
High Performance Computing with Harness over InfiniBand

A. Valentini1, C. Di Biagio2, F. Batino2, G. Pennella2, F. Palma1, C. Engelmann3

1University of Rome “Sapienza”, Italy
2Applied Research & Technology Dep. MBDA Italy S.p.a, Italy

3Oak Ridge National Laboratory, USA
valentinialex78@virgilio.it, christian.di-biagio@mbda.it, guido.pennella@mbda.it, fabrizio.batino@mbda.it

palma@mail.die.uniroma1.it, engelmannc@ornl.gov

Abstract—Harness is an adaptable and plug-in-based
middleware framework able to support distributed parallel
computing. By now, it is based on the Ethernet protocol which
cannot guarantee high performance throughput and real time
(determinism) performance. During last years, both, the
research and industry environments have developed new
network architectures (InfiniBand, Myrinet, iWARP, etc.) to
avoid those limits. This paper concerns the integration between
Harness and InfiniBand focusing on two solutions: IP over
InfiniBand (IPoIB) and Socket Direct Protocol (SDP)
technology. They allow the Harness middleware to take
advantage of the enhanced features provided by the InfiniBand
Architecture.

I. INTRODUCTION
A middleware is defined as “... a connectivity software

that consists of a set of enabling services that allow multiple
processes running on one or more machines to interact
across a network”. The increasing demand to apply
middleware technologies in different application domains,
such as real-time systems and embedded systems, has
encouraged universities and industry research departments,
to develop innovative systems solutions for providing a
flexible and extensible Quality-of-Service (QoS) and real-
time capability. Generally, newer middleware
communication protocols are Ethernet socket based. Even
though greater middleware scalability is provided, two
performance boundaries are shown: i) TCP/IP protocol
introduces a communication overhead and ii) the OS Kernel
buffers data before really sending it. Modern network
infrastructures, such as InfiniBand (IB) [1], Myrinet [6, 7],
Quadrics [9] and iWARP [8] [10], represent a solution to the
Ethernet limitations and add other functionality (Remote
Direct Memory Access semantic [2, 14], high bandwidth and
low switch latency) that is able to increase to network
performance. This work, realized with a joint collaboration
between the Electronic Engineering Department of the
University of Rome “Sapienza”, the Applied Research &
Technology Department of MBDA Italy S.p.a., and Oak
Ridge National Laboratory, present two different solutions to
allow the Harness middleware to achieve better
performances by using InfiniBand network technology.

A. Modern Middleware: Harness
The Harness project (Heterogeneous Adaptable

Reconfigurable Networked Systems), is a result of joint

development effort between Oak Ridge National Laboratory,
the University of Tennessee, Knoxville, and Emory
University. Harness is a distributed, reconfigurable and
heterogeneous computing environment that supports
dynamically adaptable parallel applications. The main
feature of Harness relies on its almost total level of
pluggability: the aim is to build a virtual environment that
can dynamically change (almost) anything at runtime. In this
highly adaptable framework can reside several distributed
parallel user applications, all executed over the well known
concept of a distributed virtual machine and runtime
environment – a PVM inheritance. Harness runs a so called
runtime environment (RTE) on every computational unit
involved; this environment is the “shell” in which the
middleware layer hosts the user applications and the resource
management routines that belong to the distributed
environment. Every RTE is realized by a Harness kernel
which is the core of the unit capable of loading and
unloading plug-in modules.

B. Harness at ORNL
Several Harness prototypes have been developed either in

Java or in C language. We adopt the C version, which runs
on a GNU/Linux-type OS. Specifically, we have chosen the
Harness C implementation developed by the Oak Ridge
National Laboratory (ORNL) research team. This version is
focused on building a lightweight and pluggable middleware
layer; it provides a kernel that runs as a Linux daemon
process; the kernel manages processes, a thread pool, and it
dynamically loads/unloads plug-ins. The process
management can fork/execute user applications, it passes
arguments, and retrieves output from these external
processes. The plug-in loader provides interfaces for
loading/unloading modules and for publishing their
functionalities to the RTE. The communication facilities are
provided by RMIX (Remote Method Interface eXtensible)
[11, 12]. RMIX is a dynamic, heterogeneous, reconfigurable
communication framework that allows software components
to communicate using various RMI/RPC protocols. The RMI
(and RPC) paradigm is based on a client-server architecture,
where a client invokes a method (or function) at a server-side
object. Each client-server pair chooses at compile time or
even to negotiates at runtime the most efficient RMI protocol
stack that is supported by both sides, while client-side and
server-side object stubs remain the same as they only
perform an adaptation to the RMIX framework and are not
involved in the protocol stack.

C. InfiniBand Architecture
The InfiniBand architecture (IBA) [2, 3] is an InfiniBand

Trade Association standard. It is a high-performance
network technology designed to realize a connection of
processor nodes and I/O devices using a point-to-point
switch-based fabric. InfiniBand provides low latency, high
bandwidth and Quality of Service (QoS) capabilities. Each
element of the InfiniBand System Area Network (SAN) is
connected to the network infrastructure by Channel Adapters
(CA). In particular, the Host Channel adapter (HCA) is
associated with a processing node, while the Target Channel
Adapter (TCA) is associated with I/O device. The IBA is
built on four layers: Transport, Network, Data Link and
Physical layers. These layers are the same of classic OSI
stack layers, but in this case, all layers are hardware
implemented.

II. PREVIOUS WORK
Our prior work on a distributed real-time computing

environment using Harness [5], focused on making Harness
safety critical compliant. As part of this earlier development
effort, the modular Harness architecture was preserved and
three plug-ins modules were developed to provide:

 a prioritized lightweight execution environment,
 low latency socket communication facilities, and
 local time stamped event logging.

The lightweight execution environment provided by

Harness is designed for high real time efficiency based on
the thread pool for job processing, which can can control
scheduling priority and contention scope. The second plug-in
solves the communication problem of the actual RMIX
framework (TCP protocol based), which, is not well suited
for distributed real-time applications. It introduces a new
RMIX provider plug-in (UDP protocol based), while
providing a reliable and stream oriented communication.
Finally, the last developed plug-in implements a light event
logging service based on a temporary shared buffer.

III. HARNESS PLUG-IN IMPLEMENTATION
The aim of the presented work is to develop two new

plug-ins, which exploit the pluggable nature of Harness in
order to implement a set of services enabling its execution
across a InfiniBand network. The first solution uses the IP
Over InfiniBand technology, which is simple and backward
compatible with the original Harness environment. The
second solution uses the Socket Direct Protocol (SDP)
technology which allows direct communication between the
socket API and the InfiniBand (Host Channel Adapter) HCA
driver bypassing TCP and IP layers.

Figure 1. IPoIB Architecture

A. IP over InfiniBand Harness Provider Plug-in
The original Harness RMIX provider plug-in uses TCP

over the Ethernet physical layer. Neither Ethernet nor TCP
are suitable for high performance deterministic
communication. To alleviate this problem we developed a
RMIX provider plug-in over an UDP transport layer (see
Section 2), but this solution involves the loss of the TCP
advances as reliability, order of delivery, etc., characteristics
are very important for data sensible applications.

The Harness communication issue can be resolved, with
an IB infrastructure that, unlike Ethernet, provides the high
levels of reliability, availability, performance.

Our work focuses on developing a new RMIX provider
plug-in over the TCP stack, which employs all the TCP
protocol functionalities, like reliable and stream oriented
communication, but also includes the prioritized lightweight
execution environment and the application event logging of
our previous Harness version [5].

The IP over IB (IPoIB) solution encapsulates IP packets
directly into the IB packets and allows the transport protocol
to be used in the communication. In other words, QoS
(packet loss, packet order, retransmission, etc.) is guaranteed
by the IB layer itself. This encapsulation is operated by the
Linux Kernel Module called IPoIB Driver, which manages
all conventional IP protocol functionalities, such as the
Address Resolution Protocol (ARP) and Dynamic Host
Configuration Protocol (DHCP). IPoIB solution is fully
backward compatible with existing developed Ethernet
socket based application. In fact, no changes have to be made
to application existing code.

B. Socket Direct Protocol Harness Provider Plug-in
The Socket Direct Protocol (SDP) [4, 14] solution allows

socket-based applications to take advantages provided by the
InfiniBand Architecture. The sockets direct protocol driver
provides a high-performance interface for standard Linux
socket applications and provides a boost in performance by
bypassing the software TCP/IP stack. The reason that TCP
can be bypassed in this model is because InfiniBand
hardware provides a reliable transport. SDP works in two
different ways: Implicit operation and Explicit operation.
The Implicit approach implies to pre-load the libsdp.so

library and is able to intercept a TCP socket call within the
operating system kernel. The Explicit approach loads
dynamically the libsdp.so library and foresees a direct SDP
invocation, in such a way the traditional socket API
parameter AF_INET is substituted by a specific SDP socket
definition AF_INET_SDP. Explicit SDP mode involves
simple code modifications, but provides a greater application
performance. The Explicit operation is used in our test cases.

Figure 2. SDP Architecture

C. Enhanced RMIX Structure
Each Remote Procedure Call (RPC) of the RMIX plug-in

acts in three phases: 1st: client opening and server
connection, 2nd: transmitting call invocation and procedure
parameter transmission and 3rd: the client closing. Looking
at the SDP approach, it shows complex connection setup
operations which introduce high latencies, in this way SDP is
not suitable for the RMIX plug-in operation. To alleviate this
issue, our work focuses on providing an Enhanced RMIX
infrastructure. It provides a new RPC structure, splitting the
traditional RPC call in three separate calls: i) client opening
and server connection, ii) transmitting call invocation and iii)
client close. This enhancement is based on the typical socket
operations by first opening the socket, then transmitting all
data and at the end closing the socket. Thus, the SDP
provider plug-in has been developed in conjunction with the
Enhanced RMIX design, the prioritized lightweight
execution environment and the application event logging.
The Enhanced RMIX design is backward compatible. In fact,
no new function calls are introduced, but existing calls are
modified. Backward compatibility is very simple to obtain.
For example the RMIX oneway call now becomes:

oneway(remote_reference, remote_objet_interface,
method_to_invoke, array_input_value, input_value_count,
client_handle, connection_state)

It can be called in backward compatibility with the
parameters:
CLIENT_HANDLE=NULL
CONNECTION_STATE=RMIX_OLD_VERSION

IV. EXPERIMENTAL RESULTS
The development process in industrial, high-performance

and time-critical environments implies extensive test
activity. We build a test environment that resembles the
actual operational environment, both, in hardware and
software.

A. Test Environment and Test Case
The Operational Environment of an industrial time-

critical application is mainly composed by “Command and
Control” (C2) applications. We model a C2 distributed
application as constituted by components of one of three
types [13]: a sensor type component that receives the data
from the environment, an elaborator component that
computes the actions to be taken in response to data received
from the sensor, and an actuator component that finally
executes these actions in order to modify one or more entities
of the environment to be controlled. In particular, we
develop a test case in order to represent as much as possible
an actual industrial C2 application: aircraft guiding. The
aircraft guiding test case is built up trough:

 an aircraft, which can turn on the left or on the right

and change its velocity,
 a sensor which receives aircraft position and sends

command to the elaborator,
 an elaborator which receives data from the sensor

and send data to the actuator in order to make the
aircraft follow a specific trajectory, and

 the actuator which sends command to the aircraft.

Aircraft, sensor and actuator are installed on a Single
Board Computer (SBC) Concurrent VP-347 (Intel
PentiumM). The elaborator resides on a different SBC
Concurrent VP-347 (Intel PentiumM). Operating system
used is CentOS Linux distribution with kernel 2.6.18.

B. Test Results
The goal was to determine the way the packet size and

the developed RMIX provider plug-ins impact on the
performance of the distributed application in real time
environment. Tests show the average round trip time (RTT),
reported in micro seconds (µsec), defined as the time that
occurs between the data is captured from the sensor
component and the action taken by the actuator component.
We test the RTT in the case of i) original Harness 2.0
TCP/IP Provider plug-in, ii) IPoIB Provider plug-in , iii)
SDP Provider plug-in based on the new ERP-in. Figure 3
shows the application average RTT latency in an unloaded
scenario for three different Harness application packet sizes
that are typically used in industrial radar applications. In
particular, we are interested in the RTT performance of the
RMIX provider plug-in for different packet sizes.

Figure 3. Round Trip Time (µsec)

The TCP/IP plug-in shows higher average latencies than
others because i) it does not utilize the prioritized lightweight
execution environment, and ii) the communication protocol
is TCP over Ethernet. In comparison to the IPoIB and SDP
provider, the advantages are evident for any packet sizes.
Due to the RPC calling separation, client opening time is
mitigated correctly. Note that the SDP provider offers better
and more consistent performance. Figure 4 shows the RTT
maximum and standard deviation values of the test results,
for loaded and unloaded scenarios, which are the most
important metrics in real time environments.

 TCP/IP IPoIB SDP

MAX 34242 1210 1059 Unloaded
(µsec) STDEV 7298,95 31 45,6

MAX 37233 1956 1396 Loaded
(µsec) STDEV 7766,36 152 98

Figure 4. RTT latency (µsec)

It is evident that for the unloaded scenario, the standard
deviation values for IPoIB are similar to SDP, while in the
loaded scenario the SDP shows better performance. The SDP
maximum value is always lower in comparison to the IP
maximum values for unloaded and loaded scenarios. This
behaviour is due tho the amount of IPoIB driver layers.
Finally, it should be noted that the IPoIB and SDP providers
show much better performance in comparison to the original
TCP/IP provider plug-in, wich also proves our eralier
assertion that a provider plug-in build on top of a Ethernet
TCP transport layer is not acceptable for distributed real-time
applications.

V. CONCLUSION AND FUTURE WORK
In this paper, we described an open source runtime

communication middleware for distributed real-time
application. Within this context, Harness represents an
optimal choice because its pluggable architecture offers an
dynamic modularity. The Ethernet communication protocol
represents a boundary for this middleware, therefore, we

have developed a new RMIX provider plug-in that is able to
guarantee the integration between Harness and InfiniBand to
improve performance for a distributed real-time application
(Command & Control) as shown in the test results. The SDP
and IPoIB provider plug-ins allow using InfiniBand
capabilities without complex source code modification of
Harness RMIX, but without taking full advantage of the
enhanced features provided by Remote Direct Memory
Access (RDMA). Future work may focus on a new Harness
RMIX provider plugin that is able to perform RDMA
communication for distributed real-time applications. For
that, the User Direct Access Programming Library (uDAPL)
seems to be the best candidate, as it provides a generic
RDMA-capable application programming interface (API).
Ongoing related research activities are currently conducted
in this direction by MBDA Italia S.p.a Software Applied &
Research Dept.

ACKNOWLEDGMENT
The work at the Oak Ridge National Laboratory, which is

managed by UT-Battelle, LLC under Contract No. De-
AC05-00OR22725, was sponsored by the U.S. Department
of Energy.

REFERENCES
[1] IP over InfiniBand Working Group.

http://www.ietf.org/html.charters/ipoibcharter.html.
[2] Infiniband Trade Association. http://www.infinibandta.org.
[3] InfiniBand Architecture Specification, Release 1.1, InfiniBand Trade

Association, 2002.
[4] Sockets Direct Protocol. http://www.infinibandta.com.
[5] Distributed Real-Time Computing with Harness, Emanuele Di

Saverio, Marco Cesati, Christian Di Biagio, Guido Pennella, and
Christian Engelmann. Proceedings of the 14th European PVM/MPI
Users' Group Meeting.

[6] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W. Yu, D.
Buntinas, P. Wyckoff, and D. K. Panda. Performance Comparison of
MPI Implementations over InfiniBand, Myrinet and Quadrics. In
Supercomputing (SC), 2003.

[7] Myricom: http://www.myricom.com/.
[8] RDMA Consortium. iWARP protocol specification.

http://www.rdmaconsortium.org/.
[9] J. Beecroft, D. Addison, D. Hewson, M. McLaren, D. Roweth, F.

Petrini, and J. Nieplocha. QsNetII: Defining high performance
network design. IEEE Micro, 25(4): 34-47, 2005.

[10] Mohammad J. Rashti, Ahmad Afsahi: 10-Gigabit iWARP Ethernet:
Comparative Performance Analysis with InfiniBand and Myrinet-
10G. Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International 26-30 March 2007 Page(s):1 – 8.

[11] C.Engelmann, C., Geist, G.A.: RMIX: A dynamic, heterogeneous,
reconfigurable communication framework. In: Lecture Notes in
Computer Science: Proceedings of the International Conference on
Computational Science (ICCS) 2006, Part II. Volume 3992., Reading,
UK (2006) 573–580.

[12] Engelmann, C., Geist, G.A.: A lightweight kernel for the harness
metacomputing framework. In: Proceedings of the 14th
Heterogeneous Computing Workshop (HCW) 2005, in conjunction
with the 19th International Parallel and Distributed Processing
Symposium (IPDPS) 2005, Denver, CO, USA (2005)

[13] Ravindran, B.: Engineering dynamic real-time distributed systems:
Architecture, system description language, and middleware. IEEE
Transactions on Software Engineering 28 (2002) 30–57

[14] RDMA Consortium: http://www.rdmaconsortium.org

	I. Introduction
	A. Modern Middleware: Harness
	B. Harness at ORNL
	C. InfiniBand Architecture

	II. Previous Work
	III. Harness Plug-in Implementation
	A. IP over InfiniBand Harness Provider Plug-in
	B. Socket Direct Protocol Harness Provider Plug-in
	C. Enhanced RMIX Structure

	IV. Experimental Results
	A. Test Environment and Test Case
	B. Test Results

	V. Conclusion and Future Work
	Acknowledgment
	References

