A Framework for Proactive Fault

Tolerance

Geoffroy Vallee (ORNL)

Kulathep Charoenpornwattana (LATech)
Christian Engeimann (ORNL)

Anand Tikotekar (ORNL)

Chokchai “Box” Leangsuksun (LATech)
Thomas Naughton (ORNL)

Stephen L. Scott (ORNL)

OAK
RIDGE

National Laboratory

Context & Background

 Large-scale systems & long running applications
— hundred of thousands of nodes, individual components can fail
— specialized nodes (compute nodes vs. I/O nodes vs. login nodes)
— avoid any kind of overhead on compute nodes (priority to applications)
— Standard parallel applications (MPIl-like applications)

* No Fault Tolerance (FT) intelligence in most parallel applications

 Basic fault tolerance solutions
— Production: reactive policies, i.e., how to react to a failure?
— Research: pro-active policies, i.e., how to anticipate failures?

* Different execution platform characteristics
— Failure distribution
— Predictable vs. unpredictable failures
— Platform types: disk-less or disk-full

Only pro-active FT is in the scope of this presentation

OAK

RibGe
National Laboratory

Pro-active Fault Tolerance -

Introduction

1: Alarm. dis
errors, So

Fault Tolerance
Policy (w/ failover
mechanism)

Headnode w/ Fault Tolerant Job Scheduler

migrate

Fault Prediction
Based on
Hardware Monitoring

Node 1

/lﬁ | [2: VM Live Mi%b

Fault Prediction
Based on
Hardware Monitoring

ARES 2008 — Barcelona, Spain - 3

Network

Node k [

OAK
RIDGE

National Laboratory

Pro-active Fault Tolerance Challenges

* Mechanisms challenges
— fault prediction
— prediction accuracy

— application manipulation
* migration
* pause/unpause

* Policy challenges — adaptation to
— platform characteristics
— application characteristics

No one-fit all solution
=> proactive FT framework

OAK
RIDGE

National Laboratory

Platform Architecture Overview

e Specialized nodes

- “master node”
* Jlogical centralized execution point for services
* may NOT be a single node, it is a logical view of where the distributed

services are hosted

— compute nodes
* where the application is running

should avoid interferences from the framework

« Communication sub-system

for scalability, we assume we reuse scalable communication sub-
systems (e.g., MRNet)

efficient way to “push” data to the master node
abstraction of the under-lying networking solutions

OAK
RIDGE

National Laboratory

Pro-active FT Framework - Architecture
Master Node

(PD)

Policy Daemon

90URIAIO],

Ao1104

alarm

d

T‘ 1. 9A1OB-01] X

Compute Node

Fault Predictor

) (FP)

Fault Tolerance
Daemon (FTD)

migration

A

Pro-active Fault Tolerance
Mechanism
(e.g., Live Migration of
Xen Virtual Machines)

OAK
RIDGE

National Laboratory

Framework Components — Event System

e Core of the framework: abstract all communications
between framework components

* Abstract the underlying communication sub-system
— abstraction of scalable sub-systems such as MRNet
— abstraction of the physical network solution

* Based on the concepts of mailbox, mailbox managers,
subscribers, and publishers

* Asynchronous, “tolerate failures” (i.e., missing readers)

* Very low overhead when the system is healthy

* No interference with applications running on compute
nodes

OAK
RIDGE

Pro-active FT Framework - Architecture
Master Node

(PD)

Policy Daemon

Q0UBID[O],

Aarj04

d

T‘ 1ne, 9A1OB-01] X

alarm

Compute Node

Fault Predictor

— (FP)

Fault Tolerance
Daemon (FTD)

migration

A

Pro-active Fault Tolerance
Mechanism
(e.g., Live Migration of
Xen Virtual Machines)

OAK
RIDGE

National Laboratory

Framework Components - Fault
Predictor

Runs on each compute nodes

Abstraction of the underlying mechanism for hardware
morti)lto;'lng and fault prediction (typically hardware
probes

Filter data extracted from probes

Prevent a global polling, creates an alarm only if probes
report abnormal behaworéalarm sent to the policy
daemon on the master no

Currently uses: Im-sensor, syslogs + experimental
support of IPMI

National Laboratory

Pro-active FT Framework - Architecture
Master Node

(PD)

Policy Daemon

Q0UBID[O],

Aarj04

d

T‘ 1ne, 9A1OB-01] N

alarm

Compute Node

Fault Predictor

) (FP)

Fault Tolerance
Daemon (FTD)

migration

A

Pro-active Fault Tolerance
Mechanism
(e.g., Live Migration of
Xen Virtual Machines)

OAK
RIDGE

National Laboratory

Framework Components - Policy Daemon

Implement the proactive FT policy

* Running on the master node

Receive and analyze alarms sent from fault predictors

If needed, sends an alarm for migration or pause to the
compute node

National Laboratory

Pro-active FT Framework - Architecture
Master Node

(PD)

Policy Daemon

Q0UBID[O],

Aarj04

d

T‘ 1ne, 9A1OB-01] X

alarm

Compute Node

Fault Predictor

) (FP)

Fault Tolerance
Daemon (FTD)

migration

A

Pro-active Fault Tolerance
Mechanism
(e.g., Live Migration of
Xen Virtual Machines)

OAK
RIDGE

National Laboratory

Framework Components - Fault

Tolerance Daemon

* Running on the compute
nodes

* Abstract the underlying
mechanism for migration &
pause/unpause (concept of
connector)

— similar to plug-ins

* Receive alarms from policy
daemon for migration or
pause

Order of Action
From the Policy
Daemon

Fault Tolerance
Daemon

pause() | unpause() | migrate()

pause() | unpause() | migrate()

Pro-active FT Framework - Protocol

* Goal
— guarantee pro-active FT
— detect failures: avoid conflicts between reactive/proactive FT

Policy Daemon Fault Tolerance Daemon

Fault Predicted —_req:injt

ackinit
If all nodes are initialized then

) req:pause/unpause/

) ! -
m:grat:onause/ ~ If pause/unpause succeeds then

If the node is ready then

Faultavoided < migration

OAK
RIDGE

National Laboratory

Pro-active FT Policy - Example
Init

Wait for
alarms

Migration
succeed

Migrate
VM to
spare node
Alarm
Received

Spare node

found

Find a spare
node for
migration

Node selected
No spare

node available

Choose
randomly a
node
* PS: policy used for evaluation

OAK
RIDGE

National Laboratory

Experimentation Protocol

* 2 sets of experimentations: 16 & 32 nodes
HPCC benchmark
We argue that

— the implementation of multiple policies cannot validate the
framework (no reference)

— we can use our simulator as reference

Policy presented in slide 15
— users can take benefit of a pool of spare nodes

— if a alarm is received, we migrate the VM away from the faulty
node
* using a spare node if any available
e stacking VMs on a random node if no spare node available

OAK
RIDG

National Laboratory

ARES 2008 — Barcelona, Spain - 16

Preliminary Experimentation &
Validation

« Comparison w/ our FT simulator

 Experimentation platform

— based on Xen 3.0.2
— 40 Plll nodes: HostOS has 200MB of memory; VMs 250 MB

 Simulator characteristics

— Cluster'07 paper [tiketekar]
— based on LLNL ASCI White System logs

— specification of many platform parameters: migration overhead,
platform characteristics and so on

— specify our physical platform characteristics

OAK
RIDGE

National Laboratory

ARES 2008 — Barcelona, Spain - 17

Migration Overhead Evaluation

1 32 Nodes M 16 Nodes

% Overhead in Application Execution Time

2 4 6 8

Number of Migration

OAK
RIDGE

National Laboratory

ARES 2008 — Barcelona, Spain - 18

Impact of VM Memory Footprint on VM
Migration

32.5
30
27.5
25
22.5
20
17.5
15
12.5
10
7.5
5
2.5

0 \ \ \ \
64 100 150 250 300

Virtual Machine Memory Size (MB)

Migration Time (in Seconds)

OAK
RIDGE

National Laboratory

ARES 2008 — Barcelona, Spain - 19

VM Stacking Effect

120
§ 100
)
ilg 60
'c whd
33 40
= X
2% 20
@)
N

0 | \
1 2 3 4
Number of Physical Nodes Having 2 VMs

OAK
RIDGE

National Laboratory

ARES 2008 — Barcelona, Spain - 20

Simulation vs. Experimentation

12 I
116 nodes - Experimenta-
et tion
R M 32 nodes - Experimenta-
=10 tion |
o [116 nodes - Simulation
ps g [132 nodes - Simulation

time without migration)

Application Execution Overhead

(in pourcentage of the application e

8 6 4 2
Number of Migration

OAK
RIDGE

National Laboratory

ARES 2008 — Barcelona, Spain - 21

Conclusion & Future Work

* Proactive FT framework
— ease the implementation of new pro-active FT policies

— capable of supporting many different low-level mechanisms
 virtual machine migration & pause/unpause
e process-level migration & pause/unpause

— easily extensible

* Future work
— reactive FT support

— integration with scalable communication sub-system
* Scalable Tool Communication Infrastructure (STCI)

OAK

RibGe
National Laboratory

Questions?

OAK
National Laboratory

