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Context & Background

 Large-scale systems & long running applications
— hundred of thousands of nodes, individual components can fail
— specialized nodes (compute nodes vs. I/O nodes vs. login nodes)
— avoid any kind of overhead on compute nodes (priority to applications)
— Standard parallel applications (MPIl-like applications)

* No Fault Tolerance (FT) intelligence in most parallel applications

 Basic fault tolerance solutions
— Production: reactive policies, i.e., how to react to a failure?
— Research: pro-active policies, i.e., how to anticipate failures?

* Different execution platform characteristics
— Failure distribution
— Predictable vs. unpredictable failures
— Platform types: disk-less or disk-full

Only pro-active FT is in the scope of this presentation
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Pro-active Fault Tolerance Challenges

* Mechanisms challenges
— fault prediction
— prediction accuracy

— application manipulation
* migration
* pause/unpause

* Policy challenges — adaptation to
— platform characteristics
— application characteristics

No one-fit all solution
=> proactive FT framework
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Platform Architecture Overview

e Specialized nodes

- “master node”
* Jlogical centralized execution point for services
* may NOT be a single node, it is a logical view of where the distributed

services are hosted

— compute nodes
* where the application is running

should avoid interferences from the framework

« Communication sub-system

for scalability, we assume we reuse scalable communication sub-
systems (e.g., MRNet)

efficient way to “push” data to the master node
abstraction of the under-lying networking solutions
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Pro-active FT Framework - Architecture
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Framework Components — Event System

e Core of the framework: abstract all communications
between framework components

* Abstract the underlying communication sub-system
— abstraction of scalable sub-systems such as MRNet
— abstraction of the physical network solution

* Based on the concepts of mailbox, mailbox managers,
subscribers, and publishers

* Asynchronous, “tolerate failures” (i.e., missing readers)

* Very low overhead when the system is healthy

* No interference with applications running on compute
nodes
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Pro-active FT Framework - Architecture
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Framework Components - Fault
Predictor

Runs on each compute nodes

Abstraction of the underlying mechanism for hardware
morti)lto;'lng and fault prediction (typically hardware
probes

Filter data extracted from probes

Prevent a global polling, creates an alarm only if probes
report abnormal behaworéalarm sent to the policy
daemon on the master no

Currently uses: Im-sensor, syslogs + experimental
support of IPMI
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Pro-active FT Framework - Architecture
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Framework Components - Policy Daemon

Implement the proactive FT policy

* Running on the master node

Receive and analyze alarms sent from fault predictors

If needed, sends an alarm for migration or pause to the
compute node
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Framework Components - Fault

Tolerance Daemon

* Running on the compute
nodes

* Abstract the underlying
mechanism for migration &
pause/unpause (concept of
connector)

— similar to plug-ins

* Receive alarms from policy
daemon for migration or
pause

Order of Action
From the Policy
Daemon

Fault Tolerance
Daemon

pause() | unpause() | migrate()

pause() | unpause() | migrate()




Pro-active FT Framework - Protocol

* Goal
— guarantee pro-active FT
— detect failures: avoid conflicts between reactive/proactive FT

Policy Daemon Fault Tolerance Daemon

Fault Predicted —_req:injt

ackinit
If all nodes are initialized then

) req:pause/unpause/

) ! -
m:grat:onause/ ~ If pause/unpause succeeds then

If the node is ready then

Faultavoided <  migration
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Pro-active FT Policy - Example
Init

Wait for
alarms

Migration
succeed

Migrate
VM to
spare node
Alarm
Received

Spare node

found

Find a spare
node for
migration

Node selected
No spare

node available

Choose
randomly a
node
* PS: policy used for evaluation

OAK
RIDGE

National Laboratory




Experimentation Protocol

* 2 sets of experimentations: 16 & 32 nodes
HPCC benchmark
We argue that

— the implementation of multiple policies cannot validate the
framework (no reference)

— we can use our simulator as reference

Policy presented in slide 15
— users can take benefit of a pool of spare nodes

— if a alarm is received, we migrate the VM away from the faulty
node
* using a spare node if any available
e stacking VMs on a random node if no spare node available
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Preliminary Experimentation &
Validation

« Comparison w/ our FT simulator

 Experimentation platform

— based on Xen 3.0.2
— 40 Plll nodes: HostOS has 200MB of memory; VMs 250 MB

 Simulator characteristics

— Cluster'07 paper [tiketekar]
— based on LLNL ASCI White System logs

— specification of many platform parameters: migration overhead,
platform characteristics and so on

— specify our physical platform characteristics
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Migration Overhead Evaluation
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Impact of VM Memory Footprint on VM
Migration
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VM Stacking Effect
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Simulation vs. Experimentation
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Conclusion & Future Work

* Proactive FT framework
— ease the implementation of new pro-active FT policies

— capable of supporting many different low-level mechanisms
 virtual machine migration & pause/unpause
e process-level migration & pause/unpause

— easily extensible

* Future work
— reactive FT support

— integration with scalable communication sub-system
* Scalable Tool Communication Infrastructure (STCI)
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Questions?
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