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ABSTRACT 

In order to adopt high performance clusters and 
grid computing for mission critical applications, 
fault tolerance is a necessity. Common fault 
tolerance techniques in distributed systems are 
normally achieved with checkpoint-recovery and 
job replication on alternative resources, in cases 
of a system outage. The first approach depends 
on the system’s MTTR while the latter approach 
depends on the availability of alternative sites to 
run replicas. There is a need for complementing 
these approaches by proactively handling 
failures at a job-site level, ensuring the system 
high availability with no loss of user submitted 
jobs. This paper discusses a novel fault tolerance 
technique* that enables the job-site recovery in 
Beowulf cluster-based grid environments, 
whereas existing techniques give up a failed 
system by seeking alternative resources.  Our 
results suggest sizable aggregate performance 
improvement during an implementation of our 
method in Globus-enabled HA-OSCAR. The 
technique called “Smart Failover” provides a 
transparent and graceful recovery mechanism 
that saves job states in a local job-manager 
queue and transfers those states to the backup 
server periodically, and in critical system events. 
Thus whenever a failover occurs, the backup 
server is able to restart the jobs from their last 
saved state.  
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1. Introduction  
 
Grid computing [1] is fast becoming a promising 
technology due to the collaboration opportunities 
it creates for organizations to work together to 
achieve common goals through resource sharing. 
As more and more critical applications shift to 
the Grid platform, it becomes increasingly 
important to ensure their high availability and 
fault tolerance. 

Collaborating organizations usually provide 
individual high performance clusters as resources 
which contribute towards the computational 
power of the grid. Though the nature of the Grid 
is distributed, inevitable failures can make a site 
(a member of the Virtual Organization (VO), 
which can be a computational cluster resource of 
that VO) unusable, reducing the number of 
resources available and in turn, slowing down 
the overall speed of computation [2]. 

A cluster (Beowulf style) head node mostly 
acts as a single entry point to a site and provides 
necessary services, such as job schedulers. If job 
sites are made up of clusters, then the failure of 
the single head node of a cluster causes these 
services to be unavailable for the time that the 
head node is nonfunctional.  HA-OSCAR [3] 
removes this single point of failure using 
component redundancy and imparts self healing 
capabilities for critical HPC services. While 
some approaches  [13][14][17] leave a failed job 
site to heal on its own, we focus on guaranteeing 
the high availability of the site coupled with job-
level fault resilience. 

The current active/hot-standby model in HA-
OSCAR provides an excellent solution for 
stateless services, where the transition from the 
primary head node to the backup is executed 
smoothly. However, this mechanism is not 



graceful if stateful services, such as job 
management, are involved. Our research effort 
concentrates on such a graceful transition to the 
backup. We aim to provide a transparent 
recovery that includes a completion of currently 
running jobs after a failover. 

This paper proposes a Grid-aware fault 
resilient mechanism in a Beowulf style cluster 
based job-site and experimental study of the 
“Smart Failover” feature in HA-OSCAR. We 
aim towards a graceful recovery in terms of job 
management by monitoring the job queue and 
keeping the standby server updated with the 
changes to it..  

When jobs are submitted through Globus [4], a 
job-manager is invoked to submit the job to the 
local scheduler and return the output to the 
submitter. However, in a case of job-site failure, 
this submission information is normally 
unrecoverable even if the job has completed but 
not yet returned. An enhancement of the Globus 
job submission mechanism is needed in order to 
be aware of the failure and be able to recover 
transparently. We have implemented the “Smart 
Failover” feature to address these issues. 

This paper is organized as follows. Section 2 
describes related and ongoing research. In 
Section 3, we present the proposed framework 
for Smart Failover in HA-OSCAR. Section 4 
explains our algorithm used in updating the 
backup server and the necessary enhancement 
for Grid job retrieval clients. Implementation 
details and experimental setup are presented in 
Section 5. Section 6 discusses our results. 
Section 7 summarizes the presented research and 
a brief description of future work. 

 
2. Related Research 
 
Globus has become the de facto standard for grid 
computing. The Globus tool kit consists of a set 
of tools and libraries to support grid applications. 
Fault tolerance approaches in grid systems are 
commonly achieved with checkpoint-recovery 
and job replication [13][14] [17], which create 
replicas of running jobs and hoping that at least 
one of them succeeds in completing the job. 
Weissman and Womack [13] introduced a 
scheduling technique for a distributed system 
which suffers from increased job delays due to 
insufficient number of remote sites to run the 
replicas. Abawajy [14] achieved grid fault 
tolerance by scheduling jobs in spite of 
insufficient replicas. His approach requires at 
least one site to volunteer for running the replica 
before the execution can start. In [17], jobs 

replicas are submitted to different sites which 
return the checksum of the result. The 
checksums received from various sites are then 
compared to ensure whether majority results are 
the same, in order to avoid a result from a 
malicious resource, which delays the retrieval of 
result until a majority is reached. Therefore, job 
delay increase may result not only from failures 
but also from the verification overhead. 
Wrzesinska et al propose a solution [18] that 
avoids the unneeded replication and restarting of 
jobs by maintaining a global result table and 
allowing orphaned jobs to report to their grand-
parent incase their parent dies. However, their 
approach is strictly for divide-and-conquer type 
of applications and cannot be extended to 
environments where the sub-processes require 
communication.  
    “Grid Workflow” [8] leaves recovery 
decisions to the submitter of the job via user-
defined exception handling. Grid Workflow 
employs various task-level error-handling 
mechanisms, such as retrying on the same site, 
running from the last checkpoint, and replicating 
to other sites, as well as masking workflow level 
failure. Nonetheless, most task-level fault 
tolerant techniques,[8][13][14] attempt to restart 
the job on alternative resources in the Grid in an 
event of a host crash. Hence, there is a need for 
complementing these approaches by improving 
failure-handling at the site level, especially in a 
cluster computing environment.  
    LinuxHA [5] is a tool for building high 
availability Linux clusters using data replication 
as the primary technology. However, LinuxHA 
only provides a heartbeat and failover 
mechanism for a flat-structure cluster which does 
not easily support the Beowulf architecture 
commonly used by most job sites.  

OSCAR is a software stack for deploying and 
managing Beowulf clusters [6][7]. This toolkit 
includes a GUI that simplifies cluster installation 
and management. Unfortunately, a detrimental 
factor of the Beowulf architecture is the single 
point of failure (SPoF). A cluster can go down 
completely with the failure of the single head 
node.  Hence, there is a need to improve the 
high-availability (HA) aspect of the cluster 
design. The recently released HA-OSCAR 
software stack is an effort that makes inroads 
here. HA-OSCAR deals with availability and 
fault issues at the master node with multi-head 
failover architecture and service level fault 
tolerance mechanisms. 

PBS [9] and Condor [16] are resource 
management software widely used in the cluster 



community. While a HA solution [12] for 
Condor job-manager exists, there a dearth of 
such solutions for the PBS job manager. The 
failure of Condor Central Manager (CM) leads to 
an inability to match new jobs and respond to 
queries regarding job status and usage statistics. 
Condor attempts to eliminate the single point of 
failure (i.e. the Condor CM) by having multiple 
CMs and a high availability daemon (HAD) 
which monitors them and ensures one of them is 
active at all times. Similarly, HA-OSCAR’s self-
healing core monitors the pbs_server among 
other critical grid services (e.g. xinetd, 
gatekeeper etc), to guarantee the high availability 
in an event of any failure. 

  
3. Proposed Framework 
 

Consider a job site where 100 jobs have 
been submitted to a local cluster scheduler, a 
failure at the site-manager (e.g. a cluster head 
node) will result in the outage of the total site. 
Users either wait for the site-manager to be fully 
recover or they can use a HA solution such as 
HA-OSCAR to recover from the failure within 
seconds. 

The current HA-OSCAR self-healing 
mechanism transparently provides HA for 
critical services at the site-manager.  However, it 
does not support graceful service migration for 
job schedulers and thus users must resubmit the 
incomplete jobs to the standby head node. R. 
Rabbat and T. McNeal [20] give an example of 
NFS service migration, achieved by use of either 
shared storage between the primary and the 
standby to store critical files or by migration of 
these critical files to the standby. Similarly we 
need to update the standby (backup) with the 
temporary job files (containing a specification of 
the executable to use, stdout/stderr, status, 
etc) of submitted jobs to enable it to start those 
jobs gracefully on the backup. With the use of 
the above technique, in case of a head node 
outage, running and queued jobs will be 
automatically recovered on the backup. 

 Whenever there is a remote site failure, the 
connected clients need to either wait for the 
remote site to be available again or they need to 
connect to another alternative resource to get 
required service. G. Ahrens [15] describes the 
need for the client to be “Cluster Aware”, i.e. 
being intelligent enough to connect to an 
alternative node in case of failure. In order to 
fully utilize the “Smart failover feature the naïve 
grid job clients need to be modified. The grid 
based job clients need to be “failover aware” to 

take advantage of the Smart failover feature. We 
address the issues by which grid job retrieval 
mechanisms, such as globus-job-run, 
globus-job-submit and globusrun, are 
unable to fetch the output/error log for submitted 
jobs after a remote site fails and then recovers, as 
the job handle/jobIDs become invalid after a 
failure. Hence there is a need to enhance the 
Globus job retrieval mechanism, so that a 
failover in the cluster job-site is transparent to 
the client. This removes the inability of the client 
to retrieve the job status and output/error log in 
case of remote failures. In addition, it alleviates 
the need for job replication to other sites, and 
hence preserves all computing-node resources 
when the outage is only caused by the head node. 

3.1  Basic components  

Figure 1 illustrates the HA-OSCAR smart 
failover mechanism in a Grid environment. The 
framework consists of 3 components: the event 
monitor, job monitor and the backup updater. 
Critical system events, such as repeated service 
failure, memory leaks and system overload, are 
analyzed by the event monitor using the HA-
OSCAR monitoring core. The second 
component, job monitor, is a daemon that 
periodically monitors a job queue at a user 
specified interval. It can also be triggered by the 
event monitor in a case of critical events.  

Whenever the job queue monitor senses a 
change in the job queues, it invokes the backup 
updater to synchronize the standby server with 
the changes in job queue and other critical 
directories. This approach, a combination of 
periodic and event triggered updates, helps to 
keep the standby server up-to-date with the 
current job queue status and results in a graceful 
failover procedure. 
 

 
Figure 1  HA-OSCAR Smart Failover Feature 

in a Grid Scenario 



3.2 Grid Aware Failover 

A mapping between the Globus assigned job 
id (GjobID) and the scheduler assigned job id 
(SjobID) is the key information for transparent 
head node fail-over and job restart mechanisms 
in our HA-OSCAR cluster. Whenever a new job 
has been added, the job queue monitor 
determines whether it has been submitted 
through a Globus mechanism or the local 
scheduler job submission primitives. If the newly 
added job has been submitted through Globus, 
the job queue monitor maps the GjobID to 
SjobID. For a later retrieval by the client, this 
mapping is synchronized to the Globus job 
directory on the Standby server using the backup 
updater. 
     Considering a situation, where the site 
manager has failed (after an update) and the 
standby server has taken over: The failover-
aware client is able to use the mapping from the 
GjobID to SjobID to find the correct status of 
his/her jobs. 

The mapping enables the transparent recovery 
during the failover. For instance, the scheduler 
on the standby server will restart all jobs in its 
job queue with the same jobID assigned by the 
scheduler on the primary server. The jobs will be 
restarted on the cluster following its application 
specific configurations. We assume that the jobs 
started earlier by the primary do not interfere 
with the restarted jobs and will eventually 
terminate after the failure of the primary head 
node is detected. Using the mapped scheduler 
jobID, the status of the job in the job queue can 
be retrieved from the job scheduler and the 
appropriate output can be returned. 

3.3   Event Monitoring System 

The event monitoring system described 
previously monitors the critical system events 
only. Figure 2 shows the proposed event 
monitoring and its inter-working relationship 
within our framework. A scheduler wrapper will 
notify our event monitor for any job addition and 
completion in the scheduler job queue. This 
eliminates the need for periodic monitoring, 
which can lead to loss of newly added jobs if a 
failure occurs between two consecutive checks.  

The event notification keeps the standby 
server always up-to-date. This also reduces the 
amount of processing needed in case of a large 
job queue. For example, in a “JOB-ADD” event, 
the event monitoring system notifies the job 
queue monitor to scan just the tail of the job 

queue for additions, alleviating the need to scan 
the entire job queue for additions and 
completions each time. 

 

 
Figure 2 Proposed Event Monitoring System  

4. Client & Server-Side Algorithms 

4.1. Client-Side Algorithm  

In our client side algorithm in Figure 3, a 
user submits a job using the user-specified 
resource (e.g. a remote site name) and resource 
specification language (RSL). Our failover-
aware approach handles two failure scenarios: 1) 
a JOB_STATE_FAILED is returned to a 
callback function and 2) when a 
JOB_STATE_DONE is returned, but the 
stdout/stderr (output and error log) is not present 
at the specified location. The client has a retry 
mechanism based on user-specified failover 
duration. The relative job location derived from 
the GjobID is used to get the corresponding 
SjobID stored in it. This SjobID is used to find 
the status of the job in the scheduler job queue.  
 

 
Figure 3 Failover Client Algorithm  



Figure 4 Event Sequence Diagram of Smart 
Failover Mechanism 

 Figure 4 illustrates a sequence diagram of 
the smart failover feature. Whenever an outage 
occurs at the head node, the standby takes over 
and restarts the job queue from the point of the 
last update.  

Since a few local schedulers, such as 
OpenPBS, do not support checkpoint/restart 
recovery, our framework also addresses in-
progress job fault tolerance with a reliability-
aware checkpointing, an MPI-based check-
pointing mechanism. Details of our checkpoint 
work can be found in [19]. For jobs submitted 
using the scheduler job submission primitives, 
the no modification to the submission/retrieval 
mechanism is needed and the scheduler would 
write the output/error log files to user specified 
directories. 

4.2. Server-Side Algorithms 

Figure 5 and figure 6 detail the backup 
updater algorithm with and without scheduler 
supported check-pointing. We designed our 
updater algorithm to support both, schedulers 
with checkpoint support and those without one. 
Hence, both algorithms have been given 
separately.  
Our algorithms maintain two lists called 
old_list and new_list for updating the 
standby. New_list contains a list of jobs in 
queue obtained by scanning the job queue at that 
instant while the old_list is the previous list 
of jobs in the queue. 

In the check-point-aware algorithm, we first 
check if every job in old_list is present in 

new_list, which is the latest snapshot of the 
job queue. If we find matching entries then we 
check whether they are running. 
 

Figure 5 Backup Server Update Algorithm 
with Scheduler Supported Checkpointing 

If the job is in new_list and it is running 
then we send a message to the scheduler to 
checkpoint it. If a job in old_list is not 
present in the new_list, then it implies that it 
got completed and we remove its associated files 
from a temporary directory, which is used to 
sync the backup. After comparing the 
old_list with the new_list, if the 
new_list has more jobs then it implies that 
these jobs were newly added. We proceed ahead 
from the job that is newer than the jobs in old 
list. If the job in question is queued then we copy 
its corresponding job files to the temporary 
directory that we sync up with the backup. We 
check whether it has been submitted through 
Globus job submission mechanism; if yes, then 
we map the SjobID to the GjobID. If the job 
is in  a running state then we check-point it. 
 



 Figure 6 Backup Server Update Algorithm 
with Scheduler Supported Checkpointing 

 
     In our updating algorithm where check-
pointing is not supported by the scheduler, we 
start by comparing the head and tail jobIDs in 
the new_list with corresponding ones in 
old_list. If both of them are the same, that 
means that the queue has not changed and we 
can avoid the processing. This proves helpful 
when the queue length is long and processing of 
the whole queue will incur significant CPU 
processing. The remaining algorithm is similar to 
that with check-point support with the only 
difference that we do not take any action if the 
job is in running state.  Also, as specified earlier, 
we do not transfer status of jobs that are in 
running state. So, if primary server fails while a 
job is running then that job is restarted on the 
backup as its temporary job files contain the job 
status as “queued” (transferred earlier). After the 
update algorithm finishes we replicate the temp 
directory (containing the changes in the job 
queue, if any), the user directories and the 
dataset disk (containing the datasets for jobs to 
run) to the backup to keep it up to date with the 
job related files and datasets. 
 

5. Implementation and Experimental 
results 

 
Figure 7 shows the “Task Level” fault 

tolerance achieved using “grid workflow” [8].  In 

“grid workflow”, the user defines actions to be 
taken in a failure via a user-programmed 
exception handling. Our approach enhances the 
task-level fault tolerance by ensuring that the site 
remains highly available and the user can 
retrieve his/her output in spite of a failure. 

Figure 8 shows our experimental setup. The 
head node was running the Redhat 9 operating 
system. OSCAR 3.0 was used to build a cluster 
and setup environment between the head node 
and multiple compute nodes. We overlaid 
Globus 3.2 on the head node; its interface to the 
OpenPBS job-manager was also configured.  We 
later installed HA-OSCAR 1.0 on the head node 
in order to create a dual head Beowulf cluster. 
HA-OSCAR handles a re-establishment of NFS 
between the standby and the compute nodes after 
the failover. 
 

 

Figure 7 .Task-Level Fault Tolerance through 
Grid Workflow 

 

 
Figure 8: Experimental Setup during Failover 

 
 The job queue monitor and backup updater 

were running on the head node, periodically 
updating the standby with the critical directories 
and mapping from Globus GjobID to scheduler 
assigned SjobID (i.e. PBS in our experiment). 
The failover-aware client, a wrapper over 



existing Globus interface (client not written from 
scratch), was written in Python using PyGlobus 
submitting MPI jobs to the PBS scheduler. 

The failover aware client would take the 
remote machine name and the input RSL 
submitted to the job and failover time of the 
remote server. The average failover time with 
respect to HA-OSCAR is 20 seconds which 
includes time needed to clone the primary 
servers public and private IP, restart services 
such as network, Xinetd, NFS, Maui and 
pbs_server as well as resume all pending jobs on 
the standby head node. The 20-second delay was 
also accounted for a re-establishment of NFS 
between the standby and compute nodes. It is 
important to note that the delay introduced will 
depend on whether the last running jobs on 
primary had just started or were near completion. 
In the first case the delay introduced will not be 
substantial but in the second case, as the status of 
the job is “queued” at the backup, the last 
running jobs will be restarted, hence increasing 
delay for next jobs.  
     The event monitor as of now only triggers the 
job queue monitor in case of critical system 
event. To mimic the behavior of scheduler 
generated events, namely JOB_ADD, 
JOB_COMPLETE we generated events 
whenever specific temp job files got created (on 
job addition) and deleted ( on job completion) 
using the File Alteration Monitor (FAM) 
interface. This causes the event monitor to 
invoke the job queue monitor to scan the 
head/tail of the job queue depending on the type 
of event generated. Whenever a job is submitted 
to PBS, two temporary job files are created, 
namely jobid.C.JB and jobid.C.SC. We used 
FAM to check the creation and deletion of these 
files to get notification of job addition and 
deletion.  
    We submitted jobs using the ‘qsub’ 
mechanism in PBS (for cluster based job 
submission) and using modified failover client 
“grid-job-submit” for grid based submissions. In 
the first case (cluster based submissions), the 
scheduler on the standby (after failover) writes 
the output and error log to the specified files, 
enabling the remote user to connect anytime to 
check status of his job.   

  For grid based job submissions, we validated 
that the client was able to transparently recover 
from the remote failure and provided the user the 
correct status. The command “grid-job-submit” 
behaves similar to its Globus counterpart, only 
differing in a way that if the stdout/stderr 
(output and error log) haven’t been specified it 

displays the output before exiting. When a job is 
submitted through ‘globus-job-submit’, the 
output is grabbed using the ‘globus-job-get-
output’. 

 
6. Results and Analysis 
 

In this section, we discuss and analyze 
results and observations during the experiments. 
First, we compare the total time needed for jobs 
submitted through scheduler primitives (not 
through the grid), to run with and without “smart 
failover”. As discussed in the last section, the 
grid-aware HA-OSCAR failover is approx 20 
seconds. 

JobID Status 
before 
failure 

Without 
Smart 

Failover 

With Smart 
Failover  

1 Running Job lost (1.43 min + 
20 sec)  

2 Queued (Based on   
MTTR) 

(1.43 min + 
2.03 min)  

Table 1 Comparison of with and without 
Smart Failover for top two jobs in queue 

 Table 1 gives the comparison of with and 
without “Smart Failover” approaches for a job 
queue. Each case consists of two jobs with run 
times of 1.43 minutes, one running and one 
queued after it. In case of “Without Smart 
Failover” approach, if we have a failure at the 
head node then we lose the last running job and 
the queued job is resumed after Mean Time to 
Repair (MTTR). The MTTR could range from 
two min (simple reboot) to a few hours 
depending on the severity of the problem. In the 
case of the “With Smart Failover” approach, as 
we have the last running job in queued status on 
the backup, it is restarted after the failover time. 
The queued job is resumed after the last running 
job is completed.  

%CPU overhead for backup updater & job queu 
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Figure 9 CPU Usage by Backup Updater and 

Job Queue Monitor 
 



    Figure 9 shows the percentage of CPU needed 
by the backup updater and job queue monitor on 
successive runs, with an interval of 120 seconds 
between each run, after new jobs were added. 
The number of jobs added was varied from 5 to 
50 and percentage of CPU used by the program 
was measured using UNIX utility time. 
    In Figure 9, when job queue monitor discovers 
new jobs added, it incurs little CPU overhead 
(0.2 % - 1 %) compared to its successive runs. 
When 50 new jobs are added to the system, 
during the first run, the %CPU increases to 
0.959% while during next two runs, it was 
0.446% and 0.326% respectively. 
    For job queue replication, once a job’s 
temporary files have been copied to the standby, 
the specific job update will not be done unless it 
completes execution. Further invocations of 
backup updater and job queue monitor incurred 
less usage of the CPU. It was observed that, only 
when jobs are added in burst, the backup updater 
and job queue monitor incurred more CPU 
usage. 
    As discussed earlier, the job queue monitor 
analyzes the job queue for changes and the later 
the backup updater replicates the changes to the 
standby node. The total time to update the 
backup with changes is composed of time taken 
by backup updater to replicate the changes and 
job queue monitor to analyze the job queue. We 
measured the average time taken to replicate the 
job queue and critical directories like the dataset 
disk and user directories over varying number of 
job additions. The number of jobs added was 
varied from 50 to 500 jobs. The job queue 
monitor and backup updater were invoked with 
one a minute interval between successive 
invocations. The total replication time needed 
was calculated over 10 readings when newly 
added jobs were discovered.  
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Figure 10 Comparison of Application 

Performance 

The average time needed to replicate (via 
rsync) a burst of 50 jobs and associated 
directories was 1.525 seconds while it gradually 
increased to 1.68 seconds for 500 jobs. As can be 
seen from Figure 10, the average time to 
replicate the job queue and other critical 
directories increases gradually compared to the 
increase in the burst of jobs added. 

 
7. Conclusion & Future Work 
 
As cluster-based job sites increasingly become 
viable resources in the Grid environments, 
guaranteeing high availability of these job sites 
becomes critical in order to maximize and 
improve the resource utilization. There is a need 
to provide the site-level fault tolerance 
mechanism in clusters and grids to compliment 
the task-level fault tolerance provided by 
existing approaches. The earlier version of HA-
OSCAR failover was enhanced with the grid-
aware fault resilience in a context of the job 
management. As discussed, the “Smart Failover” 
feature in HA-OSCAR aims toward a graceful 
recovery by monitoring the job queue and 
replicating changes to it to the standby head 
node. The proposed event monitor would 
alleviate the pitfalls of periodic monitoring of 
job queues by triggering the job queue monitor 
on various critical system events as well as job 
addition and completion events. Hence, the 
standby sever is guaranteed up-to-date with a 
pending job queue, till the point of the failure.  

The “Failover-aware” Globus job client 
together with the “Smart failover” feature, ensure 
correct job status and output in spite of a remote 
site failure. The mapping from the Globus 
assigned jobID to the scheduler assigned jobID 
helps the failover aware job client to retrieve the 
correct job status and output after failover. Our 
combined approaches eliminate the need for grid 
users to manually keep track of remote site 
failures and thus alleviating the need for re-
submission or replication of jobs to other sites. 
Experimental results suggest that the “smart 
failover” overhead is negligible. We intend to 
make a production quality event monitoring 
subsystem in the future.  
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