
Effects of Virtualization on a Scientific Application
Running a Hyperspectral Radiative Transfer Code on Virtual Machines

Anand Tikotekar, Geoffroy Vallée,
Thomas Naughton, Hong Ong,

Christian Engelmann & Stephen L. Scott∗

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, TN, USA.

Anthony M. Filippi†

Department of Geography
Texas A&M University

College Station, TX, USA.

Abstract
The topic of system-level virtualization has recently begun
to receive interest for high performance computing (HPC).
This is in part due to the isolation and encapsulation offered
by the virtual machine. These traits enable applications to
customize their environments and maintain consistent soft-
ware configurations in their virtual domains. Additionally,
there are mechanisms that can be used for fault tolerance
like live virtual machine migration. Given these attractive
benefits to virtualization, a fundamental question arises,how
does this effect my scientific application?We use this as the
premise for our paper and observe a real-world scientific
code running on a Xen virtual machine. We studied the ef-
fects of running a radiative transfer simulation,Hydrolight,
on a virtual machine. We discuss our methodology and re-
port observations regarding the usage of virtualization with
this application.

1. Introduction
Virtualization is being used in commercial settings for server
consolidation. Virtual machines enable applications to run
in hosted, non-native environments which can offset initial

∗ ORNL’s work was supported by the U.S. Department of Energy, under
Contract DE-AC05-00OR22725.
† This research was supported in part by an appointment to the U.S. Depart-
ment of Energy (DOE) Higher Education Research Experiences(HERE)
for Faculty at the Oak Ridge National Laboratory (ORNL) administered by
the Oak Ridge Institute for Science and Education. A. M. Filippi also thanks
Budhendra L. Bhaduri and Eddie A. Bright, Computational Sciences & En-
gineering Division, ORNL, for their support.

Copyright 2008 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by a contractor oraffiliate of the U.S.
Government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

2nd Workshop on System-level Virtualization for High Performance Comput-
ing (HPCVirt’08) 31 March 2008, Glasgow, Scotland.
Copyright © 2008 ACM 978-1-60558-120-0. . . $5.00

porting issues to new platforms or provide a basis for re-
search testbeds. Recently there has been increasing interest
to use virtualization in the area of high-performancecomput-
ing (HPC), in part, to provide consistent and/or customizable
operating environments (3; 5; 8; 16; 17). Additionally, there
is interest in leveraging virtualization to address issuesof
fault tolerance in HPC by making use of techniques like live
migration of virtual machines (6; 13).

These interesting capabilities and their use with HPC are
often discussed from a strictly systems perspective, oftenus-
ing synthetic benchmarks to display the overheads of virtual
machines. Therefore, the developers of scientific codes must
rely on synthetic metrics in order to gauge the costs of virtu-
alization.

In this paper we investigate the use of virtual machines
for a real-world scientific application. The intent being to
provide some insight for scientists interested in employing
virtualization for their research. We discuss our methodol-
ogy and present observations from running a hyperspectral
radiative transfer code on both native Linux and Xen virtual
machines (1).

2. Background
The application,Hydrolight, used in our experimentation
was selected based on prior work developing a set of tools,
HydroHPCC, for running the code on a cluster of worksta-
tions (4). The main objective was to decrease the overhead
involved in creating input parameters for the simulations,
and to reduce the wall clock time for the sequential appli-
cation by performing runs in a batch parallel fashion.

The Hydrolight (Sequoia Scientific, Inc.) radiative-transfer
numerical model (9; 10) solves the radiative transfer equa-
tion to determine the radiance distribution within and leaving
a water body. Spectral radiance is generated as a function of
depth within the water column, wavelength, and direction.
Other quantities can be derived from the radiance, such as
irradiance and reflectance values (15). For instance, Hydro-

light can be utilized to calculate spectral remote-sensing
reflectance, given water-column inherent optical properties
(IOPs), as well as various other ocean and atmospheric quan-
tities.

Hydrolight has a variety of uses, including primary pro-
ductivity and underwater visibility studies; remote-sensing
mission planning and algorithm evaluation; modeling contri-
butions to remote sensor signals; and enhancing understand-
ing of physical processes (15).

The Hydrolight code employs invariant imbedding, which,
relative to other methods (e.g., Monte Carlo simulation or
discrete ordinates), is very fast. Unlike Monte Carlo meth-
ods, where computation time exponentially increases with
depth, Hydrolight compute time depends linearly on the
depth to which radiance is generated. Also, in contrast with
discrete ordinates, invariant imbedding is nearly independent
of IOP depth variance (9; 15). However, if a large number
of runs is required, such as with remote-sensing inversion
model development, such an undertaking is computationally
expensive (11).

3. Methodology
We ran the Hydrolight simulations on both native and vir-
tual machines in order to better understand the overheads of
virtualization. Our approach was to use the widely available
OProfile tool to investigate the performance across both plat-
forms. This section describes the simulations and tools used
in our experimentation, which is discussed in Section 4.

3.1 Simulations

In the previous work we used the application to perform
2,600 simulations in parallel on a small cluster of worksta-
tions to generate training data for an artificial neural net-
work (4). Such pseudo-data can also be used in develop-
ing various other types of remote-sensing inversion models,
e.g., (11).

Each simulation is a single execution of the model for
a given set of parameters, which are provided at startup
via an input file. The wall-clock time to run these 2,600
simulations in parallel was approximately 3 hours using
42 compute nodes natively. The simulations themselves are
deterministic but the wall-clock time from our experiments
vary based upon the input parameters, e.g., depth, ranging
from 1 minute to 10 minutes. Since a simulation with the
same parameters takes roughly the same time1 we selected a
single experiment from the group with the longest running
time, see Figure 1. This reduces the time to perform the
experiments but the analysis should be applicable for the
larger set of runs. Also, this greatly simplifies the post-
processing and analysis when running the experiment on the
target platforms.

1 Any fluctuations should be due to system “jitter” and not the application
itself.

 0

 100

 200

 300

 400

 500

 600

 700

 800

0mins 1mins 2mins 3mins 4mins 5mins 6mins 7mins 8mins 9mins 10mins

N
um

be
r

of
 e

xp
er

im
en

ts
 (

co
un

t)

Experiment wall-clock groups (60sec intervals)

Distribution of wall-clock times for 2600-run experiments (native)

Experiment count

Figure 1. Distribution of wall-clock times for the 2,600
experiments (2600-run) run natively under Linux.

3.2 Tools

Our goal was to study the costs of running these simulations
on virtual machines. To try and better understand the exe-
cution of the application on both the native and virtualized
systems we chose to use the Linux system profiler,OPro-
file (14). This enabled us to use a similar approach for gather-
ing runtime metrics for the entire system for both platforms.

The cluster used for our testing has identical hardware on
all compute nodes: 2Ghz Pentium IV, 768MB of memory
and 100Mb FastEthernet. The nodes were running Fedora
Core 5 (FC5) and the same kernel release version 2.6.16.33
was used for the native and para-virtualized instances of
Linux. We used the Xen hypervisor version 3.0.4 for our
testing, which has built-in support for OProfile. The systems
were configured with OProfile version 0.9.1 and the appli-
cation was compiled using the GNU Fortran compiler (g77)
version 3.2.3.

3.3 Run Parameters
The OProfile samples were taken with kernel and kernel
modules shown separately. The actual OProfile command
line used for the experiments was:

opcontrol --start --separate=kernel \
--event=GLOBAL_POWER_EVENTS:100000:1:1:1 \
--event=ITLB_REFERENCE:100000:2:1:1 \
--event=INSTR_RETIRED:100000:1:1:1 \
--event=MACHINE_CLEAR:100000:1:1:1 \
--vmlinux=/opt/vmlinux_location/vmlinux \

This gathered the following OProfile samples but we only
studied the first two metrics because we wanted to focus on
the actual time spent by the application and its relationship
with the ITLB miss rate.

1. GLOBAL_POWER_EVENTS: time during which processor is not
stopped

2. ITLB_REFERENCE: translations using the instruction translation
lookaside buffer; 0x02 ITLB miss

3. INSTR_RETIRE: retired instructions; 0x01 count non-bogus
instructions which are not tagged

4. MACHINE_CLEAR: cycles with entire machine pipeline cleared;
0x01 count a portion of cycles the machine is cleared
for any cause

The OProfile output provides a table of samples gathered
from the system over a period of time. The table is sorted in
decreasing order with the event listed for eachsymbolname
and its associated executableimageand caller (application).
For example, the following shows excerpts of an OProfile
listing taken from a run of Hydrolight (maincode.exe)
on a native Linux system:

samples image name app name symbol name
9877360 maincode.exe maincode.exe rhotau_

....
140760 libm-2.4.so maincode.exe cos

....
10129 vmlinux maincode.exe init_pmtmr

The output from OProfile is system-wide, therefore in or-
der for us to isolate the data directly associated with our
application we performed some basic post-processing to
extract these quantities. We applied a set of basic heuris-
tics to classify the OProfile data for the native Linux and
Xen system into time spent running either user (Tusr) or
system (Tsys) code. TheTusr and Tsys classes were also
tagged to give further indication as to where the costs
were to be attributed. These heuristic classifications were
based upon the contents of the columns labeledimage name
and app namewith a synopsis shown in Table 1. Note, a
few special cases were also tagged in the OProfile output:
(i) “anon(XXXX...)” entries where no symbol information
is accessible, and (ii) the costs for OProfile itself.

image name app name Time Class
maincode.exe maincode.exe Tusr (Tusr.app)

lib* maincode.exe Tusr (Tusr.lib)
ld-* maincode.exe Tusr (Tusr.lib)

oprofiled * Tsys (Tsys.prof)
oprofile.ko * Tsys (Tsys.prof)

*.ko maincode.exe Tsys (Tsys.os)
vmlinux maincode.exe Tsys (Tsys.os)
xen-syms maincode.exe Tsys (Tsys.vmm)

anon(XXXX...) maincode.exe untrackable

Table 1. Post-processing heuristics applied to OProfile data
shown using ‘*’ as a wildcard matching anything.

Our post-processing technique has two known limita-
tions. Firstly, we are not able to completely account forTsys

costs associated with the hostOS (dom0) when running the
application in the VM (domU). This is because there is no
way to correlate the costs in the hostOS (dom0) that are spe-
cific to our application (in VM), i.e., the application con-
text in the VM is not visible from the hostOS when OPro-
file reports an event. Secondly, we do not account for some
auxiliary overheads caused by Xen, e.g., Pythonxend dae-
mon and associated system/shell invocations. We noticed
events likemodulecmd which we believe are related to the
use of Xen but are not obviously tied from the output dis-
played by OProfile. Therefore, the accounting for a virtual
machine’sTsys is low as the hostOS portion is not included.

To try and give some indication of the cost entirely due to
virtualization we include the times for running the applica-
tion on the hostOS itself. In this context, the differences be-
tween native and hostOS are entirely due to virtualization
but are not identical to running the application in an unpriv-
ileged VM (domU).

4. Experimentation
In this section, we describe our experimental results. As ex-
plained in Section 3, we selected the longest running exper-
iment from our set of 2,600 simulations. We also mention
some preliminary numbers from running all 2,600 simula-
tion on a cluster using virtualization.

We executed the selected simulation (experiment) 20
times (runs) over three platforms: Native, HostOS and vir-
tual machine (VM). Figures 2-7 on page 5 show the break-
down of CPU as well as ITLB samples from OProfile on the
respective platforms for the individual runs. As describedin
Section 3, samples from OProfile are based on a frequency of
100,000 clock cycles. OProfile extracts CPU samples from
GLOBAL_POWER_EVENTSevents, and ITLB samples from
ITLB_REFERENCE events. To summarize, greater number
of samples indicates more time spent in the respective code
symbol for a particular event.

Platform cpu cpu % tlb tlb %

avg std std avg std std
Native 12687854 31740 0.25 3007 32 1.06
HostOS 13162659 50532 0.38 1296 37 2.85

VM 13156140 84812 0.64 1299 39 3.00

Table 2. Average and standard deviations for user level
(Tusr) CPU and ITLB miss samples from one experi-
ment (file) over 20 runs.

Platform cpu cpu % tlb tlb %

avg std std avg std std
Native 92984 16908 18.18 69 10 14.49
HostOS 823407 21270 2.58 6475 123 1.89

VM 792183 23082 2.91 6340 134 2.11

Table 3. Average and standard deviations for system level
(Tsys) CPU and ITLB miss samples from one experi-
ment (file) over 20 runs. Note, the VM’sTsys only contains
domU portion.

As can be seen from Figures 2-7, the individual runs
are quite consistent. However, a few things stand out. First,
the standard deviation on the Native platform, for system
CPU samples is quite high across 20 runs as reflected by
Table 3 with a value of 18.18%. Second, on the Native
platform, the standard deviation for system ITLB samples
is also high (14.49%) as shown by Table 3. Lastly, when
contrasting CPU samples between Native and VM, based on
Table 2 the variance of code running in user mode is 0.39%

lower on native and based on Table 3 is 15.27% higher when
running in system mode. The variability for native’s system
mode may be related to our accounting techniques as in
some instances theide_outsw symbol was not associated
to the “maincode.exe” application but instead “vmlinux” and
therefore the samples were not included. Note, this behavior
was unique to 2-3 nodes in the test cluster.

The individual runs furnished us with an opportunity to
study the variability of similar runs. We would have expected
such variability from virtual environments due to the addi-
tional complexities added by the virtualization layer. How-
ever, the variability in the wall clock times (Table 4) of the
same application is less in native than virtual environments.
One explanation for this is less variability in the user context
for the native as compared to the virtual environments.

Figures 8 and 9 present a summary view of the applica-
tion for the different platforms. The values in these graphs
are based upon averages taken from the individual runs (Fig-
ures 2-7). We observe from Figures 8 and 9 that Native out-
performs the VM. Specifically, the VM runs 11% slower
than Native, with VMs slightly better than the HostOS. Yet,
the wall-clock times shown in Table 4 show that running the
application on the HostOS, on average, performs marginally
better than running the application on the VM. The reason
behind this apparent paradox is that, with OProfile in its cur-
rent form, it is unclear to us how to fully account for the sys-
tem portion of an application running in the VM (domU).
This is due to the fact that when working with OProfile the
samples are split into two domains, namely the VM proper
(domU) and underlying hostOS (dom0). Since the applica-
tion is only present in the VM (domU) there are no appar-
ent means to systematically determine the application spe-
cific contributions forTsys that lie in the underlying hostOS
(dom0) portion. For example, the I/O operations managed by
the hostOS (dom0) for a VM (domU) would be part of the
data in the “dom0” OProfile file. This shortcoming is only
applicable to OProfile samples related to system code for a
VM.

Platform Avg Min Max

Native 692.25 690 697
HostOS 771.15 761 782

VM 772.05 763 790

Table 4. Wall clock times (seconds) for one experi-
ment (file) over 20 runs for each platform: Native, HostOS
and Virtual Machine.

Further, on all three platforms most of the CPU time is
spent in the user context. However, for ITLB misses, the
case is not so obvious. On Native, the user context accounts
for most of the ITLB misses, but this is not the case for the
HostOS or VM. On the HostOS and VM the system side
accounts for most of the ITLB misses.

To correlate and quantify Figures 8 and 9, we refer our
reader to Tables 5 and 6. Table 5 shows the comparison
between Native and VM for CPU ticks.

Table 5 shows that the ratio of user code CPU samples
between native and virtual is 0.96, implying that user code
is performing slightly faster on native than on virtual. How-
ever, Table 6 shows that the ratio of user code ITLB miss
samples between native and virtual is 2.31, implying that
there are much more ITLB misses on native when running
user code. This apparent counter behavior with ITLB misses
on native is challenged in Table 8 in Section 6.

Platform relation Average
N:V Tusr / Tusr 0.96
N:N Tusr / Tsys 136
V:V Tusr / Tsys 16.6
N:V Tsys / Tsys 0.11

Table 5. Average of one experiment (file) over 20 runs
showing the ratios for user and system level CPU time sam-
ples, where N=native and V=VM. Note,Tsys only contains
domU portion.

Platform relation Average
N:V Tusr/Tusr 2.31
N:N Tusr/Tsys 43.27
V:V Tusr/Tsys 0.20
N:V Tsys/Tsys 0.010

Table 6. Average of one experiment (file) over 20 runs
showing the ratios for user and system level ITBL miss sam-
ples, where N=native and V=virtual. Note,Tsys only con-
tains domU portion.

Other ratios from Table 5 and 6 are more intuitive. For
example, Table 5 shows that the User to System ratio for
Native is much higher than that of virtual (43.27), support-
ing the fact that system code is more expensive in the virtual
environments. Further, Table 6 shows that the number of Na-
tive ITLB miss samples is higher in user mode as compared
to system mode (43.27), and conversely ITLB miss samples
are higher in system than user mode (0.20) for the virtual
machine.

Lastly, to get a rough estimate of the time to solution
when using virtualization we performed the entire 2,600 ex-
periments on all three platforms: Native, HostOS and VM,
varying the number of available compute nodes. The exe-
cution times2 for running the 2,600 experiments over these
platforms are given in Figure 10. This shows that the differ-
ence in wall-clock time between the native and virtual sys-
tems is roughly 8%. It is unclear why there is a slight dif-

2 These numbers were taken without OProfile and on a slightly earlier
cluster configuration where the native kernel version did not exactly match
that used for the para-virtualized Linux kernel; but this isstill using Xen
version 3.0.4

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

run1(n195)

run2(n196)

run3(n197)

run4(n199)

run5(n213)

run6(n215)

run7(n225)

run8(n232)

run9(n237)

run10(n239)

run11(n195)

run12(n196)

run13(n197)

run14(n199)

run15(n213)

run16(n215)

run17(n225)

run18(n232)

run19(n237)

run20(n239)

cp
u

sa
m

pl
es

 C
ou

nt

execution platforms

CPU samples for 20 native runs: Hydro

Application code
Library code
Other code

Linux os code
Hypervisor code

Figure 2. Breakdown of CPU samples for 20 runs on Na-
tive.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

run1(n195)

run2(n196)

run3(n197)

run4(n199)

run5(n213)

run6(n215)

run7(n225)

run8(n232)

run9(n237)

run10(n239)

run11(n195)

run12(n196)

run13(n197)

run14(n199)

run15(n213)

run16(n215)

run17(n225)

run18(n232)

run19(n237)

run20(n239)

cp
u

sa
m

pl
es

 C
ou

nt

execution platforms

CPU samples for 20 hostos runs: Hydro

Application code
Libarary code

Other code
Linux os code

Hypervisor code

Figure 3. Breakdown of CPU samples for 20 runs on Hos-
tOS.

 0

 3e+06

 6e+06

 9e+06

 1.2e+07

 1.5e+07

run1(n195)

run2(n196)

run3(n197)

run4(n199)

run5(n213)

run6(n215)

run7(n225)

run8(n232)

run9(n237)

run10(n239)

run11(n195)

run12(n196)

run13(n197)

run14(n199)

run15(n213)

run16(n215)

run17(n225)

run18(n232)

run19(n237)

run20(n239)

cp
u

sa
m

pl
es

 C
ou

nt

execution platforms

CPU samples for 20 vm runs: Hydro

Application code
Library code
Other code

Linux os code
Hypervisor code

Figure 4. Breakdown of CPU samples for 20 runs on VM.
Note,Tsys only contains domU portion.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

run1(n195)

run2(n196)

run3(n197)

run4(n199)

run5(n213)

run6(n215)

run7(n225)

run8(n232)

run9(n237)

run10(n239)

run11(n195)

run12(n196)

run13(n197)

run14(n199)

run15(n213)

run16(n215)

run17(n225)

run18(n232)

run19(n237)

run20(n239)

cp
u

sa
m

pl
es

 C
ou

nt

execution platforms

TLB samples for 20 native runs: Hydro

Application code
Libaray code

Other code
Linux os code

Hypervisor code

Figure 5. Breakdown of ITLB miss samples for 20 runs on
Native.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

run1(n195)

run2(n196)

run3(n197)

run4(n199)

run5(n213)

run6(n215)

run7(n225)

run8(n232)

run9(n237)

run10(n239)

run11(n195)

run12(n196)

run13(n197)

run14(n199)

run15(n213)

run16(n215)

run17(n225)

run18(n232)

run19(n237)

run20(n239)

cp
u

sa
m

pl
es

 C
ou

nt

execution platforms

TLB samples for 20 Hostos runs: Hydro

Application code
Libaray code

Other code
Linux os code

Hypervisor code

Figure 6. Breakdown of ITLB miss samples for 20 runs on
HostOS.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

run1(n195)

run2(n196)

run3(n197)

run4(n199)

run5(n213)

run6(n215)

run7(n225)

run8(n232)

run9(n237)

run10(n239)

run11(n195)

run12(n196)

run13(n197)

run14(n199)

run15(n213)

run16(n215)

run17(n225)

run18(n232)

run19(n237)

run20(n239)

cp
u

sa
m

pl
es

 C
ou

nt

execution platforms

TLB samples for 20 VM runs: Hydro

Application code
Libaray code

Other code
Linux os code

Hypervisor code

Figure 7. Breakdown of ITLB miss samples for 20 runs on
VM. Note,Tsys only contains domU portion.

 0

 3e+06

 6e+06

 9e+06

 1.2e+07

 1.5e+07

Native

Hostos

Vm

cp
u

sa
m

pl
es

 C
ou

nt

execution platforms

CPU samples for Hydro across platforms

Application code
Libaray code

other code
linux os code

Hypervisor code

Figure 8. Average CPU samples using 20 runs for each
platform. Note, the VM’sTsys only contains domU portion.

 0

 2500

 5000

 7500

 10000

Native

Hostos

Vm

cp
u

sa
m

pl
es

 C
ou

nt

execution platforms

TLB samples for Hydro across platforms

Application code
Libaray code

other code
Linux os code

Hypervisor code

Figure 9. Average ITLB miss samples using 20 runs for
each platform. Note, the VM’sTsys only contains domU
portion.

ference between the hostOS and guestOS, which was not the
trend in our other measurements.

5. Related Work
Our work is closely related to (7). Work reported in (7)
is one of the first such studies, to the best of our knowl-
edge, to diagnose the performance overheads in Xen using
Xenoprof, which they developed, and has been described in
their paper. We have used a similar methodology but differ
in focus and the type of applications evaluated. The authors
in (7) focus on networking applications in a VM running
in uni-processor as well as multi-processor systems. Our fo-
cus is not just on networking applications, but on real world
scientific applications. While the paper in (7) aims to use
the information extracted using Xenoprof to uncover bugs
and channel the information into optimizing Xen, we hope to
provide a scientist or an application’s user a view of their ap-
plication on virtual machines. We hope that a scientist would

 160

 180

 200

 220

 240

 260

 280

 300

 15 20 25 30 35 40

T
im

e
in

 M
in

ut
es

Number of Nodes

Execution time for Hydrolight (2600-runs)

Stock Linux
Xen guestOS
Xen hostOS

Figure 10. Execution time for Hydrolight experiments
(2600-run) using stock Linux, Xen guestOS and Xen hos-
tOS over a range of compute nodes.

then be able to decide whether to run his/her application on
virtual machines.

Authors in (17) study the impact of para-virtualization
on HPC systems and applications. They study many bench-
mark applications including HPCC for a full system evalu-
ation. Their conclusion that para-virtualization, specifically
Xen, does not introduce significant overhead is based on the
performance results of various benchmarks and real world
applications.

While we have a similar objective, our approach goes be-
yond just the performance results, in that we aim to analyze
the various overheads associated with applications when
running in native as well as virtual environments.

Authors in (5) describe a framework for performance
and management overheads in virtual environments. They
specifically study VMM I/O bypass and VM image manage-
ments. For performance evaluation, they study different MPI
tests and parallel HPC benchmarks such as HPL and NAS.
Their conclusion also concurs with that of authors in (17).
Although the authors in (5) use Xenoprof like we do, they
do not use real world scientific applications.

Work in (2) describes another useful study evaluating vir-
tual environments for their efficacy to run HPC applications.
The authors study Xen and UML as virtual environments
with HPCC as their HPC benchmark applications. The con-
clusion in their paper (2) is consistent with the other related
work reported here, in that authors credit Xen to perform
with little overhead in HPC context. They however maintain
that more such analysis and evaluation is required. The work
in (2) does not describe real world scientific applications,
and their focus is on virtual environments being able to run
HPC applications efficiently.

The VIVA project at UCSB has developed an enhanced
profiler calledVIProf (12). Their tool extends the system
wide profiler OProfile to support dynamic code segments
for a language level virtual machine, e.g., Java Virtual Ma-

chine (JVM). The modifications enable the profiler to iden-
tify the dynamically compiled code from the JVM image that
is regularly reported as anonymous by OProfile. The tool as
presented in (12) is specific to a Java virtual machine and
the dynamic code found in such VMs. They mention longer
term goals of working with Xen, which would be more rel-
evant to our efforts with system-level virtualization. This
work highlights a similar issue as encountered in our anal-
ysis regarding access to inter-domain context for profiling,
e.g., host/guest domains.

6. Future Work
We have evidence that, profiles obtained using Xenoprof in
its current form, can be difficult to interpret. We mentioned
the problem of attributing samples when the privileged do-
main (dom0) is working on behalf of the processes running
in various unprivileged domains, in Section 4. There is, how-
ever, another issue with regards to interference caused by
events that are profiled together. We profiled four events to-
gether as shown in Section 3, and reported results based on
the profiles generated using those four events in tandem.
While this is an acceptable approach on the native system,
in the virtualized environment the results are not consistent
when working with OProfile/Xenoprof.

The Table 7 and Table 8, paint a different picture when
profiles are obtained for single events – as opposed to multi-
ple events gathered simultaneously.

Avg Avg
Platform User System

Native 12009823 81559
HostOS 12781305 176387

VM 12697736 163400

Table 7. Average number of samples for profiling the single
eventGLOBAL_POWER_EVENTS, for one experiment (file)
over 10 runs.

Avg Avg
Platform User System

Native 22 7
HostOS 38 45

VM 38 35

Table 8. Average number of samples for profiling the single
event ITLB_REFERENCE (miss_samples), for one
experiment (file) over 10 runs.

The Table 7 and Table 8 show that, although the overhead
values change between separate (single) and simultaneous
(multiple) event profiling forGLOBAL_POWER_EVENTS,
(please refer to Table 2 and Table 3 for simultaneous event
profiling results) the behavior of the overheads is preserved
on the native platform. But the same is not true for virtual
environments, where we see changes in overhead behavior.

Therefore, as underscored in our conclusion, much more
investigation is needed both to understand the overheads in
virtual environments and accordingly enhance the standard
tools.

Although, the results mentioned in this section, are not
in total accordance with the results mentioned in Section 4,
we have not been able to identify the root cause for the dif-
ference in overhead behavior of the profiles obtained using
Xenoprof. Therefore, we include it as preliminary data and
plan to further investigate the matter in our future work.

7. Conclusion
In this paper we analyzed a hyperspectral radiative trans-
fer code,Hydrolight, and the overheads associated with
its use on both native and virtual machines. The wall-
clock time was approximately 8% more when running
on the virtualized system without instrumentation and the
overhead was close to 11% during the profiled execu-
tion of an individual simulation. However, the overhead
drops to 8% when profiles are obtained for a single event,
e.g, justGLOBAL_POWER_EVENTS.

Our study was motivated by the fact that there is a grow-
ing interest in using virtualization in HPC environments.
However, adoption by the HPC community is not yet wide
spread. This is in part due to virtualization overheads, which
may be perceived as too high in an HPC context. Due to
this delay, there is a lack of information regarding the ac-
tual distributions for overheads associated with virtualiza-
tion in real-world scientific applications. This is furthercom-
plicated by the fact that standard tools are immature in their
support for virtualization and work is needed to aid the anal-
ysis of virtualization. Further, as we showed in Section 6,
there is a nontrivial interference caused by different events,
and thus implies that performance isolation is still a difficult
task especially in virtual environments.

References
[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim

Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualization. InProceedings
of the nineteenth ACM symposium on Operating System s
Principles (SOSP19), pages 164–177. ACM Press, 2003.

[2] W. Emeneker and D Stanzione. HPC Cluster Readiness of
Xen and User Mode Linux. InIEEE International Conference
on Cluster Computing, September 2006.

[3] Christian Engelmann, Stephen L. Scott, Hong Ong, Geof-
froy Vallée, and Thomas Naughton. Configurable Virtual-
ized System Environments for High Performance Computing.
In Proceedings of the1st Workshop on System-level Virtual-
ization for High Performance Computing (HPCVirt’07), held
in conjunction with the ACM EuroSys’07, Lisbon, Portugal,
March 20, 2007.

[4] Anthony M. Filippi, Budhendra L. Bhaduri, Thomas
Naughton, Amy L. King, and Stephen L. Scott. High-
performance cluster computing-based approach to hyperspec-

tral aquatic radiative transfer modeling.(In preparation)
Photogrammetric Engineering & Remote Sensing (PE&RS),
2008.

[5] W. Huang, J. Liu, B. Abali, and D.K. Panda. A Case for
High Performance Computing with Virtual Machines. In20th
ACM International Conference on Supercomputing (ICS ’06)
Cairns, Queensland, Australia, June 2006.

[6] Wei Huang, Qi Gao, Jiuxing Liu, and Dhabaleswar K. Panda.
High Performance Virtual Machine Migration with RDMA
Over Modern Interconnects. InProceedings of IEEE Cluster
(Cluster’07). IEEE, September 17-20, 2007.

[7] A. Menon, J. R. Santos, Y. Turner, G. Janakiraman, and
W. Zwaenepoe. Diagnosing performance overhead in the xen
virtual machine environment. InProceedings of the 1st ACM
Conference on Virtual Execution Environments, June 2005.

[8] Mark F. Mergen, Volkmar Uhlig, Orran Krieger, and Jimi
Xenidis. Virtualization for High-Performance Computing.
SIGOPS Oper. Syst. Rev., 40(2):8–11, 2006.

[9] Curtis D. Mobley. Light and Water: Radiative Transfer in
Natural Waters. Academic Press, San Diego, 1994.

[10] Curtis D. Mobley, Bernard Gentili, Howard R. Gordon,
Zhonghai Jin, George W. Kattawar, Andre Morel, Phillip
Reinersman, Knut Stamnes, and Robert H. Stavn. Comparison
of numerical models for computing underwater light fields.
Applied Optics, 32(36):7484, 1993.

[11] Curtis D. Mobley, Lydia K. Sundman, Curtiss O. Davis, Jef-
frey H. Bowles, Trijntje Valerie Downes, Robert A. Leathers,
Marcos J. Montes, William Paul Bissett, David D. R. Kohler,
Ruth Pamela Reid, Eric M. Louchard, and Arthur Glea-
son. Interpretation of hyperspectral remote-sensing imagery
by spectrum matching and look-up tables.Applied Optics,
44(17):3576–3592, 2005.

[12] Hussam Mousa, Chandra Krintz, Lamia Youseff, and Rich
Wolski. VIProf: Vertically integrated full-system performance
profiler. InProceedings of the Workshop on Next-Generation
Software (NGS), March 2007. Co-hosted with IPDPS 2007.

[13] Arun Babu Nagarajan, Frank Mueller, Christian Engelmann,
and Stephen L. Scott. Proactive fault tolerance for HPC with
Xen virtualization. InICS ’07: Proceedings of the 21st annual
international conference on Supercomputing, pages 23–32,
New York, NY, USA, 2007. ACM Press.

[14] OProfile: A system-wide profiler for Linux. Available
at: http://oprofile.sourceforge.net. (Last visited: Feb.2008).

[15] Sequoia Scientific, Inc., Redmond, WA, USA.Hydrolight 4.2,
2000.

[16] Geoffroy Vallée, Thomas Naughton, and Stephen L. Scott.
System Management Software for Virtual Environments. In
Proceedings of the ACM International Conference on Com-
puting Frontiers (CF 2007), Ischia, Italy, May 7-9, 2007.

[17] Lamia Youseff, Rich Wolski, Brent Gorda, and Chandra
Krintz. Paravirtualization for HPC Systems. InISPA Work-
shop on XEN in HPC Cluster and Grid Computing Environ-
ments (XHPC’06), pages 474–486, December 2006.

