications and without wasting the allocated execution
time (the application can be restored later on).

Foster Research and Education System-level virtualiza-
tion and emulation are two different capabilities: system-
level virtualization exposes to VMs the hardware architec-
ture (e.g. x86 or x86 64) whereas emulation exposes to
VMs a non-compatible architecture compared to the physi-
cal hardware. However, current system-level virtualization
solutions have a lot of common concepts and similar im-
plementation. Because of these similarities, it is possible to
switch from a specific solution to another, switching from
virtualization to emulation. This concept is key for fostering
research and education in computer science.

For instance, it has always been difficult to educate stu-
dent to high-performance computing, even distributed com-
puting or operating systems. With system-level virtualiza-
tion it is possible to “emulate” and expose a specific view
of an hardware platform. For instance, stacking VMs on a
single node, it is possible to “simulate” a cluster; emulating
a processor it is possible to teach hardware architecture via
experimentation even if the real hardware is not available.

Finally, system-level virtualization also fosters research
in hardware architecture and operating systems. For hard-
ware architecture research, it is possible to implement an
emulator for the next hardware generation, even before hav-
ing the first sampling; for operating system research, it is
possible to deploy research prototypes on execution plat-
form without compromising the hardware.

4 Conclusion

This document presents the challenges for the implemen-
tation of a system-level virtualization solution for high per-
formance computing: (i) a hypervisor suitable for HPC (i.e.
with a small system footprint), (ii) the support of virtual sys-
tem environments, (iii) the support of high availability and
fault tolerance capabilities, (iv) the support of advanced re-
source management capabilities, (v) the use of system-level
virtualization for resource management, and (vi) the support

of efficient I/O mechanisms and storage solutions for virtu-
alized environment. For that, we identified six domains for
which a research effort is or has to be initiated.

It is also clear that no integrated solution is today avail-
able to address these challenges. System-level virtualiza-
tion promises to be a important research topic in operating
system for the next few years.

Acknowledgement

Ideas presented in this document are based on discus-
sions with those attending the September 20-21, 2006,
Nashville (Tennessee, USA) meeting on the role of virtu-
alization in high performance computing. Attendees in-
cluded: Stephen L. Scott – meeting chair (Oak Ridge Na-
tional Laboratory), Barney Maccabe (University of New
Mexico), Ron Brightwell (Sandia National Laboratory), Pe-
ter A. Dinda (Northwestern University), D.K. Panda (Ohio
State University), Christian Engelmann (Oak Ridge Na-
tional Laboratory), Ada Gavrilovska (Georgia Tech), Ge-
offroy Vallee (Oak Ridge National Laboratory), Greg Bron-
evetsky (Lawrence Livermore National Laboratory), Frank
Mueller (North Carolina State University), Dan Stanzione
(Arizona State University), Hong Ong (Oak Ridge National
Laboratory), Seetharami R. Seelam (University of Texas at
El Paso), Chokchai (Box) Leangsuksun (Louisiana Tech
University), Sudharshan Vazhkudai (Oak Ridge National
Laboratory), David Jackson (Cluster Resources Inc.), and
Thomas Naughton (Oak Ridge National Laboratory). We
thank them for their time and suggestions for this document.

References

[1] AMD64 Architecture Programmer’s Manual, Volume 2:
System Programming. Advanced Micro Devices. Publica-
tion no. 24593, revision 3.13, July 2007.

[2] Argonne National Laboratory. ZeptoOS. http://www-
unix.mcs.anl.gov/zeptoos/.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In Proceedings of the nine-
teenth ACM symposium on Operating System s Principles
(SOSP19), pages 164–177. ACM Press, 2003.

[4] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan. The influ-
ence of operating systems on the performance of collective
operations at extreme scale. In CLUSTER. IEEE, 2006.

[5] F. Bellard. Qemu, a fast and portable dynamic translator. In
USENIX 2005 Annual Technical Conference, Anaheim, CA,
USA, Apr. 2005.

[6] Cluster File System Inc. Lustre: Scalable Clustered Object
Storage. http://www.lustre.org/.

[7] W. Emeneker, D. Jackson, J. Butikofer, and D. Stanzione.
Dynamic virtual clustering with xen and moab. In Proceed-
ings of ISPA Workshops: Workshop on Xen in HPC Clus-



ter and Grid Computing Environments (XHPC), pages 440–
451, 2006.

[8] G. A. Geist, J. A. Kohl, S. L. Scott, and P. M. Papadopoulos.
HARNESS: Adaptable virtual machine environment for het-
erogeneous clusters. Parallel Processing Letters, 9(2):253–
273, 1999.

[9] R. P. Goldberg. Architecture of virtual machines. In
Proceedings of the workshop on virtual computer systems,
pages 74–112, Cambridge, Massachusetts, United States,
1973. ACM Press.

[10] W. Huang, J. Liu, B. Abali, and D. K. Panda. A case
for high performance computing with virtual machines. In
The 20th ACM International Conference on Supercomputing
(ICS’06), Cairns International Hotel, Queensland Australia,
June 2006.

[11] S. M. Kelly and R. Brightwell. Software architecture of the
light weight kernel, catamount. In 2005 Cray Users’ Group
Annual Technical Conference, Albuquerque, New Mexico,
May 2005.

[12] S. M. Kelly, R. Brightwell, and J. VanDyke. Catamount
software architecture with dual core extensions. In 2006
Cray Users’ Group Annual Technical Conference, Lugano,
Switzerland, May 2006.

[13] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J.
Figueiredo. Vmplants: Providing and managing virtual ma-
chine execution environments for grid computing. In SC
’04: Proceedings of the 2004 ACM/IEEE conference on Su-
percomputing, page 7, Washington, DC, USA, 2004. IEEE
Computer Society.

[14] Kernel virtual machine website -
http://sourceforge.net/projects/kvm.

[15] J. Liu, W. Huang, B. Abali, and D. K. Panda. High perfor-
mance vmm-bypass i/o in virtual machines. In USENIX An-
nual Technical Conference 2006, Boston, MA, USA, June
2006.

[16] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott.
Proactive fault tolerance for HPC with Xen virtualization. In
ICS ’07: Proceedings of the 21st annual international con-
ference on Supercomputing, pages 23–32, New York, NY,
USA, 2007. ACM Press.

[17] R. Oldfield. Investigating lightweight storage and overlay
networks for fault tolerance. In HAPCW’06: High Availabil-
ity and Performance Computing Workshop, Santa Fe, New
Mexico, USA, OCT 2006. Held in conjunction with LACSI
2006.

[18] The Parallel Virtual File System, version 2.
http://www.pvfs.org/pvfs2.

[19] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File Sys-
tem for Large Computing Clusters. In First USENIX Con-
ference on File and Storage Technologies, pages 231–244.
USENIX, Jan. 2002.

[20] G. M. Shipman, T. S. Woodall, G. B. andRich L. Graham,
and A. B. Maccabe. High performance RDMA protocols
in HPC. In Proceedings, 13th European PVM/MPI Users’
Group Meeting, Lecture Notes in Computer Science, Bonn,
Germany, September 2006. Springer-Verlag.

[21] T. B. Team. An overview of the bluegene/l supercomputer.
In ACM Supercomputing Conference, 2002., 2002.

[22] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick.
System noise, os clock ticks, and fine-grained parallel appli-
cations. In ICS ’05: Proceedings of the 19th annual interna-
tional conference on Supercomputing, pages 303–312, New
York, NY, USA, 2005. ACM Press.

[23] G. Vallée, T. Naughton, and S. L. Scott. System manage-
ment software for virtual environments. In Proceedings
of ACM Conference on Computing Frontiers 2007, Ischia,
Italy, May 7-9, 2007.

[24] VMware, Inc. http://www.vmware.com.


