
System-Level Virtualization Research at Oak

Ridge National Laboratory1

Stephen L. Scott, Geoffroy Vallée, Thomas Naughton,
Anand Tikotekar, Christian Engelmann, Hong Ong

Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

Abstract

System-level virtualization is today enjoying a rebirth, after first gaining popularity
in the 1970s as a technique to effectively share what were then considered large
computing resources to subsequently fade from the spotlight as individual worksta-
tions gained in popularity with a “one machine – one user” approach. One reason
for this resurgence is that the simple workstation has grown in capability to rival
that of anything available in the past. Thus, computing centers are again looking
at the price/performance benefit of sharing that single computing box via server
consolidation.

Hardware and software technology vendors have noticed this renewed interest as
well and have responded with a variety of technologies designed to enable advanced
virtualization capabilities. However, industry is only concentrating on the bene-
fits of using virtualization for server consolidation (enterprise computing) whereas
our interest is in leveraging virtualization to advance high-performance computing
(HPC). While these two interests may appear to be orthogonal, one consolidating
multiple applications and users on a single machine while the other requires all
the power from many machines to be dedicated solely to its purpose, we propose
that virtualization does provide attractive capabilities that may be exploited to the
benefit of HPC interests. This does raise the two fundamental questions of: is the
concept of virtualization (a machine “sharing” technology) really suitable for HPC
and if so, how does one go about leveraging these virtualization capabilities for the
benefit of HPC.

To address these questions, this document presents ongoing studies on the usage
of system-level virtualization in a HPC context. These studies include an analysis
of the benefits of system-level virtualization for HPC, a presentation of research
efforts based on virtualization for system availability, and a presentation of research
efforts for the management of virtual systems. The basis for this document was
material presented by Stephen L. Scott at the Collaborative and Grid Computing
Technologies meeting held in Cancun, Mexico on April 12-14, 2007.

Key words: virtualization, high-performance computing, fault tolerance, system
management

Preprint submitted to Elsevier 11 January 2008



PACS: 07.05.Bx

1 Introduction to System-Level Virtualization

System-level virtualization is used for a number of reasons, but the three major
justifications are [1–3]: (i) isolation, (ii) consolidation, and (iii) migration [2].
We describe these points in the following sections after a brief description of
the terminology used in this article.

Terminology The execution of a virtual machine (VM) implies that one or
more virtual systems are running concurrently on top of the same hardware,
each having its own view of available resources. The operating system (OS)
of the VMs is referred to as the guest OS. This system is a traditional OS,
but does not necessarily see all the available physical resources. The guest
OS only views resources that have been allocated to the VM. VMs hosted
on the same machine are run concurrently with the hypervisor managing the
concurrent execution. The hypervisor is responsible for mapping the physical
resources to those used by the virtual machines. Due to its role as a VM man-
ager, the hypervisor is also called the Virtual Machine Monitor (VMM). The
hypervisor is typically a small system running beside the VMs. The hypervisor
typically does not include drivers or other device specific mechanisms to ac-
cess the physical hardware, e.g., network cards or hard drives. Therefore, the
hypervisor is coupled with a traditional operating system, called the host OS.
This host OS provides users log-in access for the administration of physical
resources and an interface to the hypervisor for VM management.

1.1 Virtualization Capabilities

Isolation Isolation is aiming at improving the security and reliability of the
system by isolating the execution environment for application in a VM which
cannot corrupt the bare hardware[1,3]. For that the virtualization solution

Email addresses: scottsl@ornl.gov (Stephen L. Scott), valleegr@ornl.gov
(Geoffroy Vallée), naughtont@ornl.gov (Thomas Naughton),
tikotekaraa@ornl.gov (Anand Tikotekar), engelmannc@ornl.gov (Christian
Engelmann), hongong@ornl.gov (Hong Ong).
1 Research sponsored by the Laboratory Directed Research and Development Pro-
gram of Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC
for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

2



exposes to VMs a virtual hardware, i.e., a VM is limited to execution of
unprivileged instructions with the hypervisor overseeing all other operations.

Consolidation Server consolidation is the primary market for virtualiza-
tion solutions, because it enables the sharing of expensive servers between dif-
ferent customers with the guarantee that each customer will have its own view
of the system and be isolated from other users. This allows service providers
to consolidate work to fewer servers (cost effective server usage) and also to
support incompatible or legacy operating environments without the need for
separate hardware.

Virtual Machine Migration The capability to migrate entire VMs be-
tween servers, makes it possible to improve the quality of service by balancing
the global load between several servers without interruption of application
execution and by moving VMs (and therefore applications) when a failure is
predicted for a specific server. This technology also enables a transparent (for
users) programmable downtime of servers by migrating VMs to other servers
before server shutdown for maintenance.

1.2 Classification

In the 1970s, Goldberg [4] classified the different system-level virtualization
solutions into two categories (see Fig. 1): (i) type-I virtualization where the
VMM runs directly on the bare hardware, and (ii) type-II virtualization where
the VMM runs on top of the host OS. Since the type-I virtualization has direct
access to resources, performance is comparable to that of native execution. In
contrast, type-II virtualization incurs additional overhead due to the layering
of the VMM on top of the host OS when servicing resource requests from VMs.
The type-II is well suited for development, where some performance may be
reduced in exchange for greater diagnostic and development capabilities.

Fig. 1. Classification of Virtualization Techniques

A third hybrid form called para-virtualization [1,3] has emerged that fits the
criteria of type-I virtualization. In para-virtualization, modifications are made
to the host OS and guest OS that are essentially a new software-only archi-
tecture. This additional work provides the improved performance of type-I.

3



2 Why System-Level Virtualization for High-Performance Com-
puting?

Today, high-performance computing (HPC) centers need to support multiple
execution platforms. For example, at Oak Ridge National Laboratory (ORNL),
massively parallel processing (MPP) platforms, such as the Cray XT4, and
Beowulf-type clusters, like the ORNL Institutional Cluster (OIC), are avail-
able to users. Each of these systems targets a specific OS, requiring users to
port their application before execution. On the other hand, a user’s require-
ments may also differ. For instance, some users develop their applications on
desktops, others on clusters; including different needs in terms of hardware
and software requirements. Finally, each application has its own hardware
and software constraints.

It is therefore very difficult to provide a single execution environment for all
applications that is supported by quite a variety of development environments.
To address these issues, the notion of plug-and-play computing and execution
environment customization have been introduced. The idea is too let users
specify their needs in terms of system environment and then deploy on demand
this environment in virtual machines. The deployment of an application on a
new execution platform is therefore direct (plug-and-play).

However, current virtualization solutions are not suitable for HPC for a num-
ber of reasons including: (i) their system footprint is significant and will in-
terfere with application execution and performance; (ii) current solutions sup-
port base Intel and AMD architectures but do not fully support their use
in some of the more exotic HPC specific architectures; (iii) because today’s
primary target for virtualization is enterprise server consolidation, many capa-
bilities required specifically for HPC are slow to emerge (e.g., VMM-bypass [5],
RDMA [6]); and (iv) the architecture of virtualization solutions is monolithic
and does not allow dynamic configuration of the VMM.

In order to have a virtualization solution suitable for HPC, many approaches
are possible: (i) development of a new solution from scratch, (ii) development
of a new solution based on an existing solution, such as Xen, or (iii) devel-
opment of a new solution based on a HPC specific operating system, such as
Catamount.

Each of these approaches have its own advantages and drawbacks. For in-
stance, the development of a new solution from scratch allows the design and
implementation of a solution to perfectly meet HPC constraints. However,
such a solution is a long term effort because it implies kernel-level develop-
ment which is challenging. The development of a new solution based on an
existing solution (which may be an already existing VMM and a kernel for

4



HPC) gives more short term results but may be difficult to maintain since it
was not originally designed for the HPC environment.

3 System-Level Virtualization and System Availability

Modern high-performance computing platforms are composed of thousands
or even hundreds of thousands of nodes. Because each node can be subject
to a failure, the global availability of the system decreases in proportion to
the system scale. Therefore, applications for this environment must be fault
tolerant or resilient, able to operate successfully in the face of failure, and the
systems should exhibit high-availability traits.

System-level virtualization provides three interesting capabilities that may be
exploited for this purpose: (i) VM migration, (ii) VM pause/unpause, and (iii)
VM checkpoint/restart. These three mechanisms enable the implementation
of three fault tolerance policies: (i) reactive fault tolerance (do something
after a failure occurs), (ii) proactive fault tolerance (do something before the
failure occurs), and (iii) hybrid policies mixing both reactive and proactive
fault tolerance.

The reactive approach fundamentally relies on the concept that there is suffi-
cient contextual information available (checkpoint data), such that it is possi-
ble to restart an application after a failure occurs and recover close to the point
of failure so that little computation is lost. Because each VM and the applica-
tions running on it is a well defined entity, isolated from all other applications
and even from the core host operating system, it is possible to checkpoint the
entire VM and then subsequently restart it in that original state without any
prior knowledge on the part of the applications. This is possible because the
context of a VM typically consists of the memory dump and a checkpoint of
the file system. While all current virtualization solutions can already dump the
memory of the VM (the hypervisor is in charge of the memory management
of VMs), the file system is quite a different matter. This is due to the need for
successive snapshots of the complete file system. One solution to address this
issue is to use stackable file systems [7] for which the snapshot capability is
used to create periodic checkpoints of the file system (see Fig. 2). This solu-
tion is expensive, since periodic checkpointing generates a significant amount
of I/O.

The proactive approach is based on the idea that it is possible to predict some
failures, for instance using hardware probes that are available on many modern
motherboards. With virtualization, if a failure is predicted, two scenarios are
possible: (i) VMs are migrated away from the node that is about to fail, (ii)
the affected VMs are paused on a stable storage in order to be resumed later

5



Fig. 2. Virtual Machine File System Checkpoint

when the failure is fixed.

However, proactive fault tolerance is not always sufficient because all failures
cannot be predicted. Thus, it is important to be able to mix reactive and
proactive fault tolerance, creating a hybrid policy. The idea is to decrease
the checkpoint frequency (and therefore the checkpoint penalty) based on the
ratio of predictable failures. Therefore, the proactive approach is used for
predictable failures, and the reactive approach for unpredictable failures.

Because it is not possible to find a one-fit-all solution (i.e., a solution that
fits the application requirements, the computing center policy requirements,
the users expectations, and the execution platforms characteristics), a fault
tolerance framework, which allows users, system administrators, and centers
to specify their own fault tolerance policies, is of particular interest.

4 System-Level Virtualization and System Management

The usage of VMs creates several challenges including: (i) how can we support
multiple virtualization solutions? (ii) how can we easily manage both, the
host OS and the VMs? and, (iii) is it possible to abstract the complexity of
virtualization?

Several studies has been recently made to address these issues, which led to the
implementation of OSCAR-V [8]. As an extension for the management of VMs
using the OSCAR system installation/management suite, it integrates several
prototypes developed by ORNL and by our collaborators. OSCAR-V is based
on two concepts: (i) the abstraction of the notion of VMs via virtual machine
management (V2M) and (ii) the implementation of tools for the definition of
golden images that can be used to deploy both, host OSs and VMs.

The V2M tool aims to provide a very simple interface to users for the def-
inition and the management of VMs; users need only specify their VMs in
terms of virtual hardware (amount of memory, size of the virtual disk, num-
ber of network cards, and so on), and the virtualization solution they want
to use (for instance Xen). This specification (called a profile) is then parsed
by V2M, which in-turn automatically sets the system up, initializes the VM
and provides a simple interface to interact with the VM, e.g., to boot the VM

6



Fig. 3. V2M Architecture
Fig. 4. Deployment of Virtual Environ-
ments

and to install the VM (see Fig. 3). Because V2M abstracts the virtualization
solution, it is possible to switch from one to another simply by modifying the
virtualization solution identifier in the VM profile.

Based on the abstraction provided by V2M, the OSCAR management tool has
been extended to support the definition of golden images for both VMs and
host OSs (see Fig. 4). A golden image is completely independent to the actual
hardware (physical or virtual) on which the system is deployed. Since OSCAR-
V integrates virtualization solutions, such as Xen, OSCAR can transparently
deploy and configure VMMs as well as associated host OSs.

5 Conclusion

System-level virtualization provides several advantages for HPC that may
change the way modern HPC systems are currently used though plug-and-
play computing, system environment customization, computing on demand,
and transparent application resilience through system provided fault tolerance.

However, the usage of virtual machines also creates several challenges includ-
ing: (i) the development of a virtualization solution suitable for HPC, (ii) the
development of tools and methods for the management of virtual systems and,
(iii) the use of advanced capabilities enabled by virtualization, such as VM
pause/unpause, VM checkpoint/restart, and VM migration.

For that, we focused on two different projects. First is the development of a
new VMM for HPC that has a small system footprint and is modular and easily
extensible. Second, we developed a set of fault tolerance and system manage-
ment tools able to take advantage of the capabilities provided by system-level
virtualization.

Our fault tolerance effort led to the implementation of a framework for the
deployment of new reactive, proactive, or hybrid fault tolerance policies, based
on capabilities such as VM pause/unpause, checkpoint/restart, and migration.

7



Our system management effort led to the development of an integrated solu-
tion for the management of virtual systems. A core component of OSCAR-V
is the V2M tool which abstract the parameters specifying the different vir-
tualization solutions in order to provide users with a simple interface for the
definition and management of VMs. Based on this abstraction, it is possible
to specify and deploy systems independent to them being physical or virtual.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, A. Warfield, Xen and the art of virtualization, in: Proceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP), ACM Press,
Bolton Landing, NY, USA, 2003, pp. 164–177.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
A. Warfield, Live migration of virtual machines, in: Proceedings of the 2nd

ACM/USENIX Symposium on Networked Systems Design and Implementation
(NSDI), USENIX Association, Boston, MA, USA, 2005, pp. 273–286.

[3] A. Whitaker, M. Shaw, S. D. Gribble, Denali: Lightweight virtual machines for
distributed and networked applications, Technical Report 02-02-01, University
of Washington (Feb. 2001).

[4] R. P. Goldberg, Architecture of virtual machines, in: Proceedings of the
Workshop on Virtual Computer Systems, ACM Press, Cambridge, MA, USA,
1973, pp. 74–112.

[5] J. Liu, W. Huang, B. Abali, D. K. Panda, High performance VMM-bypass I/O in
virtual machines, in: Proceedings of the USENIX Annual Technical Conference
(USENIX), USENIX Association, Boston, MA, USA, 2006, p. 3.

[6] W. Huang, Q. Gao, J. Liu, D. K. Panda, High performance virtual machine
migration with RDMA over modern interconnects, in: Proceedings of the 9th

IEEE International Conference on Cluster Computing (Cluster) 2007, Austin,
Texas, USA, 2007.

[7] G. Vallée, T. Naughton, H. Ong, S. L. Scott, Checkpoint/restart of virtual
machines based on Xen, in: Proceedings of the High Availability and Performance
Workshop (HAPCW), in conjunction with the Los Alamos Computer Science
Institute (LACSI) Symposium, Santa Fe, NM, USA, 2006.

[8] G. Vallée, T. Naughton, S. L. Scott, System management software for virtual
environments, in: Proceedings of the 4th International Conference on Computing
Frontiers (CF), ACM Press, Ischia, Italy, 2007, pp. 153–160.

8


