Effects of Virtualization on a Scientific Application
Running a Hyperspectral Radiative Transfer Code on Virtual Machines

Anand Tikotekar, Geoffroy Vallée,
Thomas Naughton, Hong Ong,
Christian Engelmann & Stephen L. Scott

Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN, USA.

Abstract

The topic of system-level virtualization has recently begu
to receive interest for high performance computing (HPC).
This is in part due to the isolation and encapsulation offere
by the virtual machine. These traits enable applications to
customize their environments and maintain consistent soft
ware configurations in their virtual domains. Additionally
there are mechanisms that can be used for fault toleranc
like live virtual machine migration. Given these attraetiv
benefits to virtualization, a fundamental question arises;
does this effect my scientific applicatiol2 use this as the
premise for our paper and observe a real-world scientific
code running on a Xen virtual machine. We studied the ef-
fects of running a radiative transfer simulatidgtydrolight,

on a virtual machine. We discuss our methodology and re-
port observations regarding the usage of virtualizatiot wi
this application.

1. Introduction

Virtualization is being used in commercial settings fovser
consolidation. Virtual machines enable applications to ru
in hosted, non-native environments which can offset ihitia

* ORNL's work was supported by the U.S. Department of Energgen
Contract DE-AC05-000R22725.

T This research was supported in part by an appointment to Belépart-
ment of Energy (DOE) Higher Education Research Experiefid&ERE)

for Faculty at the Oak Ridge National Laboratory (ORNL) adistered by
the Oak Ridge Institute for Science and Education. A. MpRilalso thanks
Budhendra L. Bhaduri and Eddie A. Bright, Computationak8ces & En-
gineering Division, ORNL, for their support.

Copyright 2008 Association for Computing Machinery. ACMcaowledges that this
contribution was authored or co-authored by a contractoaffiiate of the U.S.
Government. As such, the Government retains a nonexclusiyalty-free right to
publish or reproduce this article, or to allow others to dofspGovernment purposes
only.

2nd Workshop on System-level Virtualization for High Penfance Comput-
ing (HPCVirt'08) 31 March 2008, Glasgow, Scotland.

Copyright © 2008 ACM 978-1-60558-120-0.. . $5.00

Anthony M. Filippif

Department of Geography
Texas A&M University
College Station, TX, USA.

porting issues to new platforms or provide a basis for re-
search testbeds. Recently there has been increasingsintere
to use virtualization in the area of high-performance cotmpu
ing (HPC), in part, to provide consistent and/or customizab
operating environments (3; 5; 8; 16; 17). Additionally,rthe

is interest in leveraging virtualization to address issofs
fault tolerance in HPC by making use of techniques like live

dnigration of virtual machines (6; 13).

These interesting capabilities and their use with HPC are
often discussed from a strictly systems perspective, aften
ing synthetic benchmarks to display the overheads of Mirtua
machines. Therefore, the developers of scientific codes mus
rely on synthetic metrics in order to gauge the costs of virtu
alization.

In this paper we investigate the use of virtual machines
for a real-world scientific application. The intent being to
provide some insight for scientists interested in emplgyin
virtualization for their research. We discuss our methedol
ogy and present observations from running a hyperspectral
radiative transfer code on both native Linux and Xen virtual
machines (1).

Background

The application Hydrolight, used in our experimentation
was selected based on prior work developing a set of tools,
HydroHPCGC for running the code on a cluster of worksta-
tions (4). The main objective was to decrease the overhead
involved in creating input parameters for the simulations,
and to reduce the wall clock time for the sequential appli-
cation by performing runs in a batch parallel fashion.

The Hydrolight (Sequoia Scientific, Inc.) radiative-tréars
numerical model (9; 10) solves the radiative transfer equa-
tion to determine the radiance distribution within and iagv
a water body. Spectral radiance is generated as a function of
depth within the water column, wavelength, and direction.
Other quantities can be derived from the radiance, such as
irradiance and reflectance values (15). For instance, Hydro

light can be utilized to calculate spectral remote-sensing Distribution of wall-clock imes for 2600-run experiments (natve)
reflectance, given water-column inherent optical properti o
(IOPs), as well as various other ocean and atmosphericquan- o}
tities.

Hydrolight has a variety of uses, including primary pro-
ductivity and underwater visibility studies; remote-sags
mission planning and algorithm evaluation; modeling centr
butions to remote sensor signals; and enhancing understand
ing of physical processes (15).

The Hydrolight code employs invariantimbedding, which, 200 -
relative to other methods (e.g., Monte Carlo simulation or
discrete ordinates), is very fast. Unlike Monte Carlo meth-
ods, where computation time exponentially increases with ® " Omins 1imins 2mins 3mins 4mins Smins 6mins 7mins Gmins 9mins 1omins
depth, Hydrolight compute time depends linearly on the Experment walrcock oroups (G0see nienald)
depth to which radiance is generated. Also, in contrast with Figure 1. Distribution of wall-clock times for the 2,600
discrete ordinates, invariantimbedding is nearly indeless ~ €xperiments (2600-run) run natively under Linux.
of IOP depth variance (9; 15). However, if a large number
of runs is required, such as with remote-sensing inversion

T T T
Experiment count

600 [

500 |

400 [

300 [

Number of experiments (count)

100

model development, such an undertaking is computationally?"2 Tools

expensive (11). Our goal was to study the costs of running these simulations
on virtual machines. To try and better understand the exe-

3. Methodology cution of the application on both the native and virtualized

systems we chose to use the Linux system proftétro-
We ran the Hydrolight simulations on both native and vir- file (14). This enabled us to use a similar approach for gather-
tual machines in order to better understand the overheads ofng runtime metrics for the entire system for both platforms
virtualization. Our approach was to use the widely avaélabl The cluster used for our testing has identical hardware on
OProfile tool to investigate the performance across both pla 31| compute nodes: 2Ghz Pentium IV, 768MB of memory
forms. This section describes the simulations and toold use and 100Mb FastEthernet. The nodes were running Fedora

in our experimentation, which is discussed in Section 4. Core 5 (FC5) and the same kernel release version 2.6.16.33
. . was used for the native and para-virtualized instances of
3.1 Simulations Linux. We used the Xen hypervisor version 3.0.4 for our

In the previous work we used the application to perform testing, which has built-in support for OProfile. The system
2,600 simulations in parallel on a small cluster of worksta- were configured with OProfile version 0.9.1 and the appli-
tions to generate training data for an artificial neural net- cation was compiled using the GNU Fortran compiler (g77)
work (4). Such pseudo-data can also be used in develop-version 3.2.3.

ing various other types of remote-sensing inversion models

e.g., (11). 3.3 Run Parameters

a given set of parameters, which are provided at startup m%dﬁé%% fsgrotvr\]/g :fggﬁg%.sw:s_actual OProfile command

via an input file. The wall-clock time to run these 2,600

. lati . lel . v 3 h . opcontrol --start --separate=kernel \
simulations In para e_ was apprQX|mat_e Yy ours using --event =GLOBAL_POWER_EVENTS: 100000: 1: 1: 1 \
42 compute nodes natively. The simulations themselves are --event = TLB_REFERENCE: 100000: 2: 1: 1 \
det inistic but th ll-clock ti f . t --event =I NSTR_RETI RED: 100000: 1: 1: 1 \

eterministic but the wall-clock time from our experiments - event =MACH NE_CLEAR 100000: 1+ 1: 1 \
vary based upon the input parameters, e.g., depth, ranging --vnlinux=/opt/vminux_l ocation/ vri i nux \

from 1 minute to 10 minutes. Since a simulation with the This gathered the following OProfile samples but we only
same parameters takes roughly the same'tineeselected a Studied the first two metrics because we wanted to focus on

) . . . the actual time spent by the application and its relatignshi
single experiment from the group with the longest running \uith the ITLB miss rate.
time, see Figure 1. This reduces the time to perform the))))

. . . 1. GLOBAL_POWER _EVENTS: tine during which processor is not

experiments but the analysis should be applicable for the ™ siopped
Iarger set of runs. A|SO, this greatly simplifies the post- | TLB_REFERENCE: translations using the instruction translation

processing and analysis when running the experiment on the ! ookaside buffer; 0x02 ITLB i ss

target platforms_ 3. INSTR_RETIRE: retired instructions; 0x0l1 count non-bogus
instructions which are not tagged

1 N . L 4, MACHI NE_CLEAR: cycles with entire machi ne pipeline cleared;
Any fluctuations should be due to system “jitter” and not theleation 0x01 count a portion of cycles the machine is cleared

itself. for any cause

The OProfile output provides a table of samples gatheredTo try and give some indication of the cost entirely due to
from the system over a period of time. The table is sorted in virtualization we include the times for running the applica
decreasing order with the event listed for eagmbolname tion on the hostOS itself. In this context, the differences b
and its associated executabteageand caller &pplication). tween native and hostOS are entirely due to virtualization
For example, the following shows excerpts of an OProfile but are not identical to running the application in an unpriv
listing taken from a run of Hydrolightnfai ncode. exe) ileged VM (domUu).
on a native Linux system:

4. Experimentation

sanpl es i nage name app nane synbol nane

9877360 mincode. exe mmincode.exe rhotau_ In this section, we describe our experimental results. As ex
140760 libm2.4.so maincode.exe cos plained in Section 3, we selected the longest running exper-
10129 vnl i nux mai ncode. exe i nit_pntnr iment from our set of 2,600 simulations. We also mention

some preliminary numbers from running all 2,600 simula-
The output from OProfile is system-wide, therefore in or- tion on a cluster using virtualization.

der for us to isolate the data directly associated with our ~ We executed the selected simulation (experiment) 20
application we performed some basic post-processing totimes (runs) over three platforms: Native, HostOS and vir-
extract these quantities. We applied a set of basic heuris-tual machine (VM). Figures 2-7 on page 5 show the break-
tics to classify the OProfile data for the native Linux and down of CPU as well as ITLB samples from OProfile on the
Xen system into time spent running either uséys() or respective platforms for the individual runs. As described
system T,,) code. TheT, s and Ty, classes were also Section 3, samples from OProfile are based on a frequency of
tagged to give further indication as to where the costs 100,000 clock cycles. OProfile extracts CPU samples from
were to be attributed. These heuristic classifications were G_.OBAL_POWER_EVENTSevents, and ITLB samples from
based upon the contents of the columns labetexhe name | TLB_REFERENCE events. To summarize, greater number
and app namewith a synopsis shown in Table 1. Note, a of samples indicates more time spent in the respective code
few special cases were also tagged in the OProfile output:symbol for a particular event.
(i) “anon(XXXX...)" entries where no symbol information

is accessible, and (ii) the costs for OProfile itself. Platform cpu cpu | % b | tb | %
avg std std avg | std | std
|_imagename | appname | TimeClass | Native | 12687854] 31740] 0.25 || 3007] 32 | 1.06
maincode.exe| maincode.exg§ Tusr (Lusr.app) HostOS | 13162659| 50532| 0.38 || 1296 | 37 | 2.85
lib* maincode.exg s, (Tusr.iiv) VM 13156140| 84812| 0.64 || 1299 | 39 | 3.00
Id-* maincode.exe TusT (Tusr.lib) iati
- * : Table 2. Average and standard deviations for user level
oprofiled Tsys Lsys.prof) - i
- * (Tysr) CPU and ITLB miss samples from one experi-
oprofile.ko Toys Tsys.prot) C(fil 20
* ko maincode.exe Toys (Tsys.o0s) ment (file) over 20 runs.
vmlinux maincode.ex8 Tsys (Tsys.os)
Xen-syms maincode.exg Tsys (Tsys.omm) Platform cpu cpu % tib tlb %
anon(XXXX...) | maincode.exd untrackable avg std std || avg | std | std
: — - . Native 92984 | 16908 | 18.18| 69 10 | 14.49
lﬁg\';nlgggsi'szcsivﬁigggzurgztt'gﬁi2‘)2":16‘:;51OPrOf"e data |65 | 823407| 21270 2.58 | 6475 123 | 1.89
9 g anything. VM | 792183 23082| 2.91 || 6340| 134 | 2.11

~ Our post-processing technique has two known limita- Taple 3. Average and standard deviations for system level
tions. Firstly, we are not able to completely accountfgy; (T.,s) CPU and ITLB miss samples from one experi-

costs associated with the hostOS (dom0) when running thement (file) over 20 runs. Note, the VMBE,,, only contains
application in the VM (domU). This is because there is N0 gomy portion.

way to correlate the costs in the hostOS (dom0) that are spe-

cific to our application (in VM), i.e., the application con- As can be seen from Figures 2-7, the individual runs
text in the VM is not visible from the hostOS when OPro- are quite consistent. However, a few things stand out.,First
file reports an event. Secondly, we do not account for somethe standard deviation on the Native platform, for system
auxiliary overheads caused by Xen, e.g., Pytkend dae- CPU samples is quite high across 20 runs as reflected by
mon and associated system/shell invocations. We noticedTable 3 with a value of 18.18%. Second, on the Native
events likenodul ecrd which we believe are related to the platform, the standard deviation for system ITLB samples
use of Xen but are not obviously tied from the output dis- is also high (14.49%) as shown by Table 3. Lastly, when
played by OProfile. Therefore, the accounting for a virtual contrasting CPU samples between Native and VM, based on
machine’sl,,, is low as the hostOS portion is notincluded. Table 2 the variance of code running in user mode is 0.39%

lower on native and based on Table 3 is 15.27% higher when
running in system mode. The variability for native’s system
mode may be related to our accounting techniques as in
some instances thede_out swsymbol was not associated

to the “maincode.exe” application but instead “vmlinuxtan
therefore the samples were not included. Note, this behavio
was unique to 2-3 nodes in the test cluster.

The individual runs furnished us with an opportunity to
study the variability of similar runs. We would have expelcte
such variability from virtual environments due to the addi-
tional complexities added by the virtualization layer. How
ever, the variability in the wall clock times (Table 4) of the
same application is less in native than virtual environrment
One explanation for this is less variability in the user ext
for the native as compared to the virtual environments.

Figures 8 and 9 present a summary view of the applica-
tion for the different platforms. The values in these graphs
are based upon averages taken from the individual runs (Fig-
ures 2-7). We observe from Figures 8 and 9 that Native out-
performs the VM. Specifically, the VM runs 11% slower
than Native, with VMs slightly better than the HostOS. Yet,
the wall-clock times shown in Table 4 show that running the
application on the HostOS, on average, performs marginally
better than running the application on the VM. The reason
behind this apparent paradox is that, with OProfile in its cur
rent form, it is unclear to us how to fully account for the sys-
tem portion of an application running in the VM (domU).
This is due to the fact that when working with OProfile the
samples are split into two domains, namely the VM proper
(domU) and underlying hostOS (dom0). Since the applica-
tion is only present in the VM (domU) there are no appar-
ent means to systematically determine the application spe-
cific contributions forf’s,, that lie in the underlying hostOS
(domO) portion. For example, the I/O operations managed by
the hostOS (dom0) for a VM (domU) would be part of the
data in the “domQ” OPrdfile file. This shortcoming is only
applicable to OProfile samples related to system code for a
VM.

| Platform | Avg | Min | Max]

Native | 692.25| 690 | 697
HostOS | 771.15| 761 | 782
VM 772.05| 763 | 790

Table 4. Wall clock times (seconds) for one experi-
ment (file) over 20 runs for each platform: Native, HostOS
and Virtual Machine.

Further, on all three platforms most of the CPU time is
spent in the user context. However, for ITLB misses, the

case is not so obvious. On Native, the user context accounts

for most of the ITLB misses, but this is not the case for the
HostOS or VM. On the HostOS and VM the system side
accounts for most of the ITLB misses.

To correlate and quantify Figures 8 and 9, we refer our
reader to Tables 5 and 6. Table 5 shows the comparison
between Native and VM for CPU ticks.

Table 5 shows that the ratio of user code CPU samples
between native and virtual is 0.96, implying that user code
is performing slightly faster on native than on virtual. How
ever, Table 6 shows that the ratio of user code ITLB miss
samples between native and virtual is 2.31, implying that
there are much more ITLB misses on native when running
user code. This apparent counter behavior with ITLB misses
on native is challenged in Table 8 in Section 6.

| Platform relation | Average |
N:V Tyor ! Tysr 0.96
NN Tousr [Toys | 136
VN Tus I Tsys | 166
NV TypslTsys | 011

Table 5. Average of one experiment (file) over 20 runs
showing the ratios for user and system level CPU time sam-
ples, where N=native and V=VM. Not#},; only contains
domuU portion.

| Platform relation | Average |

NV T,o/Tu., | 2.31
NN T,o/Teys | 43.27
VN T,o/Te. | 0.20
NV T.,./T.,. | 0.010

Table 6. Average of one experiment (file) over 20 runs
showing the ratios for user and system level ITBL miss sam-
ples, where N=native and V=virtual. Not&;,, only con-
tains domU portion.

Other ratios from Table 5 and 6 are more intuitive. For
example, Table 5 shows that the User to System ratio for
Native is much higher than that of virtual (43.27), support-
ing the fact that system code is more expensive in the virtual
environments. Further, Table 6 shows that the number of Na-
tive ITLB miss samples is higher in user mode as compared
to system mode (43.27), and conversely ITLB miss samples
are higher in system than user mode (0.20) for the virtual
machine.

Lastly, to get a rough estimate of the time to solution
when using virtualization we performed the entire 2,600 ex-
periments on all three platforms: Native, HostOS and VM,
varying the number of available compute nodes. The exe-
cution time$ for running the 2,600 experiments over these
platforms are given in Figure 10. This shows that the differ-
ence in wall-clock time between the native and virtual sys-
tems is roughly 8%. It is unclear why there is a slight dif-

2These numbers were taken without OProfile and on a slightiiieea
cluster configuration where the native kernel version didexactly match
that used for the para-virtualized Linux kernel; but thisi#l using Xen

version 3.0.4

1.4e+07

1.2e+07

1e+07

8e+06

6e+06

cpu samples Count

4e+06

2e+06

CPU samples for 20 native runs: Hydro

Application code
Library code
Other code

4 Linux os code
Hypervisor code

I

e e e e e e o
G 0, G 7,
/21 Oe D9 2 25 06 25 %9 20, ’22 ’)] /)J ’)] ’)] ’)]\5{)]
S P A AAEIACS
Q{g LRLS \,e < 9‘}9\;09’)3’)3’) ’)]’)
OEARPEROMORORRE RS CSCKS

execution platforms

cpu samples Count

3500

3000

2500

2000

1500

1000

500

TLB samples for 20 native runs: Hydro

Application code
Libaray code
Other code

4 Linux os code
Hypervisor code

I

S
N
>
&
>
<
Ve
~

Ry T % %
R R R R R NN
2500 760 150500, %20 %20 %0 00 0 0 00
07@6‘9%%%)\70\)\’:{;\’7\{9% 0 %0 %%,
Loy o X
A R R AR RORORRR)

execution platforms

Figure 2. Breakdown of CPU samples for 20 runs on Na- Figure 5. Breakdown of ITLB miss samples for 20 runs on
Native.

tive.

1.6e+07
1.4e+07
1.2e+07

1le+07

8e+06

cpu samples Count

6e+06

4e+06

2e+06

CPU samples for 20 hostos runs: Hydro

Application code
Libarary code
Other code
Linux os code
Hypervisor code

I

T o o e e e e e 2 %,
G G) e 4
02023 % 2 080520 20 P 2 e e e
R N NN WM X)
VOTY

DRORE RN
v 7YYy

execution platforms

cpu samples Count

9000

8000

7000

6000

5000

4000

3000

2000

1000

TLB samples for 20 Hostos runs: Hydro

Application code
Libaray code

I

4 Other code
Linux os code
Hypervisor code
Gt fe f f f f f f f te t t Y Y % %
G2 G e i S [[e
25 720 2. 6. 25 %00 20 2p Lp Dp L9 25 %0 Lp 29 L9 g 2
%, %, %8, 6‘:69%@%)«0 725 5 g Ko K X5 K0 %,
e sy Doy s
AR A A R A AORORASROR

execution platforms

Figure 3. Breakdown of CPU samples for 20 runs on Hos- Figure 6. Breakdown of ITLB miss samples for 20 runs on
HostOS.

tOS.

15407
1.2e+07
£
3 9e+06
(8]
2
o2
3
£
3
% 6e+06
2
8
3e+06

CPU samples for 20 vm runs: Hydro

Application code
Library code
Other code
Linux os code
Hypervisor code

I

0 2 2 e e P Y P Y Y %
D5 2525 %05 2606 0570 00 27 27 Rr 22;
0 7 5 i I 50,
SRR ORI
VY STIY

execution platforms

cpu samples Count

8000

7000

6000

5000

4000

3000

2000

1000

TLB samples for 20 VM runs: Hydro

Application code
Libaray code
Other code
Linux os code
Hypervisor code

I

execution platforms

Figure 4. Breakdown of CPU samples for 20 runs on VM. Figure 7. Breakdown of ITLB miss samples for 20 runs on
Note, T, only contains domU portion.

VM. Note, T, only contains domU portion.

CPU samples for Hydro across platforms Execution time for Hydrolight (2600-runs)

1.5e+07 300

Application code = T
Libaray code mmm=m xSr:ock LI[I1OLI§ —
other code mm— ; gﬁes‘os f——

linux os code en hos
Hypervisor code === 280 |

1.2e+07

260 [
9e+06 [

240 |

6e+06 220 |

cpu samples Count
Time in Minutes

200 |
3e+06

180

A %% 4,
%, % K4 160

execution platforms Number of Nodes
Figure 8. Average CPU samples using 20 runs for each Figure 10. Execution time for Hydrolight experiments
platform. Note, the VM'sT,,; only contains domU portion. (2600-run) using stock Linux, Xen guestOS and Xen hos-
tOS over a range of compute nodes.

TLB samples for Hydro across platforms
10000

Pt then be able to decide whether to run his/her application on
Hybeniser code. virtual machines.

Authors in (17) study the impact of para-virtualization
on HPC systems and applications. They study many bench-
mark applications including HPCC for a full system evalu-
ation. Their conclusion that para-virtualization, speeifiiy
Xen, does not introduce significant overhead is based on the
performance results of various benchmarks and real world
applications.

While we have a similar objective, our approach goes be-
yond just the performance results, in that we aim to analyze
the various overheads associated with applications when
running in native as well as virtual environments.

Authors in (5) describe a framework for performance
and management overheads in virtual environments. They
specifically study VMM I/O bypass and VM image manage-
ments. For performance evaluation, they study different MP
ference between the hostOS and guestOS, which was not théeSts and parf_;lllel HPC benchmgrks such as HPL z?md NAS.
trend in our other measurements. Their conclusion also concurs with that of a_luthors in (17).
Although the authors in (5) use Xenoprof like we do, they
do not use real world scientific applications.

5. Related Work Work in (2) describes another useful study evaluating vir-
Our work is closely related to (7). Work reported in (7) tual environments for their efficacy to run HPC applications
is one of the first such studies, to the best of our knowl- The authors study Xen and UML as virtual environments
edge, to diagnose the performance overheads in Xen usingvith HPCC as their HPC benchmark applications. The con-
Xenoprof, which they developed, and has been described inclusion in their paper (2) is consistent with the other edat
their paper. We have used a similar methodology but differ work reported here, in that authors credit Xen to perform
in focus and the type of applications evaluated. The authorswith little overhead in HPC context. They however maintain
in (7) focus on networking applications in a VM running that more such analysis and evaluation is required. The work
in uni-processor as well as multi-processor systems. Gur fo in (2) does not describe real world scientific applications,
cus is not just on networking applications, but on real world and their focus is on virtual environments being able to run
scientific applications. While the paper in (7) aims to use HPC applications efficiently.

the information extracted using Xenoprof to uncover bugs The VIVA project at UCSB has developed an enhanced
and channel the information into optimizing Xen, we hope to profiler calledVIProf (12). Their tool extends the system
provide a scientist or an application’s user a view of thpira wide profiler OProfile to support dynamic code segments
plication on virtual machines. We hope that a scientist woul for a language level virtual machine, e.g., Java Virtual Ma-

7500

5000

cpu samples Count

2500

execution platforms

Figure 9. Average ITLB miss samples using 20 runs for
each platform. Note, the VM'9,; only contains domU
portion.

chine (JVM). The modifications enable the profiler to iden- Therefore, as underscored in our conclusion, much more
tify the dynamically compiled code from the JVM image that investigation is needed both to understand the overheads in
is regularly reported as anonymous by OProfile. The tool as virtual environments and accordingly enhance the standard
presented in (12) is specific to a Java virtual machine andtools.

the dynamic code found in such VMs. They mention longer Although, the results mentioned in this section, are not
term goals of working with Xen, which would be more rel- in total accordance with the results mentioned in Section 4,
evant to our efforts with system-level virtualization. $hi we have not been able to identify the root cause for the dif-
work highlights a similar issue as encountered in our anal- ference in overhead behavior of the profiles obtained using
ysis regarding access to inter-domain context for profjling Xenoprof. Therefore, we include it as preliminary data and
e.g., host/guest domains. plan to further investigate the matter in our future work.

6. Future Work 7. Conclusion

We have evidence that, profiles obtained using Xenoprof in In this paper we analyzed a hyperspectral radiative trans-
its current form, can be difficult to interpret. We mentioned fer code, Hydrolight and the overheads associated with
the problem of attributing samples when the privileged do- its use on both native and virtual machines. The wall-
main (domO) is working on behalf of the processes running clock time was approximately 8% more when running
in various unprivileged domains, in Section 4. There is,how on the virtualized system without instrumentation and the
ever, another issue with regards to interference caused byoverhead was close to 11% during the profiled execu-
events that are profiled together. We profiled four events to- tion of an individual simulation. However, the overhead
gether as shown in Section 3, and reported results based omrops to 8% when profiles are obtained for a single event,
the profiles generated using those four events in tandem.e.g, justGLOBAL_POWNER_EVENTS.

While this is an acceptable approach on the native system, Our study was motivated by the fact that there is a grow-
in the virtualized environment the results are not consiste ing interest in using virtualization in HPC environments.
when working with OProfile/Xenoprof. However, adoption by the HPC community is not yet wide

The Table 7 and Table 8, paint a different picture when spread. This is in part due to virtualization overheadscwhi

profiles are obtained for single events — as opposed to multi-may be perceived as too high in an HPC context. Due to

ple events gathered simultaneously. this delay, there is a lack of information regarding the ac-
tual distributions for overheads associated with virtzeli
Avg Avg tion in real-world scientific applications. This is furthem-
Platform User | System plicated by the fact that standard tools are immature irr thei
Native | 12009823| 81559 support for virtualization and work is needed to aid the anal
HostOS | 12781305| 176387 ysis of virtualization. Further, as we showed in Section 6,
VM 12697736| 163400 there is a nontrivial interference caused by different &ven

and thus implies that performance isolation is still a diffic

Table 7. Average number of samples for profiling the single task especially in virtual environments.

eventGLOBAL_POAER_EVENTS, for one experiment (file)

over 10 runs. References
[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hardh T
Avg Avg Harris, Alex Ho, Rolf Neugebauer, lan Pratt, and Andrew
Platform | User | System Warfield. Xen and the art of virtualization. Rroceedings
Native 22 7 of the nineteenth ACM symposium on Operating System s
HostOS | 38 45 Principles (SOSP19pages 164-177. ACM Press, 2003.
VM 38 35 [2] W. Emeneker and D Stanzione. HPC Cluster Readiness of
— . Xen and User Mode Linux. IFEEE International Conference
Table 8. Average number of samples for profiling the single on Cluster ComputingSeptember 2006.
event | TLB_REFERENCE (mi ss_sanpl es), for one [3] Christian Engelmann, Stephen L. Scott, Hong Ong, Geof-
experiment (file) over 10 runs. froy Vallée, and Thomas Naughton. Configurable Virtual-

ized System Environments for High Performance Computing.
The Table 7 and Table 8 show that, although the overhead |, proceedings of the** Workshop on System-level Virtual-

values change between separate (single) and simultaneous jzation for High Performance Computing (HPCVirt'07), held
(multiple) event profiling forGLOBAL_PONER_EVENTS, in conjunction with the ACM EuroSys'QTisbon, Portugal,
(please refer to Table 2 and Table 3 for simultaneous event March 20, 2007.

profiling results) the behavior of the overheads is preserve [4] Anthony M. Filippi, Budhendra L. Bhaduri, Thomas
on the native platform. But the same is not true for virtual Naughton, Amy L. King, and Stephen L. Scott. High-
environments, where we see changes in overhead behavior. performance cluster computing-based approach to hyperspe

tral aquatic radiative transfer modeling(In preparation)
Photogrammetric Engineering & Remote Sensing (PE&RS)
2008.

[5] W. Huang, J. Liu, B. Abali, and D.K. Panda. A Case for
High Performance Computing with Virtual Machines.2@th
ACM International Conference on Supercomputing (ICS '06)
Cairns, Queensland, Australidune 2006.

[6] Wei Huang, Qi Gao, Jiuxing Liu, and Dhabaleswar K. Panda.
High Performance Virtual Machine Migration with RDMA
Over Modern Interconnects. Proceedings of IEEE Cluster
(Cluster'07) IEEE, September 17-20, 2007.

[7] A. Menon, J. R. Santos, Y. Turner, G. Janakiraman, and
W. Zwaenepoe. Diagnosing performance overhead in the xen
virtual machine environment. IRroceedings of the 1st ACM
Conference on Virtual Execution Environmerisne 2005.

[8] Mark F. Mergen, Volkmar Uhlig, Orran Krieger, and Jimi
Xenidis. Virtualization for High-Performance Computing.
SIGOPS Oper. Syst. Re#0(2):8-11, 2006.

[9] Curtis D. Mobley. Light and Water: Radiative Transfer in
Natural Waters Academic Press, San Diego, 1994.

[10] Curtis D. Mobley, Bernard Gentili, Howard R. Gordon,
Zhonghai Jin, George W. Kattawar, Andre Morel, Phillip
Reinersman, Knut Stamnes, and Robert H. Stavn. Comparison
of numerical models for computing underwater light fields.
Applied Optics32(36):7484, 1993.

[11] Curtis D. Mobley, Lydia K. Sundman, Curtiss O. Davisf-Je
frey H. Bowles, Trijntje Valerie Downes, Robert A. Leathers
Marcos J. Montes, William Paul Bissett, David D. R. Kohler,
Ruth Pamela Reid, Eric M. Louchard, and Arthur Glea-
son. Interpretation of hyperspectral remote-sensing @énag
by spectrum matching and look-up tablegpplied Optics
44(17):3576-3592, 2005.

[12] Hussam Mousa, Chandra Krintz, Lamia Youseff, and Rich
Wolski. VIProf: Vertically integrated full-system perfmance
profiler. InProceedings of the Workshop on Next-Generation
Software (NGSMarch 2007. Co-hosted with IPDPS 2007.

[13] Arun Babu Nagarajan, Frank Mueller, Christian Engetma
and Stephen L. Scott. Proactive fault tolerance for HPC with
Xen virtualization. INCS '07: Proceedings of the 21st annual
international conference on Supercomputim@ages 23-32,
New York, NY, USA, 2007. ACM Press.

[14] OProfile: A system-wide profiler for Linux. Available
at: http://oprofile.sourceforge.net. (Last visited: F&I08).

[15] Sequoia Scientific, Inc., Redmond, WA, UStydrolight 4.2
2000.

[16] Geoffroy Vallée, Thomas Naughton, and Stephen L. Scott
System Management Software for Virtual Environments. In
Proceedings of the ACM International Conference on Com-
puting Frontiers (CF 2007)Ischia, Italy, May 7-9, 2007.

[17] Lamia Youseff, Rich Wolski, Brent Gorda, and Chandra
Krintz. Paravirtualization for HPC Systems. I8PA Work-
shop on XEN in HPC Cluster and Grid Computing Environ-
ments (XHPC'06)pages 474-486, December 2006.

