Fault Injection Framework for System Resilience
Evaluation

Thomas Naughton, Wesley Bland*, Geoffroy Vallée,
Christian Engelmann, and Stephen L. Scott

Oak Ridge National Laboratory

Computer Science and thematics Division
~ System Research Team

*University of Tennessee
Electrical Engineering and Computer Science Department

OAK
RIDGE

Mational Laboaratory

Context

e Large Scale HPC Systems
— Increased number of components
— Increased complexity (hardware/software)

e HPC Applications
— Challenged by scale
— Challenged by failures

OAK
RIDGE

National Laboratory

Motivation

e Resilience
— Keep HPC applications running in spite of failures

e Experimentation
— Investigate methods to support resilience research

e Fault Injection
— Provides technique for resilience experimentation
— Repeatable process to study failures

OAK
RIDGE

National Laboratory

Terminology

e Fault, Errors & Failures (Laprie Taxonomy, DSC’04)
— Fault — a defect in a service, may be “active” or “dormant”
— Error — an “active fault” in a service
— Failure —unsuppressed error, visible outside the service

e Fault Injection
— Purposeful introduction of faults (errors) into target/victim

— Hardware or Software
o “SWIFI” — Software Implemented Fault Injection

OAK
RIDGE

National Laboratory

Fault Injection / Testing

e First purpose: testing our research
— Inject failure at different levels: system, OS, application

— Framework for fault injection
e Controller: Analyzer, Detector & Injector
e Target system & user level targets

— Testing of failure prediction/detection mechanisms

e Mimic behavior of other systems
— “Replay” failures sequence on another system

— Based on system logs, we can evaluate the impact of different
policies

OAK
RIDGE

National Laboratory

Fault Injection

e Example faults/errors
— Bit-flips - CPU registers/memory
— Memory errors - mem corruptions/leaks
— Disk faults - read/write errors
— Network faults - packet loss, etc.

e Important characteristics
— Representative failures (fidelity)
— Transparency and low overhead
— Detection/Injection are linked

e Existing Work
— Techniques: Hardware vs. Software
— Software Fl can leverage perf./debug hardware
— Not many publicly available tools

OAK
RIDGE

National Laboratory

Related Work

e Xception — leveraged hardware supported debug/perf
monitoring capabilities

e FAUmachine — simulated faults in a user-space
process (similar to UML)

e FIG — introduce errors at library level by interposing on
calls to shared library (use LD_PRELOAD)

e NFTAPE — component-based fault injection system for
distributed environments

e Linux-FI —in kernel fault injector with current support
for areas of the memory and 10 subsystems

OAK
RIDGE

National Laboratory

Existing System Level Fault Injection

e “EXisting” source that is free & publicly available

e Virtual Machines

— FAUmachine
e Pro: focused on Fl & experiments, code available
e Con: older project, lots of dependencies, slow

— FI-QEMU (patch)
e Pro: works with ‘gemu’ emulator, code available
e Con: patch for ARM arch, limited capabilities

e Operating System

— Linux (>= 2.6.20)

e Pro: extensible, kernel & user level targets, maintained by Linux
community

e Con: immature, focused on testing Linux

OAK
RIDGE

National Laboratory

Linux Fault Injection (Linux-FI)

e Kernel supported fault injection
— Linux >=2.6.20
— Send faults to user-space (PID) and system-level (module/addr)
— Supports faults in several key kernel subsystems

e Supports injecting (as of v2.6.25.7)
— Slab errors
— Page allocation errors
— Disk 10 errors

e Interface via debugfs
— Enable Linux Fl via entries in /debug file-system

— Set probability for given fault
o Example: 0 (never) ...to... 100 (always)

OAK
RIDGE

National Laboratory

Basic Criteria for FI Framework

e Simplicity

— Easy to setup, define and perform Fl experiments

e Versatility

— Support experiments at different levels of software stack
e User and Kernel level

e Reproducibility
— Framework should allow for reproducible experiments

e Distributed environments
— Experiments on local & remote nodes; physical & virtual machines

OAK
RIDGE

National Laboratory

Fault Injection Architecture

e Driver
— Interface between user and framework

e Controller
— Manages life-cycle of components (create, run, terminate)

e Analyzer
— Responsible for collating/processing experiment info
— Interprets events for a given detector/injector configuration

e Injector
— Generates a fault (error) in a given victim/target

e Detector
— Detects a failure in a given victim/target

OAK
RIDGE

National Laboratory

Fault Injection Architecture

X
]

Analyzer

Victim/Target

OAK
RIDGE

National Laboratory

Evaluation

e Initial framework implementation
— Prototype called finject

e Preliminary evaluation
— Memory/register based fault injection

e TWO experiments
e Experiment |: ptrace based injector
e Experiment Il: Linux-Fl based injector

OAK
RIDGE

National Laboratory

FInject Input File

e Experiment file: “experiment.txt”

— Used to express type of failure & experiment parameters
— One experiment per line

finject experiments

Format:

fault_type : fault mode : fault_args : victim_host : flags

memory : intermittent : app="tmp/fileptr’ : ubuntu-vm : finject='kern-memory',dargs='50'
register : permanent : app='/tmp/loopnest-forever* : localhost : finject="user-memory’

* Note, currently only minimal subset of input fields are supported

e Usage
Jfinject --file experiment.txt

OAK
RIDGE

National Laboratory

FInject Config File

e Framework config file: “finject.conf”
— Used to group compatible injectors-detectors-analyzers
— Determines backend modules used by framework for experiments

finject experiment settings
[user-memory]

injector=injectors/frob-reg-injector
detector=detectors/child-watcher
—analyzers/basic-counter

OAK
RIDGE

National Laboratory

Experiment |: Ptrace based injector

e Injects CPU register errors (bit-flips) via ptrace()

e Finject Components

— Target: “loopnest-forever”
e App that runs infinite loop printing PID & counter

— Analyzer: “basic-counter”
e Counts labeled events from Detector & Injector

— Detector: “child-watcher”
e Starts app & watches/reports child exit status to Analyzer
— Injector: “frob-reg-injector”
e Injects bit-flip in register value for an app (PID) & notifies Analyzer

OAK
RIDGE

National Laboratory

Experiment | (cont.)

e On average the dummy application failed after sending
approximately 22 faults (register bit-flips)

e As expected the application spent almost all time in a
library write routine printing the output, which wasn'’t
esp. sensitive to the register based errors

| Field | Value | Description |

Count (vietims) 100 Number of victim application instances
Total (injections) | 2197 Number of injected failures for all runs
Minimum 1 Number of injections to victim failure
Maximum 08 Number of injections to victim failure
Mean 21.97 Number of injections to victim failure
Median 17 Number of injections to victim failure

Mode 4 Number of injections to victim failure
Std.Dev. 21.419 | Number of injections to victim failure

Table 1: Statistics associated with Experiment-I (register bit-flip)

OAK
RIDGE

National Laboratory

Experiment |l: Background on Memory

e Linux memory allocation
— Generic pages
— Object cache (SLAB)

e SLAB

— Cache of typed memory objects
— Reuse freed memory objects (performance)
— Listing of object types & statistics via /proc/slabinfo

e Example
— Maintain cache of file pointer (“filp”) objects

#include <stdio.h>
FILE *tmpfile(void);

OAK
RIDGE

National Laboratory

Experiment Il: Linux-FI based injector

e Injects memory allocation errors for ‘filp’ SLAB objects
via Linux-Fl

e Finject Components
— Target: “fileptr”
e Creates temporary file(s) & handle via tmpfile()

— Analyzer: “basic-counter”
e Counts labeled events from Detector & Injector

— Detector: “fileptr-watcher”

e Starts app & watches child STDOUT and exit status, notifies Analyzer
— Injector: “linux-fi-injector”

e Just report kernel generated faults to Analyzer

e Actual injector is the Linux-Fl subsystem

OAK
RIDGE

National Laboratory

Future Work

e Finalize initial finject prototype
— Framework itself
— Injector/Detectors: Linux-FI (SLAB) & ptrace

e Fault types/methods
— Identify representative failures for HPC systems
— Determine how best to perform injection/detection

e Anomaly analysis
— Combine tool with current anomaly analysis prototype
— Investigate anomaly/failure correlation

OAK
RIDGE

National Laboratory

Conclusion

e Resilience research needs platforms/tools for
repeatable experimentation

e Fault injection provides a useful mechanism to
perform repeatable testing and development

e Proposed fault injection framework provides basis for
building resilience testbeds/environments

e Prototype leveraged ptrace(2) and Linux-Fl
— CPU register bit flips
— Linux SLAB allocation errors (type ‘filp’)

OAK
RIDGE

National Laboratory

Resources
http://www.csm.ornl.gov/srt

Flow of FInject Experiment

1. Driver: reads and processes list of experiments

2. Driver: invokes Controller with an experiment

3. Controller: reads framework conguration (policy) settings %
4. Controller: redirects STDERR for children E
5. Controller: starts Analyzer
_ Analyzer
6. : routes Detector/Injector STDOUT to Analyzer STDIN
7. : starts Detector

8. Detector: starts victim App, watches/reports to Analyzer
9. . starts Injector

10. Injector: victimizes App, reports to Analyzer

11. : waits on Detector/Injector
12. : sends results to Controller

13. Controller: prints results and returns to Driver

OAK
RIDGE

National Laboratory

	Fault Injection Framework for System Resilience Evaluation
	Context
	Motivation
	Terminology
	Fault Injection / Testing
	Fault Injection
	Related Work
	Existing System Level Fault Injection
	Linux Fault Injection (Linux-FI)
	Basic Criteria for FI Framework
	Fault Injection Architecture
	Fault Injection Architecture
	Evaluation
	FInject Input File
	FInject Config File
	Experiment I: Ptrace based injector
	Experiment I (cont.)
	Experiment II: Background on Memory
	Experiment II: Linux-FI based injector
	Future Work
	Conclusion
	Flow of FInject Experiment

