
Fault Injection Framework for System Resilience
Evaluation

Thomas Naughton, Wesley Bland*, Geoffroy Vallée,
Christian Engelmann, and Stephen L. Scott

Oak Ridge National Laboratory
Computer Science and Mathematics Division

System Research Team

*University of Tennessee
Electrical Engineering and Computer Science Department

Context

• Large Scale HPC Systems
− Increased number of components
− Increased complexity (hardware/software)

• HPC Applications
− Challenged by scale
− Challenged by failures

Motivation

• Resilience
− Keep HPC applications running in spite of failures

• Experimentation
− Investigate methods to support resilience research

• Fault Injection
− Provides technique for resilience experimentation
− Repeatable process to study failures

Terminology

• Fault, Errors & Failures (Laprie Taxonomy, DSC’04)
− Fault – a defect in a service, may be “active” or “dormant”
− Error – an “active fault” in a service
− Failure – unsuppressed error, visible outside the service

• Fault Injection
− Purposeful introduction of faults (errors) into target/victim
− Hardware or Software

• “SWIFI” – Software Implemented Fault Injection

Fault Injection / Testing

• First purpose: testing our research
− Inject failure at different levels: system, OS, application
− Framework for fault injection

• Controller: Analyzer, Detector & Injector
• Target system & user level targets

− Testing of failure prediction/detection mechanisms

• Mimic behavior of other systems
− “Replay” failures sequence on another system
− Based on system logs, we can evaluate the impact of different

policies

Fault Injection

• Example faults/errors
− Bit-flips - CPU registers/memory
− Memory errors - mem corruptions/leaks
− Disk faults - read/write errors
− Network faults - packet loss, etc.

• Important characteristics
− Representative failures (fidelity)
− Transparency and low overhead
− Detection/Injection are linked

• Existing Work
− Techniques: Hardware vs. Software
− Software FI can leverage perf./debug hardware
− Not many publicly available tools

Related Work

• Xception – leveraged hardware supported debug/perf
monitoring capabilities

• FAUmachine – simulated faults in a user-space
process (similar to UML)

• FIG – introduce errors at library level by interposing on
calls to shared library (use LD_PRELOAD)

• NFTAPE – component-based fault injection system for
distributed environments

• Linux-FI – in kernel fault injector with current support
for areas of the memory and IO subsystems

Existing System Level Fault Injection

• “Existing” source that is free & publicly available

• Virtual Machines
− FAUmachine

• Pro: focused on FI & experiments, code available
• Con: older project, lots of dependencies, slow

− FI-QEMU (patch)
• Pro: works with ‘qemu’ emulator, code available
• Con: patch for ARM arch, limited capabilities

• Operating System
− Linux (>= 2.6.20)

• Pro: extensible, kernel & user level targets, maintained by Linux
community

• Con: immature, focused on testing Linux

Linux Fault Injection (Linux-FI)

• Kernel supported fault injection
− Linux >= 2.6.20
− Send faults to user-space (PID) and system-level (module/addr)
− Supports faults in several key kernel subsystems

• Supports injecting (as of v2.6.25.7)
− Slab errors
− Page allocation errors
− Disk IO errors

• Interface via debugfs
− Enable Linux FI via entries in /debug file-system
− Set probability for given fault

• Example: 0 (never) …to… 100 (always)

Basic Criteria for FI Framework

• Simplicity
− Easy to setup, define and perform FI experiments

• Versatility
− Support experiments at different levels of software stack

• User and Kernel level

• Reproducibility
− Framework should allow for reproducible experiments

• Distributed environments
− Experiments on local & remote nodes; physical & virtual machines

Fault Injection Architecture

• Driver
− Interface between user and framework

• Controller
− Manages life-cycle of components (create, run, terminate)

• Analyzer
− Responsible for collating/processing experiment info
− Interprets events for a given detector/injector configuration

• Injector
− Generates a fault (error) in a given victim/target

• Detector
− Detects a failure in a given victim/target

Fault Injection Architecture

Controller

Analyzer

Injector Detector

Victim/Target

Driver

Evaluation

• Initial framework implementation
− Prototype called finject

• Preliminary evaluation
− Memory/register based fault injection

• Two experiments
• Experiment I: ptrace based injector
• Experiment II: Linux-FI based injector

FInject Input File

• Experiment file: “experiment.txt”
− Used to express type of failure & experiment parameters
− One experiment per line

finject experiments
Format:
fault_type : fault_mode : fault_args : victim_host : flags
memory : intermittent : app='/tmp/fileptr‘ : ubuntu-vm : finject='kern-memory',dargs='50'
register : permanent : app='/tmp/loopnest-forever‘ : localhost : finject='user-memory'

* Note, currently only minimal subset of input fields are supported

• Usage
./finject --file experiment.txt

FInject Config File

• Framework config file: “finject.conf”
− Used to group compatible injectors-detectors-analyzers
− Determines backend modules used by framework for experiments

finject experiment settings
[user-memory]

injector=injectors/frob-reg-injector
detector=detectors/child-watcher
analyzer=analyzers/basic-counter

Experiment I: Ptrace based injector

• Injects CPU register errors (bit-flips) via ptrace()

• Finject Components
− Target: “loopnest-forever”

• App that runs infinite loop printing PID & counter
− Analyzer: “basic-counter”

• Counts labeled events from Detector & Injector
− Detector: “child-watcher”

• Starts app & watches/reports child exit status to Analyzer
− Injector: “frob-reg-injector”

• Injects bit-flip in register value for an app (PID) & notifies Analyzer

Experiment I (cont.)

• On average the dummy application failed after sending
approximately 22 faults (register bit-flips)

• As expected the application spent almost all time in a
library write routine printing the output, which wasn’t
esp. sensitive to the register based errors

Experiment II: Background on Memory

• Linux memory allocation
− Generic pages
− Object cache (SLAB)

• SLAB
− Cache of typed memory objects
− Reuse freed memory objects (performance)
− Listing of object types & statistics via /proc/slabinfo

• Example
− Maintain cache of file pointer (“filp”) objects

#include <stdio.h>
FILE *tmpfile(void);

Experiment II: Linux-FI based injector

• Injects memory allocation errors for ‘filp’ SLAB objects
via Linux-FI

• Finject Components
− Target: “fileptr”

• Creates temporary file(s) & handle via tmpfile()
− Analyzer: “basic-counter”

• Counts labeled events from Detector & Injector
− Detector: “fileptr-watcher”

• Starts app & watches child STDOUT and exit status, notifies Analyzer
− Injector: “linux-fi-injector”

• Just report kernel generated faults to Analyzer
• Actual injector is the Linux-FI subsystem

Future Work

• Finalize initial finject prototype
− Framework itself
− Injector/Detectors: Linux-FI (SLAB) & ptrace

• Fault types/methods
− Identify representative failures for HPC systems
− Determine how best to perform injection/detection

• Anomaly analysis
− Combine tool with current anomaly analysis prototype
− Investigate anomaly/failure correlation

Conclusion

• Resilience research needs platforms/tools for
repeatable experimentation

• Fault injection provides a useful mechanism to
perform repeatable testing and development

• Proposed fault injection framework provides basis for
building resilience testbeds/environments

• Prototype leveraged ptrace(2) and Linux-FI
− CPU register bit flips
− Linux SLAB allocation errors (type ‘filp’)

Resources
http://www.csm.ornl.gov/srt

Flow of FInject Experiment

1. Driver: reads and processes list of experiments

2. Driver: invokes Controller with an experiment

3. Controller: reads framework conguration (policy) settings

4. Controller: redirects STDERR for children

5. Controller: starts Analyzer

6.6. AnalyzerAnalyzer: routes Detector/Injector STDOUT to Analyzer STDIN

7.7. AnalyzerAnalyzer: starts Detector

8. Detector: starts victim App, watches/reports to Analyzer

9.9. AnalyzerAnalyzer: starts Injector

10. Injector: victimizes App, reports to Analyzer

11.11. AnalyzerAnalyzer: waits on Detector/Injector

12.12. AnalyzerAnalyzer: sends results to Controller

13. Controller: prints results and returns to Driver

Controller

Analyzer

Injector Detector

Victim/Target

Driver

	Fault Injection Framework for System Resilience Evaluation
	Context
	Motivation
	Terminology
	Fault Injection / Testing
	Fault Injection
	Related Work
	Existing System Level Fault Injection
	Linux Fault Injection (Linux-FI)
	Basic Criteria for FI Framework
	Fault Injection Architecture
	Fault Injection Architecture
	Evaluation
	FInject Input File
	FInject Config File
	Experiment I: Ptrace based injector
	Experiment I (cont.)
	Experiment II: Background on Memory
	Experiment II: Linux-FI based injector
	Future Work
	Conclusion
	Flow of FInject Experiment

