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Abstract

Most of today‘s HPC systems employ a single head node
for control, which represents a single point of failure as it
interrupts an entire HPC system upon failure. Furthermore,
it is also a single point of control as it disables an entire
HPC system until repair. One of the most important HPC
system service running on the head node is the job and re-
source management. If it goes down, all currently running
jobs loose the service they report back to. They have to be
restarted once the head node is up and running again.

With this paper, we present a generic approach for pro-
viding symmetric active/active replication for highly avail-
able HPC job and resource management. The JOSHUA
solution provides a virtually synchronous environment for
continuous availability without any interruption of service
and without any loss of state. Replication is performed ex-
ternally via the PBS service interface without the need to
modify any service code. Test results as well as availabil-
ity analysis of our proof-of-concept prototype implementa-
tion show that continuous availability can be provided by
JOSHUA with an acceptable performance trade-off.

1 Introduction

During the last decade, high-performance computing
(HPC) has evolved into an important tool for scientists
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Figure 1. Traditional Beowulf Cluster Archi-
tecture with Single Head Node

world-wide to drive the race for scientific discovery in nu-
merous research areas, such as climate dynamics, nuclear
astrophysics, fusion energy, materials sciences, and biol-
ogy. Today, scientific knowledge can be gained without the
immediate need or capability of performing physical exper-
iments using computational simulations of real-world and
theoretical experiments based on mathematical abstraction
models.

The emergence of cluster computing in the late 90’s
made low- to mid-end scientific computing affordable to
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everyone, while it introduced the Beowulf cluster system
architecture [36, 37] (Figure 1) with its single head node
controlling a set of dedicated compute nodes. This archi-
tecture has been proven to be very efficient as it permits
customization of nodes and interconnects to their purpose.
Many HPC vendors adopted it either completely in the form
of high-end computing clusters or in part by developing hy-
brid high-end computing solutions.

Most of today‘s HPC systems employ a single head node
for control and optional service nodes to offload specific
head node services, such as a networked file system. This
head node represents a single point of failure as it interrupts
an entire HPC system upon failure. Furthermore, it is also
a single point of control as it disables an entire HPC system
until repair. This classification is also applicable for any
service node offloading head node services.

The impact of a head node failure is severe as it not
only causes significant system downtime, but also inter-
rupts the entire system. Scientific applications experiencing
a head node failure event typically have to be restarted as
they depend on system services provided by the head node.
Loss of scientific application state may be reduced using
fault-tolerance solutions on compute nodes, such as check-
point/restart [4] and message logging [25]. The introduced
overhead depends on the system size, i.e., on the number
of compute nodes, which poses a severe scalability problem
for next-generation petascale HPC systems.

A more appropriate protection against a head node fail-
ure is a redundancy strategy at the head node level. Multiple
redundant head nodes are able to provide high availability
for critical HPC system services, such as user login, net-
work file system, job and resource management, commu-
nication services, and in some cases the OS or parts of the
OS itself, e.g., for single system image (SSI) systems. Fur-
thermore, the availability of less critical services, like user
management, software management, and programming en-
vironment, can be improved as well.

One of the most important HPC system service running
on the head node is the job and resource management ser-
vice, also commonly referred to as batch job scheduler or
simply the scheduler. If this critical HPC system service
goes down, all currently running jobs (scientific applica-
tions) loose the service they report back to, i.e., their log-
ical parent. They have to be restarted once the HPC job and
resource management service is up and running again.

The research presented in this paper aims at provid-
ing continuous availability for HPC system services using
symmetric active/active replication on multiple head nodes
based on an existing process group communication system
for membership management and reliable, totally ordered
message delivery.

Specifically, we focus is on a proof-of-concept solution
for Portable Batch System (PBS) compliant job and re-

source management services as a primary example. While
the solution presented in this paper focuses only on the
TORQUE/MAUI HPC job and resource management com-
bination, the generic symmetric active/active high availabil-
ity model our approach is based on is applicable to any
deterministic HPC system service, such as to the metadata
server of the parallel virtual file system (PVFS) [29].

Our approach in providing symmetric active/active high
availability for HPC system services is based on the fail-
stop model assuming that system components, such as indi-
vidual services, nodes, or communication links, fail by sim-
ply stopping. We do not guarantee correctness if a single
faulty service violates this assumption by producing false
output.

In the following, we give a short overview of models for
providing service-level high availability and outline the fea-
tures of the symmetric active/active replication technique
our work is based on. We continue with a detailed de-
scription of the JOSHUA solution for providing symmetric
active/active replication for highly available HPC job and
resource management. We present functional and perfor-
mance test results as well as a theoretical availability analy-
sis of the developed proof-of-concept prototype system. We
close with a brief description of past and ongoing related
work and a short summary of the presented research.

2 High Availability Models

Conceptually, high availability of a service is based on
redundancy [30]. If it fails, the system is able to continue to
operate using a redundant one. As a result, the mean time to
recover can be decreased, loss of state can be reduced, and
single points of failure and control can be eliminated. The
level of high availability depends on the replication strat-
egy. There are various techniques to implement high avail-
ability for services [10]. They include active/standby and
active/active.

Active/standby high availability (Figure 2) follows the
failover model. Service state is saved regularly to some
shared stable storage. Upon failure, a new service is
restarted or an idle one takes over with the most recent or
even current state. This implies a short interruption of ser-
vice for the time of the failover and may involve a rollback
to an old backup. This means that all currently running sci-
entific applications have to be restarted after a head node
failover (see Section 6 for related work).

Asymmetric active/active high availability (Figure 3) fur-
ther improves the availability properties of a system. In this
model, two or more active services offer the same capabili-
ties at tandem without coordination, while an optional idle
service is ready to take over in case of a failure. This tech-
nique allows continuous availability of a stateless service
with improved throughput performance. However, it has
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Figure 2. Enhanced Beowulf Cluster Architec-
ture with Active/Standby High Availability for
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Figure 3. Advanced Beowulf Cluster Archi-
tecture with Asymmetric Active/Active High
Availability for Head Node System Services
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Figure 4. Advanced Beowulf Cluster Architec-
ture with Symmetric Active/Active High Avail-
ability for Head Node System Services

limited use cases due to the missing coordination between
active services. In case of stateful services, such as the
HPC job and resource management, this model only pro-
vides active/standby high availability with multiple active
head nodes for improved throughput performance (see Sec-
tion 6 for earlier prototype).

Symmetric active/active high availability (Figure 4) of-
fers a continuous service provided by two or more active
services that supply the same capabilities and maintain a
common global state using distributed control [13] or vir-
tual synchrony [24] via a process group communication sys-
tem. The symmetric active/active model provides continu-
ous availability for all kinds of services, but is significantly
more complex due to need for advanced commit protocols.

The following section outlines mechanisms and proper-
ties of the symmetric active/active replication technique our
work is based on.

3 Symmetric Active/Active Replication

While previous research in high availability for HPC sys-
tem services (Section 6) primarily targeted active/standby
and asymmetric active/active solutions, the work presented
in this paper entirely focuses on the symmetric active/active
model in order to provide continuous availability without
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Figure 5. Universal Symmetric Active/Active
High Availability Architecture for Services

any interruption of service and without any loss of state.
The symmetric active/active high availability architec-

ture for services (Figure 5) allows more than one redun-
dant service to be active, i.e., to accept state changes, while
it does not waste system resources by relying on an idle
standby. Furthermore, there is no interruption of service
and no loss of state in case of a failure, since active services
run in virtual synchrony without the need to failover.

Service state replication is performed using a process
group communication system for totally ordering and re-
liably delivering all state change messages to all redundant
active services. Consistent output produced by these ser-
vices is routed through the group communication system,
using it for a distributed mutual exclusion to ensure that out-
put is delivered only once.

The size of the active service group is variable at run-
time, i.e., services may join, leave or fail. Its membership
is maintained by the group communication system in a fault
tolerant, adaptive fashion ensuring group messaging prop-
erties. As long as one active service is alive, state is never
lost, state changes can be performed and output is produced
accordingly to state changes.

Symmetric active/active high availability using virtual
synchrony supported by a process group communication
system may be implemented in two distinctive ways, in-
ternally or externally [14]. Internal replication (Figure 6)
requires modification of the service itself, while external
replication (Figure 7) wraps the service into a virtually syn-
chronous environment utilizing the service interface.

Internal replication allows each active service of a ser-
vice group to accept external state change requests individ-

Node C

Adapter

Service

Adapter

Node B

Adapter

Service

Adapter

Node A

Adapter

Service

Adapter

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Group 
Communication

Group 
Communication

Group 
Communication

Group 
Communication

M
1

M
2

M
3

M
1,

 M
2,

 M
3

In
pu

t

In
pu

t

In
pu

t

O
ut

pu
tUser Interface User Interface

User Interface User Interface

Figure 6. Symmetric Active/Active High Avail-
ability Architecture using Internal Replication
by Service Modification/Adaptation

Node C

Interceptor

Service

Interceptor

Node B

Interceptor

Service

Interceptor

Node A

Interceptor

Service

Interceptor

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Group 
Communication

Group 
Communication

Group 
Communication

Group 
Communication

M
1

M
2

M
3

M
1,

 M
2,

 M
3

User Interface User Interface

User Interface User Interface

User Interface User Interface

User Interface User Interface

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

In
pu

t

In
pu

t

In
pu

t

O
ut

pu
t

Figure 7. Symmetric Active/Active High Avail-
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ually, while using a group communication system for total
message order and reliable message delivery to all mem-
bers of the service group. All state changes are performed
in the same order at all services, thus virtual synchrony is
given. External replication avoids modification of existing
code by wrapping a service into a virtually synchronous
environment. Interaction with other services or with the
user is intercepted, totally ordered and reliably delivered to
the service group using a group communication system that
mimics the service interface using separate event handler
routines. Internal replication may yield better throughput
and latency performance, while external replication allows
reusing the same solution for services with the same inter-
face and without modification of existing service code.

Our approach for providing high availability for HPC job
and resource management focuses on external replication.
HPC job and resource management solutions typically sup-
port the Portable Batch System (PBS) [27] service inter-
face. Our solution allows any PBS compliant job and re-
source management system to operate inside the virtually
synchronous environment in a highly available fashion as it
is based on external replication. Our test results (Section 5)
show that the performance impact caused by the external
replication is still in an acceptable range.

Furthermore, HPC job and resource management sys-
tem implementations tend to be rather complex. Our non-
intrusive approach does not modify any service code, i.e.,
the service and the virtually synchronous environment can
be further improved independently.

4 JOSHUA

The JOSHUA (job scheduler for high availability using
active replication) solution is a generic approach for offer-
ing symmetric active/active high availability for HPC job
and resource management services with a PBS compliant
service interface. It represents a virtually synchronous en-
vironment using external replication based on the PBS ser-
vice interface (Figure 8) providing continuous availability
without any interruption of service and without any loss of
state.

Conceptually, the JOSHUA software architecture (Fig-
ure 9) consists of three major parts: a server process
(joshua) running on each head node, a set of control com-
mands (jsub, jdel, and jstat) reflecting PBS compliant be-
havior to the user, and a set of scripts (jmutex and jdone) to
perform a distributed mutual exclusion during job launch.
Furthermore, JOSHUA relies on the Transis [9, 40] group
communication system with its extended virtual synchrony
implementation [24] for reliable, totally ordered message
delivery.

We denote that JOSHUA does not provide a control com-
mand for signaling an executing batch job (qsig equivalent)
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Figure 8. Symmetric Active/Active High Avail-
ability Architecture of the JOSHUA solution
for HPC Job and Resource Management

libjutils
• message and logging facilities
• i/o, lists and misc

libconfuse
• configuration file parser

libtranis
• communication facilities
• event driven programming interface

joshua
(server process)

jcmd
• jsub (submission)
• jstat (status info)
• jdel (deletion)

jmutex
• jmutex (get mutex)
• jdone (release mutex)

libraries programs

Figure 9. Individual Software Components of
the JOSHUA solution for highly available HPC
Job and Resource Management



at the moment as this operation does not appear to change
the state of the HPC job and resource management service.
The original PBS command may be executed independently
of JOSHUA.

Our proof-of-concept implementation prototype, which
has been implemented as part of a Master’s thesis [41], is
based on the PBS compliant TORQUE [39] HPC job and
resource management system that employs the TORQUE
PBS server together with the Maui [22] scheduler on each
active head node and a set of PBS mom servers on compute
nodes.

Each PBS mom server is capable of communicating
to each TORQUE PBS server on every active head node
(TORQUE v2.0p1 feature), which allows the reuse of PBS
mom servers. However, this is not a requirement of the
JOSHUA solution. Dedicated PBS mom servers may be
used for each TORQUE PBS server instance. The Maui
scheduling policy is set to FIFO (default) to produce deter-
ministic scheduling behavior on all active head nodes. Fur-
thermore, Maui is configured to give each job exclusive ac-
cess to our test cluster to produce deterministic allocation
behavior. This restriction may be lifted in the future if de-
terministic allocation behavior can be assured.

During normal operation, the JOSHUA control com-
mands (jsub, jdel, and jstat) perform job submission, dele-
tion and statistics retrieval by connecting to the JOSHUA
server group, issuing the respective command (qsub, qdel,
and qstat) locally at all active head nodes, and relaying the
output back to the user. Fundamentally, the JOSHUA con-
trol commands and server act in concert as an interceptor
for PBS user commands to provide global ordering of user
input for virtual synchrony on all active head nodes. The
JOSHUA control commands may be invoked on any of the
active head nodes or from a separate login node as they con-
tact the JOSHUA server group via the network. They may
even replace the original PBS commands in the user context
using a shell alias (e.g. ‘alias qsub=jsub’) in order
to offer 100% PBS service interface compliance.

Once a submitted job is first in the PBS TORQUE job
queue and there is no other job currently running, each PBS
TORQUE server connects to a PBS mom server on the com-
pute nodes to start the job. The JOSHUA scripts are part of
the job start prologue and perform a distributed mutual ex-
clusion using the Transis group communication system to
ensure that the job gets started only once, and to emulate the
job start for all other attempts for this particular job. Once
the job has finished, the distributed mutual exclusion is re-
leased and all PBS TORQUE servers receive the respective
job statistics report.

Upon failure of an active head node, the Transis group
communication system informs all JOSHUA servers to ex-
clude the failed head node from any further communication.
The PBS mom servers simply ignore the failed head node

when sending job statistics reports, while the distributed
mutual exclusion performed by the JOSHUA scripts relies
on the Transis group membership management for correct-
ness. There is no failover necessary as the healthy active
head nodes continue to provide the service and the system
parts on the compute node are able to adapt. Since the Tran-
sis group communication system is able to deal with multi-
ple simultaneous failures in the same way it deals with mul-
tiple sequential failures, continuous HPC job and resource
management service availability is provided transparently
as long as one head node survives.

Head node failures degrade the overall availability of the
system by reducing the number of redundant components
(Figure 12 in Section 5). Replacement of failed head nodes
or of head nodes that are about to fail allows to sustain and
guarantee a certain availability. The JOSHUA solution per-
mits head nodes to join and leave using the Transis group
communication system for coordination. Leaving the active
service group is actually handled as a forced failure by caus-
ing the JOSHUA server to shutdown via a signal. Joining
the active service group involves copying the current state
of an active service over to the joining head node.

The current JOSHUA/TORQUE proof-of-concept pro-
totype implementation uses configuration file modification
and user command (message) replay to copy the state of one
PBS TORQUE server over to another. This is due to the fact
that PBS TORQUE does not provide an easy solution for
starting up a replica on a system with a different host name
and IP address. As a result, we were also unable to provide
the capability of holding and releasing jobs as the user com-
mand replay causes inconsistencies in the job queue of the
joining PBS TORQUE server when holding jobs. Future
work will concentrate on using a unified and location inde-
pendent PBS job and resource management state descrip-
tion, e.g., the Scalable System Software [5, 32] interface
specification.

5 Test Results

The JOSHUA/TORQUE proof-of-concept prototype im-
plementation has been deployed on a small dedicated Linux
test cluster environment using up to 4 head nodes and 2
compute nodes in various combinations for functional and
performance testing. Individual nodes contained dual Intel
Pentium III (Katmai) 450MHz processors with 512 MB of
memory and 8 GB of disk space, and were connected via
a single Fast Ethernet (100MBit/s full duplex) hub. Debian
GNU/Linux 3.1 (sarge) has been used as operating system,
while Transis v1.03, TORQUE v2.0p5, and Maui v3.2.6p13
were used in conjunction with JOSHUA v0.1. Failures were
simulated by unplugging network cables and by forcibly
shutting down individual processes.

Extensive functional testing revealed correct behavior



System # Latency Overhead
TORQUE 1 98ms
JOSHUA/TORQUE 1 134ms 36ms / 37%
JOSHUA/TORQUE 2 265ms 158ms /161%
JOSHUA/TORQUE 3 304ms 206ms /210%
JOSHUA/TORQUE 4 349ms 251ms /256%

Figure 10. Job Submission Latency Compar-
ison of Single vs. Multiple Head Node HPC
Job and Resource Management

during normal system operation and in case of single and
multiple simultaneous failures with two exceptions (see
next paragraph). Head nodes were able to join the service
group, leave it voluntary, and fail, while job and resource
management state was maintained consistently at all head
nodes and continuous service was provided to applications
and to users.

However, after 3-5 days of excessive operation with up-
to hundreds of job submissions a minute Transis crashed
and needed to be restarted. While the reason of this behav-
ior is still under investigation, we suspect incorrect memory
allocation/deallocation of Transis to be the primary cause.
A more stable group communication system will be used in
the future. Furthermore, the PBS mom servers did not sim-
ply ignore a failed head node, but rather kept the current job
in running status until it returned to service. This deficiency
has been communicated to the TORQUE developers and we
expect a fix in the near future. Both of these issues are the
major reasons why the JOSHUA solution has not yet been
deployed on production HPC environments.

Furthermore, the work presented in this paper focuses
only on head node high availability. The PBS mom server
and the JOSHUA scripts run on compute nodes. The
JOSHUA solution is not capable of fully tolerating failures
of compute nodes running the PBS mom server. This is
due to the fact that the currently running application may
loose its parent process and/or a PBS TORQUE server may
loose the PBS mom server it currently communicates with.
A solution for this problem was outside the scope of this
research project, but will be targeted in the future.

The JOSHUA/TORQUE proof-of-concept prototype im-
plementation showed a comparable latency and through-
put performance. The job submission latency overhead
(Figure 10) introduced by network communication be-
tween the JOSHUA commands, the Transis group com-
munication system and the JOSHUA server was in an ac-
ceptable range. The latency overhead between TORQUE
and JOSHUA/TORQUE on a single head node (37%)
can be attributed to communication on the same node,
while the significant latency overhead increase between
JOSHUA/TORQUE on a single and on two head nodes

System # 10 Jobs 50 Jobs 100 Jobs
TORQUE 1 0.93s 4.95s 10.18s
JOSHUA/TORQUE 1 1.32s 6.48s 14.08s
JOSHUA/TORQUE 2 2.68s 13.09s 26.37s
JOSHUA/TORQUE 3 2.93s 15.91s 30.03s
JOSHUA/TORQUE 4 3.62s 17.65s 33.32s

Figure 11. Job Submission Throughput Com-
parison of Single vs. Multiple Head Node HPC
Job and Resource Management

(439%) can be explained by off-node communication.
Overall a latency overhead of only 250ms for a 4 head node
system is still acceptable for any HPC system.

The job submission throughput overhead (Figure 11) re-
flected similar characteristics. Considering high through-
put HPC scenarios, such as in computational biology or on-
demand cluster computing, adding 100 jobs to the job queue
in 33s for a 4 head node system is also an acceptable trade-
off. Furthermore, we have to point out that developers of
HPC job and resource management solutions have acknowl-
edged throughput deficiencies of their systems for scenarios
of submitting a large number of jobs at once. One already
deployed solution allows a command line job submission to
contain a number of individual jobs.

The JOSHUA solution needs to be deployed on a
production-type HPC environment and respective reliabil-
ity, availability and serviceability (RAS) metrics have to be
recorded in order to measure its true availability impact.
However, the JOSHUA solution is not yet mature enough
and RAS metrics in a HPC environment are not well de-
fined.

A theoretical availability analysis of the JOSHUA solu-
tion can be performed based on availability (Anode), mean
time to failure (MTTFnode), and mean time to restore
(MTTRnode) of an individual head node (Equation 1).
The overall service availability (Aservice) can be calcu-
lated based on parallel redundancy (Equation 2), since the
JOSHUA solution provides continuous availability without
interruption, i.e., without increasing MTTRnode and with-
out introducing an additional system-wide MTTR. The
estimated service downtime per year (tservice down) of the
JOSHUA solution directly depends on its service availabil-
ity (Aservice) and relates to the event of all head nodes being
down at the same time (Equation 3).

Anode =
MTTFnode

MTTFnode + MTTRnode
(1)

Aservice = 1− (1−Anode)number of nodes (2)

tservice down = 8760 · (1−Aservice) (3)



# Availability Nines Downtime/Year
1 98.6% 1 5d 4h 21min
2 99.98% 3 1h 45min
3 99.9997% 5 1min 30s
4 99.999996% 7 1s

(Based on MTTF=5000h and MTTR=72h)

Figure 12. Availability/Downtime Comparison
of Single vs. Multiple Head Node HPC Job
and Resource Management

Using a rather low MTTF of 5000 hours and a MTTR of
72 hours for an individual head node, the expected down-
time of a single head node is over 5 days within a year
(Figure 12). Deploying the JOSHUA solution on two head
nodes reduces the annual downtime to only 1 hour and 45
minutes with a latency overhead of only 158 milliseconds.
Adding another head node decreases the downtime to 1 1/2
minutes with a latency overhead of 206 milliseconds. Fi-
nally, a 4 head node solution offers an availability of 7 nines
with an annual downtime of 1 second and a still acceptable
latency overhead of 251 milliseconds.

This availability analysis shows that the symmetric ac-
tive/active high availability for HPC job and resource man-
agement provided by the developed JOSHUA solution can
provide continuous availability with an acceptable perfor-
mance trade-off.

However, this analysis does not show the impact of cor-
related failures, such as caused by overheating of a rack
or computer room. The deployment of multiple redundant
head nodes also needs to take into account these location
dependent failure causes. Furthermore, an availability of 7
nines as provided by 4 active head nodes may not be a re-
alistic target for a single HPC system as disaster scenarios
(flood, hurricane, tornado, and terrorist attack) are not con-
sidered.

6 Related Work

Past research and development efforts in high availabil-
ity for HPC system services primarily focused on the ac-
tive/standby model. Most solutions experience an inter-
ruption of service and a loss of service state during a
failover. For example, HA-OSCAR [12, 17, 18, 21] and
SLURM [34] provide active/standby solutions for the HPC
job and resource management system in a warm-standby
fashion, i.e., requiring applications to restart after a failover
of 3-5 seconds. However, PBSPro for the Cray XT3 [28]
offers a hot-standby solution with transparent failover.

Earlier research of our teams at Oak Ridge National Lab-
oratory (ORNL) and Louisiana Tech University focused on

an asymmetric active/active solution [20] for HPC job and
resource management in a high-throughput computing sce-
nario.

Ongoing work at ORNL, Louisiana Tech University, and
Tennessee Tech University focuses on developing symmet-
ric active/active high availability support for other exist-
ing HPC system services [14], such as the PVFS metadata
server [29].

Further related past and ongoing research at ORNL in
collaboration with North Carolina State University deals
with advanced group communication algorithms [8, 13],
flexible modular high availability frameworks [11, 12], and
support for scalable fault tolerance on compute nodes [12,
42].

Other related research also includes operating system ex-
tensions to support high availability for cluster computing,
such as the OpenAIS effort, and highly available runtime
environments for distributed heterogeneous computing, like
Harness.

OpenAIS [26] is an implementation of the Service Avail-
ability Forums [33] API specification for cluster high avail-
ability. It consists of an Availability Management Frame-
work (AMF), Cluster Membership (CLM), Checkpointing
(CKPT), Event (EVT) notification, Messaging (MSG), and
Distributed Locks (DLOCK). Recently, the OpenAIS effort
moved towards using a process group communication sys-
tem for distributed locks and membership management.

Harness [16, 19, 38] is a pluggable heterogeneous envi-
ronment for distributed scientific computing. Conceptually,
it consists of two major parts: a runtime environment (RTE)
and a set of plug-in software modules. While the RTE pro-
vides only basic functions, plug-ins may provide a wide va-
riety of services, such as messaging, scientific algorithms
and resource management. Multiple RTE instances can be
aggregated into a highly available Distributed Virtual Ma-
chine (DVM) using distributed control [13] for replication.

Further related work also includes recent research in
practical Byzantine fault tolerance for networked ser-
vices [23, 31]. Solutions tolerating Byzantine failures are
able to guarantee correctness even if a single faulty or ma-
licious service produces false output. However, they are
even more complex and the existence of Byzantine failures
in production HPC environments has not yet been verified.

Lastly, there is a plethora of past research on process
group communication algorithms and systems [6, 7] deal-
ing with various group messaging semantics, correctness
proofs, and efficient implementations for different deploy-
ment scenarios. While our work is based on Transis, many
others, such as Ensemble [3, 15] and Spread [1, 2, 35], ex-
ist and are candidates to replace Transis in order to improve
stability. However, any replacement needs to be able to op-
erate in an HPC environment and deal with its restrictions,
such as the lack of support for certain programming lan-



guages and runtime environments, e.g., Java and OCaml.

7 Conclusion

We presented the JOSHUA solution as a generic ap-
proach for providing symmetric active/active replication
for highly available HPC job and resource management.
JOSHUA provides a virtually synchronous environment us-
ing external replication based on the PBS service interface
for continuous availability without any interruption of ser-
vice and without any loss of state.

We gave a short overview of models for providing
service-level high availability and outlined the features of
the symmetric active/active replication technique JOSHUA
is based on. We provided details about the proof-of-concept
prototype implementation, which relies on TORQUE and
Maui for HPC job and resource management and on Tran-
sis for group communication. Further implementation de-
tails have been published in a Master’s thesis [41].

We presented functional and performance test results as
well as a theoretical availability analysis analysis. We were
able to show that continuous availability of the HPC job
and resource management service can be provided without
interruption and with an acceptable performance trade-off
using the JOSHUA solution.

Future work will focus on improving JOSHUA for de-
ployment in production HPC environments as well as pro-
viding input to HPC system service developers to enable
further production-type high availability solutions. Further-
more, we will continue our effort in developing symmet-
ric active/active high availability support for other existing
HPC system services.

The experience gained with the design and development
of JOSHUA has helped us to understand advanced high
availability concepts, their practical application to the HPC
world, and their pitfalls when misapplied. It is our hope
that this work also provides an educational benefit for other
developers of high availability solutions.
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