
Job-Site Level Fault Tolerance for Cluster and Grid environments*

Kshitij Limaye1, Box Leangsuksun1, Zeno Greenwood1, Stephen L. Scott2, Christian
Engelmann2,3, Richard Libby4 and Kasidit Chanchio5
1Louisiana Tech University, Ruston, LA 71270, USA

2Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
³ The University of Reading, Reading, RG6 6AH, UK

4Enterprise Platforms Group, Intel Corporation

5Thammasat University, Thailand

ksl007@latech.ed, box@latech.edu, greenw@phys.latech.edu,
scottsl@ornl.gov, engelmannc@ornl.gov, richard.m.libby@intel.com, kasidit@cs.tu.ac.th

ABSTRACT

In order to adopt high performance clusters and
grid computing for mission critical applications,
fault tolerance is a necessity. Common fault
tolerance techniques in distributed systems are
normally achieved with checkpoint-recovery and
job replication on alternative resources, in cases
of a system outage. The first approach depends
on the system’s MTTR while the latter approach
depends on the availability of alternative sites to
run replicas. There is a need for complementing
these approaches by proactively handling
failures at a job-site level, ensuring the system
high availability with no loss of user submitted
jobs. This paper discusses a novel fault tolerance
technique* that enables the job-site recovery in
Beowulf cluster-based grid environments,
whereas existing techniques give up a failed
system by seeking alternative resources. Our
results suggest sizable aggregate performance
improvement during an implementation of our
method in Globus-enabled HA-OSCAR. The
technique called “Smart Failover” provides a
transparent and graceful recovery mechanism
that saves job states in a local job-manager
queue and transfers those states to the backup
server periodically, and in critical system events.
Thus whenever a failover occurs, the backup
server is able to restart the jobs from their last
saved state.

* Research supported by Department of Energy contract
DE-FG02-05ER25659 and Center for Entrepreneurship and
Information Technology, Louisiana Tech University..
+Research supported by the Mathematics, Information and
Computational Sciences Office, Office of Advanced
Scientific Computing Research, Office of Science, U. S.
Department of Energy, under contract No.DE-AC05-
00OR22725 with UT-Battelle, LLC.

1. Introduction

Grid computing [1] is fast becoming a promising
technology due to the collaboration opportunities
it creates for organizations to work together to
achieve common goals through resource sharing.
As more and more critical applications shift to
the Grid platform, it becomes increasingly
important to ensure their high availability and
fault tolerance.

Collaborating organizations usually provide
individual high performance clusters as resources
which contribute towards the computational
power of the grid. Though the nature of the Grid
is distributed, inevitable failures can make a site
(a member of the Virtual Organization (VO),
which can be a computational cluster resource of
that VO) unusable, reducing the number of
resources available and in turn, slowing down
the overall speed of computation [2].

A cluster (Beowulf style) head node mostly
acts as a single entry point to a site and provides
necessary services, such as job schedulers. If job
sites are made up of clusters, then the failure of
the single head node of a cluster causes these
services to be unavailable for the time that the
head node is nonfunctional. HA-OSCAR [3]
removes this single point of failure using
component redundancy and imparts self healing
capabilities for critical HPC services. While
some approaches [13][14][17] leave a failed job
site to heal on its own, we focus on guaranteeing
the high availability of the site coupled with job-
level fault resilience.

The current active/hot-standby model in HA-
OSCAR provides an excellent solution for
stateless services, where the transition from the
primary head node to the backup is executed
smoothly. However, this mechanism is not

graceful if stateful services, such as job
management, are involved. Our research effort
concentrates on such a graceful transition to the
backup. We aim to provide a transparent
recovery that includes a completion of currently
running jobs after a failover.

This paper proposes a Grid-aware fault
resilient mechanism in a Beowulf style cluster
based job-site and experimental study of the
“Smart Failover” feature in HA-OSCAR. We
aim towards a graceful recovery in terms of job
management by monitoring the job queue and
keeping the standby server updated with the
changes to it..

When jobs are submitted through Globus [4], a
job-manager is invoked to submit the job to the
local scheduler and return the output to the
submitter. However, in a case of job-site failure,
this submission information is normally
unrecoverable even if the job has completed but
not yet returned. An enhancement of the Globus
job submission mechanism is needed in order to
be aware of the failure and be able to recover
transparently. We have implemented the “Smart
Failover” feature to address these issues.

This paper is organized as follows. Section 2
describes related and ongoing research. In
Section 3, we present the proposed framework
for Smart Failover in HA-OSCAR. Section 4
explains our algorithm used in updating the
backup server and the necessary enhancement
for Grid job retrieval clients. Implementation
details and experimental setup are presented in
Section 5. Section 6 discusses our results.
Section 7 summarizes the presented research and
a brief description of future work.

2. Related Research

Globus has become the de facto standard for grid
computing. The Globus tool kit consists of a set
of tools and libraries to support grid applications.
Fault tolerance approaches in grid systems are
commonly achieved with checkpoint-recovery
and job replication [13][14] [17], which create
replicas of running jobs and hoping that at least
one of them succeeds in completing the job.
Weissman and Womack [13] introduced a
scheduling technique for a distributed system
which suffers from increased job delays due to
insufficient number of remote sites to run the
replicas. Abawajy [14] achieved grid fault
tolerance by scheduling jobs in spite of
insufficient replicas. His approach requires at
least one site to volunteer for running the replica
before the execution can start. In [17], jobs

replicas are submitted to different sites which
return the checksum of the result. The
checksums received from various sites are then
compared to ensure whether majority results are
the same, in order to avoid a result from a
malicious resource, which delays the retrieval of
result until a majority is reached. Therefore, job
delay increase may result not only from failures
but also from the verification overhead.
Wrzesinska et al propose a solution [18] that
avoids the unneeded replication and restarting of
jobs by maintaining a global result table and
allowing orphaned jobs to report to their grand-
parent incase their parent dies. However, their
approach is strictly for divide-and-conquer type
of applications and cannot be extended to
environments where the sub-processes require
communication.
 “Grid Workflow” [8] leaves recovery
decisions to the submitter of the job via user-
defined exception handling. Grid Workflow
employs various task-level error-handling
mechanisms, such as retrying on the same site,
running from the last checkpoint, and replicating
to other sites, as well as masking workflow level
failure. Nonetheless, most task-level fault
tolerant techniques,[8][13][14] attempt to restart
the job on alternative resources in the Grid in an
event of a host crash. Hence, there is a need for
complementing these approaches by improving
failure-handling at the site level, especially in a
cluster computing environment.
 LinuxHA [5] is a tool for building high
availability Linux clusters using data replication
as the primary technology. However, LinuxHA
only provides a heartbeat and failover
mechanism for a flat-structure cluster which does
not easily support the Beowulf architecture
commonly used by most job sites.

OSCAR is a software stack for deploying and
managing Beowulf clusters [6][7]. This toolkit
includes a GUI that simplifies cluster installation
and management. Unfortunately, a detrimental
factor of the Beowulf architecture is the single
point of failure (SPoF). A cluster can go down
completely with the failure of the single head
node. Hence, there is a need to improve the
high-availability (HA) aspect of the cluster
design. The recently released HA-OSCAR
software stack is an effort that makes inroads
here. HA-OSCAR deals with availability and
fault issues at the master node with multi-head
failover architecture and service level fault
tolerance mechanisms.

PBS [9] and Condor [16] are resource
management software widely used in the cluster

community. While a HA solution [12] for
Condor job-manager exists, there a dearth of
such solutions for the PBS job manager. The
failure of Condor Central Manager (CM) leads to
an inability to match new jobs and respond to
queries regarding job status and usage statistics.
Condor attempts to eliminate the single point of
failure (i.e. the Condor CM) by having multiple
CMs and a high availability daemon (HAD)
which monitors them and ensures one of them is
active at all times. Similarly, HA-OSCAR’s self-
healing core monitors the pbs_server among
other critical grid services (e.g. xinetd,
gatekeeper etc), to guarantee the high availability
in an event of any failure.

3. Proposed Framework

Consider a job site where 100 jobs have
been submitted to a local cluster scheduler, a
failure at the site-manager (e.g. a cluster head
node) will result in the outage of the total site.
Users either wait for the site-manager to be fully
recover or they can use a HA solution such as
HA-OSCAR to recover from the failure within
seconds.

The current HA-OSCAR self-healing
mechanism transparently provides HA for
critical services at the site-manager. However, it
does not support graceful service migration for
job schedulers and thus users must resubmit the
incomplete jobs to the standby head node. R.
Rabbat and T. McNeal [20] give an example of
NFS service migration, achieved by use of either
shared storage between the primary and the
standby to store critical files or by migration of
these critical files to the standby. Similarly we
need to update the standby (backup) with the
temporary job files (containing a specification of
the executable to use, stdout/stderr, status,
etc) of submitted jobs to enable it to start those
jobs gracefully on the backup. With the use of
the above technique, in case of a head node
outage, running and queued jobs will be
automatically recovered on the backup.

 Whenever there is a remote site failure, the
connected clients need to either wait for the
remote site to be available again or they need to
connect to another alternative resource to get
required service. G. Ahrens [15] describes the
need for the client to be “Cluster Aware”, i.e.
being intelligent enough to connect to an
alternative node in case of failure. In order to
fully utilize the “Smart failover feature the naïve
grid job clients need to be modified. The grid
based job clients need to be “failover aware” to

take advantage of the Smart failover feature. We
address the issues by which grid job retrieval
mechanisms, such as globus-job-run,
globus-job-submit and globusrun, are
unable to fetch the output/error log for submitted
jobs after a remote site fails and then recovers, as
the job handle/jobIDs become invalid after a
failure. Hence there is a need to enhance the
Globus job retrieval mechanism, so that a
failover in the cluster job-site is transparent to
the client. This removes the inability of the client
to retrieve the job status and output/error log in
case of remote failures. In addition, it alleviates
the need for job replication to other sites, and
hence preserves all computing-node resources
when the outage is only caused by the head node.

3.1 Basic components

Figure 1 illustrates the HA-OSCAR smart
failover mechanism in a Grid environment. The
framework consists of 3 components: the event
monitor, job monitor and the backup updater.
Critical system events, such as repeated service
failure, memory leaks and system overload, are
analyzed by the event monitor using the HA-
OSCAR monitoring core. The second
component, job monitor, is a daemon that
periodically monitors a job queue at a user
specified interval. It can also be triggered by the
event monitor in a case of critical events.

Whenever the job queue monitor senses a
change in the job queues, it invokes the backup
updater to synchronize the standby server with
the changes in job queue and other critical
directories. This approach, a combination of
periodic and event triggered updates, helps to
keep the standby server up-to-date with the
current job queue status and results in a graceful
failover procedure.

Figure 1 HA-OSCAR Smart Failover Feature

in a Grid Scenario

3.2 Grid Aware Failover

A mapping between the Globus assigned job
id (GjobID) and the scheduler assigned job id
(SjobID) is the key information for transparent
head node fail-over and job restart mechanisms
in our HA-OSCAR cluster. Whenever a new job
has been added, the job queue monitor
determines whether it has been submitted
through a Globus mechanism or the local
scheduler job submission primitives. If the newly
added job has been submitted through Globus,
the job queue monitor maps the GjobID to
SjobID. For a later retrieval by the client, this
mapping is synchronized to the Globus job
directory on the Standby server using the backup
updater.
 Considering a situation, where the site
manager has failed (after an update) and the
standby server has taken over: The failover-
aware client is able to use the mapping from the
GjobID to SjobID to find the correct status of
his/her jobs.

The mapping enables the transparent recovery
during the failover. For instance, the scheduler
on the standby server will restart all jobs in its
job queue with the same jobID assigned by the
scheduler on the primary server. The jobs will be
restarted on the cluster following its application
specific configurations. We assume that the jobs
started earlier by the primary do not interfere
with the restarted jobs and will eventually
terminate after the failure of the primary head
node is detected. Using the mapped scheduler
jobID, the status of the job in the job queue can
be retrieved from the job scheduler and the
appropriate output can be returned.

3.3 Event Monitoring System

The event monitoring system described
previously monitors the critical system events
only. Figure 2 shows the proposed event
monitoring and its inter-working relationship
within our framework. A scheduler wrapper will
notify our event monitor for any job addition and
completion in the scheduler job queue. This
eliminates the need for periodic monitoring,
which can lead to loss of newly added jobs if a
failure occurs between two consecutive checks.

The event notification keeps the standby
server always up-to-date. This also reduces the
amount of processing needed in case of a large
job queue. For example, in a “JOB-ADD” event,
the event monitoring system notifies the job
queue monitor to scan just the tail of the job

queue for additions, alleviating the need to scan
the entire job queue for additions and
completions each time.

Figure 2 Proposed Event Monitoring System

4. Client & Server-Side Algorithms

4.1. Client-Side Algorithm

In our client side algorithm in Figure 3, a
user submits a job using the user-specified
resource (e.g. a remote site name) and resource
specification language (RSL). Our failover-
aware approach handles two failure scenarios: 1)
a JOB_STATE_FAILED is returned to a
callback function and 2) when a
JOB_STATE_DONE is returned, but the
stdout/stderr (output and error log) is not present
at the specified location. The client has a retry
mechanism based on user-specified failover
duration. The relative job location derived from
the GjobID is used to get the corresponding
SjobID stored in it. This SjobID is used to find
the status of the job in the scheduler job queue.

Figure 3 Failover Client Algorithm

Figure 4 Event Sequence Diagram of Smart
Failover Mechanism

 Figure 4 illustrates a sequence diagram of
the smart failover feature. Whenever an outage
occurs at the head node, the standby takes over
and restarts the job queue from the point of the
last update.

Since a few local schedulers, such as
OpenPBS, do not support checkpoint/restart
recovery, our framework also addresses in-
progress job fault tolerance with a reliability-
aware checkpointing, an MPI-based check-
pointing mechanism. Details of our checkpoint
work can be found in [19]. For jobs submitted
using the scheduler job submission primitives,
the no modification to the submission/retrieval
mechanism is needed and the scheduler would
write the output/error log files to user specified
directories.

4.2. Server-Side Algorithms

Figure 5 and figure 6 detail the backup
updater algorithm with and without scheduler
supported check-pointing. We designed our
updater algorithm to support both, schedulers
with checkpoint support and those without one.
Hence, both algorithms have been given
separately.
Our algorithms maintain two lists called
old_list and new_list for updating the
standby. New_list contains a list of jobs in
queue obtained by scanning the job queue at that
instant while the old_list is the previous list
of jobs in the queue.

In the check-point-aware algorithm, we first
check if every job in old_list is present in

new_list, which is the latest snapshot of the
job queue. If we find matching entries then we
check whether they are running.

Figure 5 Backup Server Update Algorithm
with Scheduler Supported Checkpointing

If the job is in new_list and it is running
then we send a message to the scheduler to
checkpoint it. If a job in old_list is not
present in the new_list, then it implies that it
got completed and we remove its associated files
from a temporary directory, which is used to
sync the backup. After comparing the
old_list with the new_list, if the
new_list has more jobs then it implies that
these jobs were newly added. We proceed ahead
from the job that is newer than the jobs in old
list. If the job in question is queued then we copy
its corresponding job files to the temporary
directory that we sync up with the backup. We
check whether it has been submitted through
Globus job submission mechanism; if yes, then
we map the SjobID to the GjobID. If the job
is in a running state then we check-point it.

 Figure 6 Backup Server Update Algorithm
with Scheduler Supported Checkpointing

 In our updating algorithm where check-
pointing is not supported by the scheduler, we
start by comparing the head and tail jobIDs in
the new_list with corresponding ones in
old_list. If both of them are the same, that
means that the queue has not changed and we
can avoid the processing. This proves helpful
when the queue length is long and processing of
the whole queue will incur significant CPU
processing. The remaining algorithm is similar to
that with check-point support with the only
difference that we do not take any action if the
job is in running state. Also, as specified earlier,
we do not transfer status of jobs that are in
running state. So, if primary server fails while a
job is running then that job is restarted on the
backup as its temporary job files contain the job
status as “queued” (transferred earlier). After the
update algorithm finishes we replicate the temp
directory (containing the changes in the job
queue, if any), the user directories and the
dataset disk (containing the datasets for jobs to
run) to the backup to keep it up to date with the
job related files and datasets.

5. Implementation and Experimental
results

Figure 7 shows the “Task Level” fault

tolerance achieved using “grid workflow” [8]. In

“grid workflow”, the user defines actions to be
taken in a failure via a user-programmed
exception handling. Our approach enhances the
task-level fault tolerance by ensuring that the site
remains highly available and the user can
retrieve his/her output in spite of a failure.

Figure 8 shows our experimental setup. The
head node was running the Redhat 9 operating
system. OSCAR 3.0 was used to build a cluster
and setup environment between the head node
and multiple compute nodes. We overlaid
Globus 3.2 on the head node; its interface to the
OpenPBS job-manager was also configured. We
later installed HA-OSCAR 1.0 on the head node
in order to create a dual head Beowulf cluster.
HA-OSCAR handles a re-establishment of NFS
between the standby and the compute nodes after
the failover.

Figure 7 .Task-Level Fault Tolerance through
Grid Workflow

Figure 8: Experimental Setup during Failover

 The job queue monitor and backup updater

were running on the head node, periodically
updating the standby with the critical directories
and mapping from Globus GjobID to scheduler
assigned SjobID (i.e. PBS in our experiment).
The failover-aware client, a wrapper over

existing Globus interface (client not written from
scratch), was written in Python using PyGlobus
submitting MPI jobs to the PBS scheduler.

The failover aware client would take the
remote machine name and the input RSL
submitted to the job and failover time of the
remote server. The average failover time with
respect to HA-OSCAR is 20 seconds which
includes time needed to clone the primary
servers public and private IP, restart services
such as network, Xinetd, NFS, Maui and
pbs_server as well as resume all pending jobs on
the standby head node. The 20-second delay was
also accounted for a re-establishment of NFS
between the standby and compute nodes. It is
important to note that the delay introduced will
depend on whether the last running jobs on
primary had just started or were near completion.
In the first case the delay introduced will not be
substantial but in the second case, as the status of
the job is “queued” at the backup, the last
running jobs will be restarted, hence increasing
delay for next jobs.
 The event monitor as of now only triggers the
job queue monitor in case of critical system
event. To mimic the behavior of scheduler
generated events, namely JOB_ADD,
JOB_COMPLETE we generated events
whenever specific temp job files got created (on
job addition) and deleted (on job completion)
using the File Alteration Monitor (FAM)
interface. This causes the event monitor to
invoke the job queue monitor to scan the
head/tail of the job queue depending on the type
of event generated. Whenever a job is submitted
to PBS, two temporary job files are created,
namely jobid.C.JB and jobid.C.SC. We used
FAM to check the creation and deletion of these
files to get notification of job addition and
deletion.
 We submitted jobs using the ‘qsub’
mechanism in PBS (for cluster based job
submission) and using modified failover client
“grid-job-submit” for grid based submissions. In
the first case (cluster based submissions), the
scheduler on the standby (after failover) writes
the output and error log to the specified files,
enabling the remote user to connect anytime to
check status of his job.

 For grid based job submissions, we validated
that the client was able to transparently recover
from the remote failure and provided the user the
correct status. The command “grid-job-submit”
behaves similar to its Globus counterpart, only
differing in a way that if the stdout/stderr
(output and error log) haven’t been specified it

displays the output before exiting. When a job is
submitted through ‘globus-job-submit’, the
output is grabbed using the ‘globus-job-get-
output’.

6. Results and Analysis

In this section, we discuss and analyze
results and observations during the experiments.
First, we compare the total time needed for jobs
submitted through scheduler primitives (not
through the grid), to run with and without “smart
failover”. As discussed in the last section, the
grid-aware HA-OSCAR failover is approx 20
seconds.

JobID Status
before
failure

Without
Smart

Failover

With Smart
Failover

1 Running Job lost (1.43 min +
20 sec)

2 Queued (Based on
MTTR)

(1.43 min +
2.03 min)

Table 1 Comparison of with and without
Smart Failover for top two jobs in queue

 Table 1 gives the comparison of with and
without “Smart Failover” approaches for a job
queue. Each case consists of two jobs with run
times of 1.43 minutes, one running and one
queued after it. In case of “Without Smart
Failover” approach, if we have a failure at the
head node then we lose the last running job and
the queued job is resumed after Mean Time to
Repair (MTTR). The MTTR could range from
two min (simple reboot) to a few hours
depending on the severity of the problem. In the
case of the “With Smart Failover” approach, as
we have the last running job in queued status on
the backup, it is restarted after the failover time.
The queued job is resumed after the last running
job is completed.

%CPU overhead for backup updater & job queu
monitor during successive runs, with 2 min interval

between each run

0

0.2
0.4

0.6

0.8
1

1.2

5 10 20 30 40 50

Number of new jobs added

%
C

P
U

 o
v

er
he

a
d

%CPU overhead at
job addition
discovery

%CPU overhead at
next successive
check after job
addition discovery

%CPU overhead at
next succcessive
check

Figure 9 CPU Usage by Backup Updater and

Job Queue Monitor

 Figure 9 shows the percentage of CPU needed
by the backup updater and job queue monitor on
successive runs, with an interval of 120 seconds
between each run, after new jobs were added.
The number of jobs added was varied from 5 to
50 and percentage of CPU used by the program
was measured using UNIX utility time.
 In Figure 9, when job queue monitor discovers
new jobs added, it incurs little CPU overhead
(0.2 % - 1 %) compared to its successive runs.
When 50 new jobs are added to the system,
during the first run, the %CPU increases to
0.959% while during next two runs, it was
0.446% and 0.326% respectively.
 For job queue replication, once a job’s
temporary files have been copied to the standby,
the specific job update will not be done unless it
completes execution. Further invocations of
backup updater and job queue monitor incurred
less usage of the CPU. It was observed that, only
when jobs are added in burst, the backup updater
and job queue monitor incurred more CPU
usage.
 As discussed earlier, the job queue monitor
analyzes the job queue for changes and the later
the backup updater replicates the changes to the
standby node. The total time to update the
backup with changes is composed of time taken
by backup updater to replicate the changes and
job queue monitor to analyze the job queue. We
measured the average time taken to replicate the
job queue and critical directories like the dataset
disk and user directories over varying number of
job additions. The number of jobs added was
varied from 50 to 500 jobs. The job queue
monitor and backup updater were invoked with
one a minute interval between successive
invocations. The total replication time needed
was calculated over 10 readings when newly
added jobs were discovered.

Number of jobs added vs Average
replication time over 10 readings

1.5
1.52
1.54
1.56
1.58
1.6

1.62
1.64
1.66
1.68
1.7

50 75 100 200 500

Number of jobs added

T
im

e
in

 s
ec

s

Figure 10 Comparison of Application

Performance

The average time needed to replicate (via
rsync) a burst of 50 jobs and associated
directories was 1.525 seconds while it gradually
increased to 1.68 seconds for 500 jobs. As can be
seen from Figure 10, the average time to
replicate the job queue and other critical
directories increases gradually compared to the
increase in the burst of jobs added.

7. Conclusion & Future Work

As cluster-based job sites increasingly become
viable resources in the Grid environments,
guaranteeing high availability of these job sites
becomes critical in order to maximize and
improve the resource utilization. There is a need
to provide the site-level fault tolerance
mechanism in clusters and grids to compliment
the task-level fault tolerance provided by
existing approaches. The earlier version of HA-
OSCAR failover was enhanced with the grid-
aware fault resilience in a context of the job
management. As discussed, the “Smart Failover”
feature in HA-OSCAR aims toward a graceful
recovery by monitoring the job queue and
replicating changes to it to the standby head
node. The proposed event monitor would
alleviate the pitfalls of periodic monitoring of
job queues by triggering the job queue monitor
on various critical system events as well as job
addition and completion events. Hence, the
standby sever is guaranteed up-to-date with a
pending job queue, till the point of the failure.

The “Failover-aware” Globus job client
together with the “Smart failover” feature, ensure
correct job status and output in spite of a remote
site failure. The mapping from the Globus
assigned jobID to the scheduler assigned jobID
helps the failover aware job client to retrieve the
correct job status and output after failover. Our
combined approaches eliminate the need for grid
users to manually keep track of remote site
failures and thus alleviating the need for re-
submission or replication of jobs to other sites.
Experimental results suggest that the “smart
failover” overhead is negligible. We intend to
make a production quality event monitoring
subsystem in the future.

8. References
[1] Ian Foster et al, “ The Anatomy of the Grid:

Enabling Scalable Virtual Organizations” ,
International J. Supercomputer Applications,
15(3), 2001.

[2] Kshitij Limaye, Box Leangsuksun, et al, "HA-
OSCAR: Grid enabled High availability

framework", 13th Annual Mardi Gras conference,
2005 "Frontiers of Grid Applications and
Technologies".

[3] C. Leangsuksun et al, “A Failure Predictive and
Policy-Based High Availability Strategy for
Linux High Performance Computing Cluster”,
The 5th LCI International Conference on Linux
Clusters, 2004.

[4] I. Foster and C. Kesselman, “Globus: A Toolkit-
Based Grid Architecture. In The Grid: Blueprint
for a Future Computing Infrastructure”, pages
259–278. MORGAN-KAUFMANN, 1998.

[5] LinuxHA Clustering Project,
http://www.linuxha.net//index.pl

[6] John Mugler, et.al. “OSCAR Clusters”,
Proceedings of the Ottawa Linux Symposium
(OLS'03), Ottawa, Canada, July 23-26, 2003.

[7] Thomas Naughton, et al. “The OSCAR Toolkit”

[8] Soonwook Hwang; Kesselman, C, “Grid
workflow: a flexible failure handling framework
for the grid”, High Performance Distributed
Computing, 2003. Proceedings. 12th IEEE
International Symposium, 22-24 June 2003,
Pages: 126 – 137.

[9] lbeaus Bayucan, Robert L. Henderson , et al,
“Portable Batch System External Reference
Specification”, MRJ Technology Solutions, May
1999.

[10] Jackson, K, “pyGlobus: a Python Interface to the
Globus Toolkit”, Concurrency and Computation:
Practice and Experience, 14 (13-15), 2002, pp.
1075-1084.

[11] J. Duell, P. Hargrove, and E. Roman, “The
Design and Implementation of Berkeley Lab’s
Linux Checkpoint/Restart”, 2002.

[12] Adding high availability to Condor Central
manager,
http://dsl.cs.technion.ac.il/projects/gozal/project_
pages/ha/ha.html

[13] J. B. Weissman and D. Womack, “Fault tolerant
scheduling in distributed networks”, Technical
Report CS-96-10, Department of Computer
Science, University of Virginia, Sep. 25 1996.

[14] J. H. Abawajy, “Fault-Tolerant Scheduling
Policy for Grid Computing systems”, 18th
International Parallel and Distributed Processing
Symposium, 04-26-04 Santa Fe, New Mexico

[15] G. Ahrens et al, �Evaluating
HACMP/6000: A Clustering Solution for High
Availability Distributed Systems.�
Proceedings of IEEE Workshop on Fault-
Tolerant Parallel, and Distributed Systems, 12-14
June 1994. Pages: 2-9.

[16] Todd Tannenbaum, Derek Wright, Karen Miller,
and Miron Livny, "Condor - A Distributed Job
Scheduler", Beowulf Cluster Computing with
Linux, The MIT Press, 2002. ISBN: 0-262-
69274-0

[17] Paul Townend, Jie Xu, “ Fault Tolerance within
Grid environment”, Proceedings of
AHM2003,http://www.nesc.ac.uk/events/ahm200
3/AHMCD/pdf/063.pdf, page 272, 2003

[18] Gosia Wrzesinska, Rob V. van Nieuwport, Jason
Maassen, Thilo Kielmann, and Henri E. Bal,
“Fault-tolerance scheduling of fine grained tasks
in Grid environment”, to be appeared in
International Journal of High Performance
Applications

[19] Y. Liu, C. B. Leangsuksun, “Reliability-aware
Checkpoint /Restart Scheme: A Performability
Trade-off”, submitted to the 2005 IEEE Cluster
Computing, Boston, MA, September 27-30, 2005

[20] R. Rabbat, T. McNeal, and T. Burke,;A High-
Availability Clustering Architecture with Data
Integrity Guarantees.� Proceedings of
the 2001 IEEE International Conference on
Cluster Computing, 2001. Pages: 178-182.

