
Achieving Computational I/O Efficiency in a High Performance Cluster Using
Multicore Processors∗

Li Ou, Xin Chen, Xubin (Ben) He
Department of Electrical and Computer Engineering

Tennessee Technological University, Cookeville, TN 38505, USA
{lou21, xchen21, hexb}@tntech.edu

Christian Engelmann, Stephen L. Scott
Computer Science and Mathematics Division

Oak Ridge National Laboratory,Oak Ridge, TN 37831, USA
{engelmannc,scottsl}@ornl.gov

Abstract

Cluster computing has become one of the most pop-
ular platforms for high-performance computing today.
The recent popularity of multicore processors provides
a flexible way to increase the computational capabil-
ity of clusters. Although the system performance may
improve with multicore processors in a cluster, I/O
requests initiated by multiple cores may saturate the
I/O bus, and furthermore increase the latency by issu-
ing multiple non-contiguous disk accesses. In this pa-
per, we propose an asymmetric collective I/O for mul-
ticore processors to improve multiple non-contiguous
accesses. In our configuration, one core in each mul-
ticore processor is designated as the coordinator, and
others serve as computing cores. The coordinator is
responsible for aggregating I/O operations from com-
puting cores and submitting a contiguous request. The
coordinator allocates contiguous memory buffers on
behalf of other cores to avoid redundant data copies.

∗This research was partially sponsored by the Mathematical,
Information, and Computational Sciences Division; Office of Ad-
vanced Scientific Computing Research; U.S. Department of En-
ergy. It was also partially sponsored by the Laboratory Directed
Research and Development Program of Oak Ridge National Labo-
ratory,which is managed by UT-Battelle, LLC under Contract No.
DEAC05-00OR22725. The work performed at Tennessee Tech
University was partially supported by the U.S. National Science
Foundation under Grants No. OCI-0453438 and CNS-0617528.

1 Introduction

Cluster computing [6] has become one of the most
popular platforms for high-performance computing to-
day, because of its high performance-cost ratio. In
high-performance computing (HPC) clusters, standard
message-passing systems, such as Message Passing
Interface (MPI) or Parallel Virtual Machine (PVM),
are widely used to achieve parallelism in applications.
A complex scientific computation can be decomposi-
tioned into multiple smaller parallel tasks, and each
task is computed by a MPI process. Generally, the
ideal case is that the number of parallel processes
spawned for the computation is equal to the number
of physical processors in the cluster, therefore parallel
tasks are executed faster in a cluster with more proces-
sors.

Traditionally, we scale a cluster by increasing the
number of computing nodes, or by adapting the sym-
metric multi-processing (SMP) architecture for each
node. The recent popularity of multicore processors
provides a flexible solution to increase the computa-
tional capability of clusters. Parallel applications can
benefit from multicore processors [4, 7], because each
core is a physical processor, and multiplying the num-
ber of processors simply multiplies the number of pro-
cesses spawned for the parallel tasks, and allowing
such tasks to be executed faster. Meanwhile, utiliza-
tion of the processors increases with multicore proces-

1



Figure 1. Simple parallel I/O in multicore pro-
cessors.

sors.
Although system performance may improve by ap-

plying multicore processors in a cluster, issuing simul-
taneous processes may introduce overhead. Previous
research [2] shows that for parallel applications which
are sensitive to cache size or require intensive commu-
nications [5], the system may suffer from performance
degradation after enabling multiple logical processors.
Multicore processors experience the same problems
because multiple cores within one die share the same
L2 cache, memory, and I/O channels, and thus ex-
acerbate the resource contentions. First, multicores
of the same physical CPU compete for the same L2
cache, which potentially generates more cache-miss,
and thus stalls processors more frequently. Second,
memory access speed is limited by the shared mem-
ory bus, and multiple processes running on the same
die may increase memory contention. Finally, more
I/O requests may saturate the bus, and furthermore, in-
crease the latency by issuing multiple non-contiguous
disk accesses.

The current design, multicores are configured sym-
metrically from the perspective of computational ca-
pacity. In a typical parallel application, each pro-
cess is responsible to process one part of the whole
dataset: It reads the correspondent data from the par-
allel file system, processes data locally, then writes the
data back to the file. Multiple symmetrical cores sub-

Figure 2. Architecture of asymmetric compu-
tation for multicore processors.

mit separate I/O operations independently with their
own pre-allocated buffers (Figure 1). This results in a
large number of I/O operations, each of which is of-
ten for a very small amount of data. This approach
typically performs poorly for parallel applications be-
cause of the overhead of multiple operations and non-
contiguous disk accesses. Multiple non-contiguous
disk accesses may be aggregated into contiguous ac-
cesses with collective I/O, such as the interfaces pro-
vided by MPI-IO, but there is the cost of inter-nodes
communication and in-memory permutation. It is in-
efficient, because most of the time, assignment of the
dataset to a process does not consider the location of
the processors: do the multiple processors physically
reside in the same node?

2 Asymmetric Collective I/O for Multicore
Processors

We propose a new multicore paradigm called asym-
metric computation (Figure 2). In our configuration,
one core in each multicore processor is designated as
the coordinator, and others serve as computing cores.
The efforts of I/O operations from computing nodes
are coordinated by the coordinator with asymmetric
collective I/O. In asymmetric collective I/O, the coor-
dinator aggregates multiple I/O requests from comput-
ing cores to one contiguous request with a large buffer
and sends it to the storage at one time (Figure 3). The
computing cores do not really commit I/O requests to
storage. They inform the coordinator with their I/O
operation parameters. After gathering I/O informa-
tion from each computing core, the coordinator tries to

2



Computing Core Coordinator

char *read (file, size) {

inform coordinator with (file,size);

Barrier; /* wait for all cores*/

wait message from coordinator;

return buffer address;
}

char *read (file, size) {

Barrier; /* wait for all core*/

Aggregate I/O operation;

Allocate a contiguous buffer;

send I/O read;

assign buffer to each core;

wake up each core with buffer address;

return buffer address;
}

Table 1. Asymmetric collective I/O operations of computing core and coordinator.

Figure 3. Asymmetric collective parallel I/O
for multicore processors.

Figure 4. Hierarchy collective I/O for multiple
nodes with multicore processors.

combine multiple I/O operations into one contiguous
access with data sieving [3]. The coordinator sends
the new requests on behalf of all cores. One of the
important aspects of asymmetric collective I/O is that
the computing cores do not need to allocate buffers for
their I/O system calls. After aggregating the I/O op-
erations, the coordinator allocates one buffer for each
contiguous request. Once I/O operations complete, the
coordinator informs the computing cores of the ad-
dresses of buffers containing data, they requested. This
design avoids additional memory copies of the buffers
allocated by the computing cores and buffers the coor-
dinator uses to submit I/O operations. Table 1 gives an
example of how file read operation is processed by the
computing cores and the coordinator.

The asymmetric collective I/O may be utilized as

3



intra-node optimizations for a hierarchical inter-node
collective I/O (Figure 4). If a node is configured with
multiple multicore processors, the coordinators from
each processor negotiate with each other, aggregate
I/O requests across processors, and chose one coor-
dinator to send requests, on behalf of all cores of the
node. The I/O operations may be further optimized by
using collective I/O of MPI-IO, if multiple nodes with
multicore processors are involved. One coordinator
from each node first aggregates I/O requests of mul-
tiple cores within the node, then the coordinators rep-
resenting each node use MPI-IO to further aggregate
I/O operations, and permute data among nodes. After
the completion of inter-node collective I/O, the coor-
dinator distributes data to multiple cores by assigning
them a correspondent buffer address.

In most parallel applications, each process is desig-
nated to process one part of an entire dataset during the
initialization phase. I/O performance may be further
improved by assigning contiguous dataset to the pro-
cessors belonging to the same node, instead of waiting
for the moment when I/O requests are issued to con-
vert non-contiguous disk accesses to contiguous ac-
cesses with collective I/O. Multicore processors in the
same node process adjoint data. Therefore, when mul-
tiple cores issue I/O requests at the same time, a simple
synchronous mechanism is able to combine the adjoint
datasets belonging to different cores into a larger con-
tiguous I/O access for sending datasets to a disk server.
At the initialization phase, a contiguous dataset is as-
signed to a node, and inside the node, the coordinator
eventually decomposes the dataset and assigns the sub-
set to each core.

3 Implementation and Evaluation

We are implementing the asymmetric collective I/O
and integrating it into MPI-IO packages (Figure 5)
reusing the collective IO system call interface pro-
vided by MPI-IO. Our add-in component distinguishes
between intra-node and inter-node collective I/O and
optimizes I/O performance for multicore processors.
Once the proof-of-concept prototype is complete, we
plan to use a parallel I/O benchmark, such as NASA
BTIO benchmarks [1], to evaluate our design under
various configurations of multiple nodes with multi-
core processors.

Figure 5. Software architecture of asymmetric
collective I/O.

4 Conclusions and Future Work

In this paper, we propose an asymmetric collective
I/O for multicore processors to improve multiple non-
contiguous accesses. In our configuration, one core
in each multicore processor is designated as coordi-
nator, and others are computing cores. The comput-
ing core does not really commit I/O requests to stor-
age. The coordinator aggregates multiple I/O opera-
tions into one contiguous access with data sieving on
behalf of computing cores. The coordinator allocates
contiguous memory buffers for other cores to avoid re-
dundant data copies.

The asymmetric collective I/O may be further uti-
lized as intra-node optimizations for a hierarchical
inter-node collective I/O.

References

[1] NASA Ames Research Center, NAS application I/O
(BTIO) benchmark. 1996.

[2] O. Celebioglu, A. Saify, T. Leng, J. Hsieh,
V. Mashayekhi, and R. Rooholamini. The performance
impact of computational efficiency on HPC clusters
with hyper-threading technology. Proc. of IPDPS,
2004.

[3] A. Choudhary, R. Bordawekar, M. Harry, R. Krish-
naiyer, R. Ponnusamy, T. Singh, and R. Thakur. PAS-
SION: Parallel and scalable software for input-output.
report num. SCCS-636, ECE Dept., NPAC and CASE
Center, Syracuse University, pages 38–54, September
1994.

4



[4] D. Geer. Industry trends: Chip makers turn to multicore
processors. IEEE Computer, 38(5), May 2005.

[5] X. He, L. Ou, M. Kosa, S. Scott, and C. Engelmann.
A unified multiple-level cache for high performance
storage systems. International Journal of High Per-
formance Computing and Networking, 5(1), 2007.

[6] M. Seager. Linux clusters for extremely large scien-
tific simulation. In IEEE International Conference on
Cluster Computing, 2003.

[7] W. Shi, H.-H. S. Lee, L. Falk, and M. Ghosh. An inte-
grated framework for dependable and revivable archi-
tecture using multicore processors. Proceedings of the
33rd Annual International Symposium on Computer
Architecture, June 2006.

5


