Fachhochschule fiir Technik
und Wirtschaft Berlin

Diplomarbeit

Zur Erlangung des akademischen Grades eines
Diplom-Ingenieur (FH)
iber das Thema

Simulation of
Advanced Large-Scale HPC Architectures

Eingereicht am Fachbereich 1 Ingenieurwissenschaften I
der Hochschule fiir Technik und Wirtschaft Berlin

Von: Frank Lauer, s0514918
1. Betreuer: Prof. Dr. Johann Schmidek
2. Betreuer: Prof. Dr. Dieter Kranzlmiiller

Berlin, den April 17, 2010

Abstract:

The rapid development of massively parallel systems in the High Performance
Computing (HPC) area requires good and efficient scalability of the applications.
The next generation’s design of supercomputer is today not certain in terms of
what will be the computational resources, memory and I/O capabilities. How-
ever it is guaranteed that they become even more parallel due to developments
such as multicore. Obtaining the optimal performance on these machines is not
only a matter of hardware it is also an issue of programming design. Therefore
co-development of hard- and software is needed. The question is: how to test
algorithm’s on machines which do not exist today.

To address the programming issues in terms of scalability and fault tolerance for
the next generation, this project’s aim is to design and develop a simulator based
on Parallel Discrete Event Simulation (PDES) for testing arbitrary Message Pass-
ing Interface (MPI) based applications. Massive parallel environments with at
least 107 virtual processes can be simulated. In comparison todays most denst
supercomputer combine 10° cores togeter. The simulation it self is a transparent
layer where the MPI applications run on top. These layer is designed to provide
mechanism’s for collecting metric data as well as test the applications behavior
against failure. To do so a fault injection based on distibution models and in a
directly manner can be done.

Acknowledgements

I would like to express my appriciation to my supervisors: Prof Vassil Alexandrov,
Dr. Christian Engelmann, Prof. Dieter Kranzlmiiller, and Prof. Dr. Johann
Schmidek. Special thanks to Dr. Christian Engelmann for his time, patience, and
understanding.

My father who did supported me during my study.

My colleagues at the ORNL, T.J. Naughton, Stephen L. Scott, Geoffroy Vallee,
and my group leader Prof. Al Geist who where always helpfull.

This research is sponsored by the Office of Advanced Scientific Computing Re-
search; U.S. Department of Energy. The work was performed at the Oak Ridge
National Laboratory, which is managed by UT-Battelle, LLC under Contract No.
De-AC05-000R22725.

Erkldrung

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit selbststdndig und nur
unter Verwendung der angegebenen Quellen und Hilfsmittel verfasst habe. Diese
Arbeit wurde bisher in gleicher oder dhnlicher Form an keiner anderen Priifungs-
behorde im Geltungsbereich der Bundesrepublik Deutschland vorgelegt und auch
nicht veroffentlicht.

Lauer Frank, April 17, 2010

Contents

1 Introduction
1.1 Background
1.1.1 High Performance Computing (HPC)
1.1.2 Programming Ot HPC
1.1.3 Discrete Event Simulation (DES)
1.2 Project Proposal o

2 Related Work
3 Problem Analysis And Specification

4 Design
4.1 Logical Process
4.2 Virtual Machineo oo
4.2.1 LP Runtime Environment
422 Virtual MPT 000
4.2.3 Integrating The Application Into The Simulator
4.2.4 Content Switch Logical Processes/Synchronisation
4.3 Virtual Time/Global Virtual Time
4.4 Message Queue
4.5 Message Transporto
4.6 Overall Concept Of The Simulator

5 Implementation
5.1 Background Knowledge Function Call
5.2 Virtual Machine oo
5.2.1 Content Switch Logical Processes
52.2 Virtual MPI
5.2.3 Virtual Time,
5.3 DES/PDES
5.4 Message Queueso
5.5 Communication Lo

6 Testing

15

19

21
21
22
23
24
26
27
29
33
35
36

39
39
43
43
51
52
23
54
o8

60

6.1 Time Measurement
6.2 Simulator
6.2.1 Application: Heat Transfer
6.2.2 Application: Numerical Quadrature

Conclusions

7.1 Future Prospects
7.1.1 Overcome Restriction: MPI Calls Ounly In main(...)
7.1.2 Implementing The Virtual Time
7.1.3 Scheduling Policy
7.1.4 Migration Of An LP To Another Node
7.1.5 Enhanced MPI And System Call Instruction Set
7.1.6 Optimistic PDES Approach
7.1.7 Fault injection

7.2 Known Issues
7.2.1 Memory (Segmentation Fault)
7.2.2 Outofresources.
7.2.3 Printf And Floating Point Values

List of Acronyms

Glossary
Appendices
A Test Programs
A.1 Test pthread inital stack usage
B Project
B.1 MV _main function call assembly code
B.2 assembly codeh
B.3 datatypes.h
B.4 Function VM _synchronise LP()
C

User Manual

C.1 Requirements
C.2 Imstallation
C.3 Usage
C.3.1 Simulation Restrictions
C.3.2 Supported MPIcalls

IT

C.3.3 Prepairing the application for simulation
C.3.4 Compiling the simulator
C.3.5 Executing the simulator
C.4 Example: Ring message
C.5 Deploying the simulator on a new architecture

I1I

1 Introduction

1.1 Background

1.1.1 High Performance Computing (HPC)

HPC is a part of computer science in which applications need significant amounts
of memory and processing power. Thus nowadays as well as in the beginning of
supercomputing the values of the criteria that define, if an application is consid-
ered subject of the HPC field are changing over time. This is because since the
first digital computers back in the 1940’s the available computational resources
that can be assigned to solve a single problem grow rapidly. Problems which in
the 1940’s had to be solved by HPC can today be solved by a simple calculator.

Thus, to get a better understanding of the term HPC it might be easier to de-
fine what a supercomputer is. Basically it can be said that a such a computer is
predominant in terms of computational resources and memory. By that definition
some kinds of supercomputers already existed even before the first digital com-
puter had been built. Even today there are analogue machines that function as
a kind of computer, the others are digital and hybrid ones. Specialised analogue
data processing units could still be as fast as current leading digital computers or
even faster. However they are only designed to solve one specific problem, whereas
digital computers allow to solve a great range of problems, all problems that can
be expressed in a mathematical way. As supercomputers are generally digital this
thesis will deal only with those.

The first digital, programmable machine was built by Konrad Zuse in 1936. It had
a 64 word memory, where each word contained a 22bit float value (8 bit exponent
and 14 bit mantissa), a remarkable storage capacity of 64 floats or 1408 bit. An
electrical engine provided a clock frequency of one Hertz. This and all following
computer models are called supercomputers as they are predominant in their time
due to their comparably large resources and high speed.

The Z1 and all its successors are designed to solve complex mathematical prob-
lems. Such equations however contain often a big part which demands floating
point calculations. Therefore one way to measure the "Performance" of HPC is in
Floating point Operations Per Second (flop/s). To determine the speed of a cur-

rent supercomputer, a specific benchmark test like LINPACK has to be performed.
Introduced by Jack Dongarra, LINPACK measures how fast a N by N system of
linear equations can be solved in flop/s. The Image 1.1 displays the enormous gain
of speed from the early 1950’s until today. The graph is taken from the HPC Asia
2009 Keynote Speech by Jack Dongarra [4].

It gives an overview of the basic architecture of the computer in the different

N
»
IcLor Super Scalar/Special Purpose/Parallel
1 PFlop/s
(1015) i [al nner
2X Transistors/Chip guar
Every 1.5 Years ASCI Rec
1 TFIgp/'s
(0% TMC O Gray TaD
Vector X oo
f v ..'.\' e
1 Griopl -
(109 Super Scalar

J

1941 1 (Floating Point operations / second, Flop/s) ~ |
1945 100
1949 1,000 (1 KiloFlop/s, KFlop/s)

1 MFlop/sSicalar

6 1951 10,000
(10°) 1961 100,000
_rB.M_m 1964 1,000,000 (1 MegaFlop/s, MFlop/s) —
1968 10,000,000
1975 100,000,000
1987 1,000,000,000 (1 GigaFlop/s, GFlop/s) —
1992 10,000,000,000
1 KFlo 1993 100,000,000,000
3 ONIVAC 1 1997 1,000,000,000,000 (1 TeraFlop/s, TFlop/s) —
(10%) 2000 10,000,000,000,000
EDSAC 1 2007 478,000,000,000,000 (478 Tflop/s)
L T T T 1 1 -
1950 1960 1970 1980 1990 2000 2010

Figure 1.1: "Performance" history of HPC until today

epochs. Everything started with scalar computers like the Z1. They operate ac-
cording to the von Neumann architecture [2] and complete a whole command cycle
before they start with the next one. In the mid 1960’s a new type of processor was
invented. Its performance increase was not only due to increasing the operation
clock frequency but also to highly super scalar command processing. This means
that a command has not to finish all states of the von Neumann cycle before
another one can be processed. This architectural innovation is today known as
pipelining. This principle is nowadays being implemented in a very large range of

Processors.

The vector approach was initiated to further accommodate the Central Processing
Unit (CPU) design to the needs of common HPC applications. Hence the over-
head by vector computation was reduced. The basic idea behind this is to optimise
vector manipulations. Conventionally arithmetical operations on vectors have to
run in a loop and only item at a time is modified. The new model reduces the
amount of operations and piplines the memory accesses.

In the late 1980’s exhausting the possible increase in main clock frequency as well
as architectural gimmicks were not enough to fulfil the needs of the applications.
To overcome the shortage of resources new supercomputers started to been built
with parallel interconnected CPUs. Over time the systems became more and more
dense with interconnected CPUs, but that also meant that the programming model
for HPC applications had to be changed, see section 1.1.2 for further information.

In the last few years HPC has become a massive parallel specialised super scalar
supercomputer area. From the beginning of parallel interconnected CPUs until
today, the amount of interconnections has rapidly increased. Now six supercom-
puters, which are listed in the 2009 Novembers TOP500 !, allow the user to utilise
up to 10° cores at once. Cores are a combination of memory, at least one Arith-
metic logic unit (ALU) and a connection to the Imput/Output (I/O) interface.
Several cores combined on one chip are called multi-core processor. This develop-
ment was driven by various factors. Modern Operating System (OS) allow to run
independent processes simultaneously, which mainly gains the advantage of being
able to run these independent processes truly parallel. Furthermore increasing the
clock frequency became physically more and more of a problem. The basic physics
behind the used hardware require a miniaturisation of the elements and reduction
of the distance between, when amplify the operation frequency. However increas-
ing the frequency further also decreases the CPUs calculation fault tolerance and
as well increases the probability of a total failure of the CPU. A problem which not
only concerns the hardware but also the software in order to prevent application
failure.

Reducing hardware failures has also high priority which results in the clock fre-
quency almost remaining static at a level where failures are within a certain proba-
bility. All things considered the whole development is predictable applying Moore’s
law [26, 25|, which says that every 18 months the computational speed will be dou-
bled.

This may still be true but since applications run parallel on a broad scale effi-

LA list in which twice a year the public known supercomputers be ranked by there speed

Amdahl’'s Law

20.00

-".'-
L
18.00 v .
/ Parallel Portion
16.00 e — 50%
— 75%
14.00 — 90%
— 95%
12.00 A
o /
=~
@ 10.00 —
&]
8.00 /
6.00 A
4,00 &--‘_’______..
2,00 a_—
OIDOH P = w '_'3 tr\') ':DT E\I g 'r_| :\Ir g & a) or ﬁ
— ™ [Ty (=] o (=] —] I~ u
— (5] =t w w ™ u
— m [e]

Number of Processors

Figure 1.2: Amdahl’s Law — Limits and Costs of Parallel Programming

ciency has to be considered too. One of Amdahl’s laws [9, 2| is concerned with
how much faster an application can run. The theoretical maximal speedup of
a program which is being processed parallel, regardless of how many cores are
interconnected, can be calculated by:

1

S = 1P (1.1)
Where P is the percentage of the code which can be parallelised and S is the gained
speedup, which is measured in percent. The sequential execution time is when S
equals 100% (1.0). The closer P comes to 100% (1.0) the higher the speedup, in
theory it is infinite when P equals 100%. Nevertheless real world problems have
always dependencies and parts which cannot be processed parallelised. Even more
interesting is the possible speedup by a given amount of cores which compute in
parallel. With another Amdahl equation we can account for that.

1

— 1.2
C+£ (1.2)

C stands for the portion of the program which has to be executed consecutive
in percent and N for the amount of cores. The graphs in Figure 1.2 shows that

even if C is as small as 5% the speedup cannot be higher then 20. But more im-
portantly it shows that far fewer cores are required to get the biggest part of the
speedup, then to reach the maximum. Still with such restrictions it is useful to
have machines with thousands of cores for various simulations, where the amount
of computational data which can be parallelised is big enough.

As usually theory is far away from reality end even if an application could run
twice as fast data dependencies between compute nodes can have a great slow
down effect. Even though the interconnection network is a specialised one, with a
very low latency and great bandwidth, communication can be a bottle neck. The
upper graph of Figure 1.3 represents an overview of the time with the numbers of
systems which have what type of network installed. In addition the graph on the
bottom, which is produced by the project Network Protocol Independent Perfor-
mance FEvaluator (NetPIPE)[3] from the Scalable Computing Laboratory (SCL),
shows the test results of a variation of these networks in comparison to bandwidth
and with an indication of the latency. All latency values are only a couple of micro
seconds but still this is more than a factor of 10° slower then a I/O operation on
the main memory.

HPC as we know it today is a combination between vast computational resources
and their interconnection.

1.1.2 Programming Of HPC

The data and instruction streams in HPC systems can be divided into four main
categories, which is known as Flynn’s taxonomy. Michael J. Flynn proposed in
1966 a specific classification of parallel computer architecture. Each architecture
requires a programming model specialised in dealing with the available streams.
The four categories in Flynn’s taxonomy are the following|[1]:

e Single Instruction Single Data (SISD) computers have one Control Unit that
handles one algorithm using one source of data at a time. The computer
tackles and processes each task one after the other, and so sometimes people
use the word "sequential" to describe SISD computers. They are not capable
of performing parallel processing on their own.

o Multiple Instruction Single Data (MISD) computers have multiple proces-
sors. Each processor uses a different algorithm but uses the same shared
input data. MISD computers can analyse the same set of data using several
different operations at the same time. The number of operations depends
upon the number of processors. There are not many actual examples of MISD
computers, partly because the problems an MISD computer can calculate are
uncommon and specialised.

Cluster Interconnects

300
[
250 N f/
/ \\ J
200
/1
—Gigk
150 / / \ '3l
/ / \ _// —Myrinet
100 / / \ /T — Infiniband
/ \"7< —Quadrics
/ / AN
50
/N | oA P \\
7 — ~—
0 |
) =) H o~) < n o ~ o
o = =] =) o =) =) o =) S
] o = =] S =) =) =) =) S
— ~ ~ ~ ~ ~ ~ ~ ~ ~
7000

InfiniBand RDMA
T.5 us latency
6000

5000
0
=1
2 /
= 4000 —
- InfiniBand
5 wi0 cache effects
£ ///
g’ 3000
o 10 GIgE
ﬁ //
2000 Myrinet
Y/ —=
1000 ~

100 10,000, . 1,000,000
Message size in Bytes

Figure 1.3: Cluster interconnections

e Single Instruction Multiple Data (SIMD) computers have several processors
that follow the same set of instructions, but each processor inputs different
data into those instructions. SIMD computers run different data through
the same algorithm. This can be useful for analysing large chunks of data
based on the same criteria. Many complex computational problems do not
fit this model.

o Multiple Instruction Multiple Data (MIMD) computers have multiple pro-
cessors, each capable of accepting its own instruction stream independently
from the others. Each processor also pulls data from a separate data stream.
An MIMD computer can execute several different processes at once. MIMD
computers are more flexible than SIMD or MISD computers, but it is more
difficult to create the complex algorithms that make these computers work.
Single Program, Multiple Data (SPMD) systems are a subset of MIMDs.
An SPMD computer is structured like an MIMD, but it runs the same set
of instructions across all processors.

The face of HPC programming changed dramatically with the evolution of paral-
lelised systems. It started with the interconnection of multiple SISD architectures
and now with multi-core CPUs we rather have a network of MIMD computers.
Of the thinkable way to program these machines, streams (pipes), shared mem-
ory, the predominant programming technique is MPI. MPI is a definition of an
Application Programming Interface (API) that allows processes to communicate
on the same ? or over a connection to other nodes, by sending messages. There
are several implementations Open MPI, MPICH, MPICH2, MVAPICH, TPO-++
and Boost which provide an object oriented interface, to name only some of them.
The idea behind this is that a problem will be divided into chunks which can be
processed concurrently. Normally in sequential intervals the nodes have to be syn-
chronised, which in terms of programming most of the time means that data has
to be transmitted from one process to another. MPI can be regarded as a data
copying protocol. In general a chunk of memory owned by one process is copied
to another by sending a message. The MPI API hides the transport mechanism
from the programmer.

A similar simple message passing API called Parallel Virtual Machnine (PVM)
provides a comparable set of communication functionalities. Although MPI is
predominant the PVM library is still in use. In practice it does not make a big
difference which library is used for the programming model. Thanks to such stan-
dardisation in several APIs, programs nowadays are portable from one machine to
another by recompiling them without major changes in the source code. Before

2If more MPI processes than cores run on one node, then this is called subscribing the node

such libraries were easily available the programs’ source code had to be adjusted
for use on other machines. Not only that MPI allows portability between different
interconnection types but it also provides the opportunity to grant scalability for
applications by design. cores.

1.1.3 Discrete Event Simulation (DES)

The projects aim is to simulate a transparent environment for executing MPI based
applications. The simulation layer will be a PDES layer, which is a distributed
Discrete Event Simulation (DES). DES is a powerful tool when it comes to inves-
tigating the behaviour of complex environments. It has become a way of life in all
areas where size and complexity does not allow to process the analytical solution
by conventional methods. Computers, vehicles, management, military, everywhere
where entities of whatever kind interact in discrete intermittency with each other.
Even though for applications which are not too complex a DES may be the right
choice, when a specific behaviour is to be studied. Features of DES which allow a
unique view into a process are:

e compress time or expand time
Through implemented mechanisms the simulation time can be sped up or
slowed down. This is useful when long runtime models have to be studied or
if a specific time section is required in more detailed solution.

e restore system state
Since this kind of simulation only changes the environment variables of
events, the system state can be restored to any chosen time in the simu-
lation where an event has occurred.

e stop and review
Depending on the implementation the simulation can be stopped and certain
parts can be reviewed. Such a review can be implemented by different ap-
proaches, but in the end additional memory or computation time is required.

e control sources of variation
At every point of the simulation it can be suspended and the current data can
be analysed or manipulated. By design it is comparably easy to implement
an interface to access the model data. This gives the model’s programmer
the opportunity to debug the model itself. Furthermore it is a way to direct
the model into a different path, or even to run different paths without having
to rerun the complete simulation.

e Facilitates replication
One key feature of the DES is that the identical start conditions produce
identical results. This is a way to test the model for correctness.

First of all it is necessary do define in the system what an event is on the one
hand and what an entity is on the other hand. This kind of simulation is based on
the fact that an event occurs at a given point in time. For example if you switch
on the light or press a button, a sensor gives a signal. Whereas the simulated
entities perform activities such as moving from one point to another in a certain
amount of time [7]. Such an entity is also called Logical Process (LP) since it is
an independently running process, but it is only a simulated process. In other
words we can say: “A discrete event simulation model assumes the system being
simulated only changes state at discrete points in simulation time. The simulation
model jumps from one state to another upon the occurrence of an event” [15, p.
31].

In an example model of a railroad system where one train is travelling from station
A to station B the train represents the LP. To keep the example simple the train
has only two states: one is idle and the other is moving. Now the state of an entity
only can be changed by an event. Hence we need an event which in our case is the
train starting at station A, whereby the train state switches to moving. When the
train arrives at station B the entity state switches back to idle.

It is important for DES to distinguish between real time which is the time that
passes in the real world and simulation time. The simulation time is a Virtual
Time (VT) there for it can be faster or slower then the real time. Also events
which occur in the simulator are not necessarily in the right order if aligned to
the real time. In the train example both events can be inputted at once, but the
train needs a certain time to travel from point A to point B. This can be factored
into the VT. For example even if both events are inputted at the same VT the
event of the arrival occurs at V' + duration. As you can see every event has to
be associated with a defined point in VT.

Every implementation of DES relies on three key components. The first is the
VT and getting the youngest VT of all LPs , it can be either Global Virtual Time
(GVT) [40], Continuously Monitored Global Virtual Time (CMGVT) [12] or Wide
Virtual Time (WVT) [36]. The second is a queue in which the events will be
scheduled in the order of their occurrence. The last one are the state variables.
Those variables store, after each processed event, the data of the simulated system
and additional information like elapsed VT for the LP or its status in terms of
simulation (running, suspended, terminated, etc.).

When observing such a simulation from an outside point of view one can see that

the simulation is nothing else then images of the simulated environment at certain
points in VT, one image for each element. Every time such an image is created
it will be backuped if a feature like review is required or if the synchronisation
algorithm needs to be able to restore the system status to a previous point in VT.
In the end the view consists of a chain of environment images for each LP. The
knowledge of how these state variables are actually manipulated is not necessarily
required for knowing the DES simulator code. Thus the actually simulated envi-
ronment is separated from the DES which means that however complex the system
may be the basic architecture of the simulation will not get any more complex.

The state of the art synchronisation mechanisms can be divided into two main
categories:

Conservative: This is a comparably simple synchronisation mechanism. By de-
sign the VT s of all LP s have to be ahead of the next event’s VT before the
event can be processed. Now it is definitely no chance that one of the entities can
generate a nother event which may have occurred earlier in VT. The disadvantage
of this approach is that even if the right event is already generated, LPs may have
to be delayed until the event is safe in that no other message can arrive with an
earlier Virtual Time Stamp (VTS). Depending on the simulated environment it is
possible that the waiting LP already knows from where the next event will come.
For such systems a look-ahead algorithm can search the event queue for a matching
event. Despite the fact that for some entities the scheduled VT of the event is in
the future, it can be processed without risk of an causality error. This error is the
result if one event which happens later in VT has been executed before an event
which would have appeared earlier in the timeline of the same LP. The simulation
flow might be improved through an look-ahead algorithm.

Optimistic: The main assumption here is that all events which are scheduled
can be executed without causing a causality error [29]. However the basic design
of DES cannot guarantee that the assumption is really true. In fact it is most
probable that at some point a causality error will occur. In that case basically
the simulation has to be stopped and a system roll back to a point preceding the
error has to be performed. Thus depending on the implemented algorithm, all
related LP s which receive an event after the error generated by the LP where the
causality incident has taken place, somehow have to be restored to a time before
the error. From there the events can be executed in the right order. To allow the
system to be rolled back there has to be a mechanism which keeps a history of the
events and also keeps a history of the models’ state variables. In general this is
the main weakness of this approach. The more complex a model is in regard to
size and required memory for each LP, the higher the risk that the simulator has

10

to start swapping parts of the data or in the worst case an out of memory excep-
tion occurs. For example a simulation size of 1,000 LPs, where each LP needs 0.5
MBytes, the simulator uses 500 MBytes for merely resending the state variables
alone. It does not appear to be that much for todays computers, but if we consider
that in addition not only the history of events but also multiple backups of the
system have to be stored, it becomes clear why memory is the main issue in all of
this.

Using an optimistic approach, synchronisation will not block an LP, since events
are processed independently from the GVT | but there is also potential for opti-
misation. In the most simple form of this approach, the hole environment will be
rolled back in time if a causality error occurs. However there is only need for a
roll back if an LP is related to the event that triggered the causality error. Several
algorithms have been proposed which the this fact into consideration.

The Time Warp algorithm [15, 8, 39| actually only rolls back the LP which pro-
duces the violation. By checking the (risen) events, during the time range of the
roll back, the receiving LPs will also be restored. As you can see this algorithm,
which is in shape a tree beginning from the root, runs a wave of rollbacks through
the simulation. In order to increase the performance, the essence of this algorithm,
besides keeping the roll backs low, is of course in the first place to keep the wave
as shallow as possible. The scheduling [32] of the events can have a significant in-
fluence on the amplitude of the wave. Which scheduling order, Lowest Timestamp
First (LTF), Lowest Local Timestamp First (LLTF), Grain Sensitive (GS) |31] or
others, is suited best strongly depends on the model.

Sometimes even if there was a causality violation the resulting events which are
emitted by this LP might not change. Therefore the Lazy Cancellation Algorithm
proposes that only those LP s are rolled back which have received faulty events. If
the assumption that even wrong input data results in a true response is accurate
then we can gain performance. However considering the delay of the roll back in
the worst case the roll back could take more time then to restore the whole system
in the first place.

Most optimistic implementations are a combination of different approaches to re-
duce the weaknesses of a single approach. Furthermore most non-specialised simu-
lators provide a set of synchronisation algorithms. Which algorithm is suited best
for the given simulation model can be determined by testing them.

PDES is the response to the growing availability of parallelised systems. On par-
allelised systems one simulation layer is distributed over multiple cores and some
of the LPs are actually run simultaneously. Not only that we now can increase the

11

speed for one simulation run, we can also take advantage of the additional memory
and other resources which most interconnected systems have.

1.2 Project Proposal

Given the latest development in the HPC area, systems are getting more an more
complex regarding the amount of nodes and also the amount of cores per socket.
With respect to HPC application scalability, fault tolerance and new program-
ming models are more and more moved into the focus of attention. In 2009 the
first supercomputers were able to run with a sustained performance of 10'® (peta)
flop/s. At the end of this decade the first supercomputers will reach 10'® (exa)
flop/s [6]. If the current trend continues these systems will have a huge amount of
cores. But this is only one possible way future HPC systems could be designed.
We can already assume today that the ratio between computation, communication
and I/O capabilities will shift.

There is the quantum computer which does not work with bits in the classical

Cores Per Socket

500
400
«w 300
£ 9
% 4
> -
“ 200 -2
1
100
0
I‘L
m@

Figure 1.4: Cores per Socket [37]

sense. It manipulates quantum bits. These bits are able to be in one state with a

12

certain probability. The ALU is replaced by gates. Within those gates the quan-
tum bits are transformed. One of the really big advantages of this procedure is
that it does not matter how many bits pass such a gate at once. One good example
is the breakdown of huge numbers: with only a few operations one should get all
the prime numbers [24].

Computer science has for a long time been a multi-science discipline. Computing
with cells is one topic in the biological computer science field. Those systems are
called membrane systems. The cells internally have a hierarchical organisation
which is defined by the membranes [14].

A more conventional research project is Paintable Computing [11]. It proposes
small integrated circuits, which are equipped with memory and communicate via
wireless transceivers as small as a grain of sand. Those circuits are uniformly dis-
tributed in a semi-viscous medium which could be used to paint supercomputers
on surfaces for example a wall. Understanding the impact of an algorithm on new
systems and pointing out its bottlenecks is the key for optimising future architec-
tures. On the other hand knowing the bottleneck of applications is also crucial
in order to use the available resources more efficiently. Therefore it has to be a
co-development of all components.

HPC is open to all kinds of computational systems but in my opinion the near
future probably belongs to some kind of combination of CPU and Graphics Pro-
cessing Unit (GPU). Hybrid chips which combine CPU and GPU cores consisting
of different sizes and providing different speeds. Thus the applications make use
of the GPUs’ specialised floating point vector computation and the CPUs can be
used to handle the data preparation, and to do the integer compuatation and com-
munication.

This project proposes to develop a simulator based on PDES which allows the user
to simulate systems with thousands of cores. An MPI process in the simulation
will be abstracted to an LP. Even though the behaviour of each LP will be like it
was running in a self contained process, it is actually only an object of the simu-
lation. All objects are processed in a fair share manner on n real CPUs. In such
an environment the application’s MPI messages will be transported by a simu-
lated MPI layer. To account network delays correctly and remove the simulation’s
overhead the message delivery can be deferred by a calculated time of a modeled
virtual network. The aim is to simulate an advanced large scale computer net-
work environment with at least up to 107 virtual entities, for studying application
behaviour on future architectures. Such a simulation requiers a lot of resources
therefore the simulation will be scaleable over 10® nodes. The major points of
interest are algorithm scalability, resource usage and fault behaviour.

13

Java Cellular Architecture Simulator (JCAS) and parts of the pm simulator are
available as a starting point. Basically the JCAS has to be rewritten from JAVA
into C++ and the TCP/IP communication has to be replaced by MPI. This al-
lows the deployment of the simulator on HPC systems where often no TCP/IP
and JAVA support is available. The schematic layer concept is shown in Image
1.5. On the left side is JCAS ’ current implementation and on the right hand side
is the redesigned version with MPI and PDES.

The integrated set of DESs has to be replaced by PDES. Since the efficiency de-

Application Application

Virtual MPI Virtual MPI

Figure 1.5: Technical layer design

pends on the combination of the application and the PDES synchronisation model,
multiple sets of algorithms have to be implemented. First of all a conservative ap-
proach with a look-ahead mechanism, followed by an optimistic approach. After
that an optimistic approach with a time-warp synchronisation will be implemented.

All synchronisations require a VT. The current implementation of JCAS so fare
has no VT. So it has to be implemented in order to realise the PDES synchroni-
sation models.

The current version of JCAS only supports fundamental virtual MPI functional-
ity. This set of functions will be extended to be able to execute a wider range of
applications in the simulator.

Investigation of fault tolerance of an algorithm is one of the main requirements
with respect to the simulator. That is why the existing fault injection will be
extended to inject faults based on failure distributions.

14

2 Related Work

The simulation of HPC systems for analysing purposes is growing in the past.
There are several projects related in some kind with the proposal of this theses.
Some of the closely related ones are:

o uT
e JCAS
BIGSIM

CHARM-++

o AMPI
e MPI-SIM

p: this simulator [27] is still under development by Kalyan S. Perumalla, Ph.D.
from the Oak Ridge National Laboratory. um is a scalable, transparent system for
experimenting with the execution of parallel programs on simulated computing
platforms. The level of simulated detail can be varied for application behaviour
as well as for machine characteristics. Unique features of um are repeatability of
execution, scalability to millions of simulated (virtual) MPI ranks, scalability to
hundreds of thousands of host (real) MPI ranks, portability of the system to a vari-
ety of host supercomputing platforms, and the ability to experiment with scientific
applications whose source-code is available. In proof-of-concept experiments, ur
has been successfully exercised to spawn and sustain very large-scale executions of
an MPI test program given in source code form. Low slowdowns are observed, due
to its use of purely discrete event style of execution, and due to the scalability and
efficiency of the underlying parallel discrete event simulation engine, usik [28].

The pm software is written in C/C++, as an application of the usik PDES engine.
Both pum and psik are portable to a large number of platforms. pm has been tested
on MPI-based platforms, including Linux, Mac OS X, Blue Gene/P, and Cray
XT4/XT5. The MPI routines implemented, in C/C++ and FORTRAN, are:

o MPI Init(...)

15

e MPI Finalize(...)

e MPI Comm_rank(...)
o MPI Comm_ size(...)
e MPI Barrier(...)

e MPI Send(...)

e MPI Recv(...)

o MPI Isend(...)

o MPI Irecu(...)

o MPI Waitall(...)

o MPI Wtime(...)

Only the MPI _COMM _WORLD communication group is currently recognised.

JCAS: a simulator based on the cellular algorithms theory [13] developed by
Christian Engelmann from the Oak Ridge National Laboratory 2002. The use
of lightweight user-level processes allows the JCAS to scale a simulation system
efficiently up to 10° LPs, on up to 10 real processors. It has been used for several
years to explore algorithms scalability and fault tolerance in large-scaled systems.
Due to the implementation language JAVA, the simulator can be deployed on
various platforms. The communication between the compute nodes of a simulation

is based on TCP/IP.

BIGSIM: was initiated by the BlueGene/C project to study programming issues
in emulated future HPC systems [41]. It was developed by the University of Illi-
nois. The parallel simulator BigSim is for performance predicting of machines with
a very large number of processors. The simulator provides the ability to make per-
formance predictions for machines such as Blue-Gene/L, based on actual execution
of real applications. Based on the low level programming API provided by the em-
ulator, several parallel programming languages are implemented on BigSim. They
are MPI, CHARM++ [10] and Adaptive MPI. An online mode of the simulator is
also useful in studying various performance issues in parallel applications, such as
load balance and fault tolerance issues. Using the virtualisation of CHARM ++
[11], the BigSim emulator presents the execution environment of a petaflops class
machine. CHARM ++ or AMPI|9] applications are compiled to run on the emu-
lator just as though it were anyother architecture. BigNetSim currently includes

16

support for Torus, 3D-Mesh, Fat-Tree and Hypercube topologies. According to
the article [38], the BigSim has been scaled over 128 processors by simulating a
8,192 node hyper cube back in 2005.

CHARM++: is an object-oriented portable parallel programming language [19]
based on C++. Charm++ is an explicitly parallel language consisting of C++
with a few extensions. It provides a clear separation between sequential and paral-
lel objects. The execution model of Charm++ is message driven, thus helping one
write programs that are latency tolerant. The language supports multiple inheri-
tance, dynamic binding, overloading, strong typing, and reuse for parallel objects.
Charm+-+ provides specific modes for sharing information between parallel ob-
jects. Extensive dynamic load balancing strategies are provided. It is based on
the Charm parallel programming system, and its runtime system implementation
reuses most of the runtime system for Charm.

Charm-+-+ supports abstractions for special modes of information sharing, in addi-
tion to supporting communication via messages. It incorporates a message-driven
scheduling strategy, which is essential for latency tolerance. It provides extensive
support for dynamic load balancing, and prioritisation of messages. It supports a
novel replicated type of object called a "branched chare" which has a sequential as
well as parallel interface, and which can be used for efficiently programming data-
parallel applications. Charm++ does not depend on an operating system provided
threads package, hence avoids the corresponding overhead and non-portability. It
is also one of the few systems that has been implemented on many commercial
shared as well as large distributed memory machines.

AMPI: an MPI implementation and extension, that supports processor virtu-
alisation [18]. AMPI implements virtual MPI processes (VPs), several of which
may be mapped to a single physical processor. AMPI includes a powerful runtime
support system that takes advantage of the degree of freedom afforded by allowing
it to assign VPs onto processors. With this runtime system, AMPI supports such
features as automatic adaptive overlapping of communication and computation,
automatic load balancing, flexibility of running on arbitrary number of processors,
and checkpoint /restart support. It also inherits communication optimisation from
Charm+-+ framework. AMPI has been ported to a variety of supercomputing
platforms, including Apple G5 Cluster, NCSA’s IA-64 Cluster, Xeon Cluster, IBM
SP System, PSC’s Alpha Cluster and IBM Blue Gene. AMPI is an active research
project. It already supports most MPI-2 features.

MPI-SIM: is a library for the execution driven parallel simulation of MPI pro-
grams [30]. MPI-SIM, built on top of MPI-LITE, can be used to predict the per-

17

formance of existing MPI programs as a function of architectural characteristics,
including number of processors and message communication latencies. MPI-LITE
is a portable library that supports multithreaded MPIThe simulation models can
be executed sequentially or in parallel. Parallel executions of MPI-SIM models are
synchronised using a set of asynchronous conservative protocols. MPI-SIM reduces
synchronisation overheads by exploiting the communication characteristics of the
program it simulates.

18

3 Problem Analysis And
Specification

The JCAS is used as the basis for this project, because of its capability to simulate
a large pool of entities 10 with the resources of only 10 computers. Even though
the simulator is written in JAVA and does not allow to run unmodified code, the
small resource requirements for simulating LP s distinguishes JCAS from all related
projects and should represent a good foundation. One of the main issues of the
current JCAS implementation are resource shortages for the simulated program.
Many applications have a larger virtual memory need and require more computa-
tional resources then the current supported set of basic applications. Therefore the
simulator itself has to be able to scale to at least 1,000 real processors to provide
enough capability for each LP.

The fundamental problem in scaling the simulator is to keep simulation synchro-
nisation overhead low in regard to network traffic and memory. Both components
are strongly dependant on the used synchronisation model. All optimistic ways
special to store the state in discrete intervals. Memory reserved by these state
checkpoints cannot be released before the VTS of a stored state is in the past of
the GVT. In a worst case scenario, this could lead to an out-of-memory error. It
has to be investigated how it is possible to reduce the data and to swap out these
checkpoints to a mass storage device.

Since the simulator shall be virtually scalable up to 107 processes, depending on
the amount of messages the LPs are exchanging between each other, one of the
usual known bottlenecks of HPC will kill the simulators performance. By explor-
ing how to reduce virtual message data before sending it over the network, this
effect can be cut down. After all, only compressing the data is not enough, because
on the one hand this approach is only successful if the data can be compressed
well and on the other hand compressing the data takes additional computational
resources.

Avoidance of causality errors is essential to guarantee that the results are accurate
and repeatable. All the PDES synchronisations rely on the VT. Coordinating the
current GVT of all LPs with a conservative synchronisation could also lead to an
error. For example, LP, sends a message to LP, and while the massage is still on

19

its way trough the network, the safe execute time is increased. A second message
with a later VT'S which is already in the event queue may be processed before the
message on the network arrives in the queue. Appropriate security mechanisms
have to be implemented to avoid such a scenario.

On the whole the minimum requirements are:
e Running unmodified MPI applications.
e Replacing the JAVA core of the JCAS by a C++ one.
e Replacing the TCP/IP communication by MPI.
e Implementing a conservative PDES.
e Implementing basic MPI capabilities.
Optional requirements are:

e Implementing the optimistic PDES synchronisation approach.

1. A simple version which rolls the whole system back.
2. A time warp algorithm.

Extending virtual MPI capabilities.

Implementing and extending fault injection from the JCAS.

Adding fault injection based on failure distributions.

Implementing resource usage analysing mechanisms.

20

4 Design

4.1 Logical Process

The first question is, how can an LP be implemented? An LP is basically a MPI
process. For most applications we can strip this abstract definition down to a few
elements. The core data components are:

e Status
It is obvious that it is not possible to run several thousand LPs simultane-
ously, no matter which implementation is used. By assigning a status to the
LP, it can be determined whether it is running, suspended, etc..

o VT
The PDES mechanism synchronises the system with the VTs of all LPs.
Here, the VT is simply a sum of the time an LP has actually used the CPU.

e Stack
All local variables of a process or a thread are stored on the stack. In case of
a simple application which does not dynamically allocate memory, the stack
contains the current content of the LP, in regard to the advancement in the
program flow.

s_Logical_Process

+status : eLP_STATUS
+stack_pointer : SYS_INT
+base_pointer : SYS_INT
+stack : VOID_P
+virtual_time : uint64_t

Figure 4.1: Concept of the LP struct

21

A struct combines these elements in one object, see image 4.1. The code which
manipulates the data is not LP specific, it is only the advancement in the program
flow which the stack will keep track of. In the end an LP is nothing more than a
collection of data in the memory.

4.2 Virtual Machine

The virtual machine serves the purpose to create an environment for running a
large pool of LPs and to enable the simulator to address each LP as an MPI
rank. By design, an LP is reduced to being a data struct, which is manipulated by
simulated code. The wvirtual machine (VM) has to provide specific environmental
key features to guarantee a proper execution of the code.

e Run the code in a self-contained environment.
The aim of the project is to simulate a large-scale HPC environment for MPI
applications. All LPs’ communicator handles involved in a simulation have
to be implemented in a way that as far as the LPs are concerned, they run
in a real MPI process. So the only communication between LPs consists of
sending messages via the virtual MPI interface.

e LP content can be easily accessed for checkpointing.

All optimistic PDES synchronisation mechanism architectures have no pro-
tection against executions which produce causality errors in the first place.
But they do recover the whole system or affected sections after the detec-
tion of such an error. To enable the PDES to do a recovery, periodical
checkpointing has to be performed. Each checkpoint of an LP represents a
content dump at a specific virtual time. Through that the synchronisation
can restore the content to a virtual time before the error occurred.

e A small memory foot print.

Imagine the requirements to simulate at least 107 entities on up to 10° real
nodes defined in the project proposal Section 1.2, that means one node sim-
ulates at least 10,000 (10*) LPs. A comparably tiny memory demand of a
few Kbytes lead to a huge memory usage. A 100 kbyte stack for each LP
multiplied by 10* results in almost one Gbyte. With an optimistic PDES
approach the memory requirements rise even more as the LPs have to be
saved more often, therefore it is essential that the application has a small
memory footprint.

22

4.2.1 LP Runtime Environment

Since an LP is a simulation of an MPI process the first thing that comes to mind
is to implement it as an actual process. There are certainly advantages in this
kind of implementation as there are no shared resources and the content switch is
handled by the OS, to name only two. Running multiple processes on one node
(subscribing a node) is supported by some MPI implementations, however, this
does only make sense when only a small number of MPI ranks are spawned on one
node. But the simulation has to be able to run no less then several hundred LPs
on one node. Subscribing nodes on such a large scale is not intended by design.
Anyway even if it might be possible, there are some major disadvantages of using
processes. In terms of memory usage, every process requires at least one system
page size for its structural data, plus the amount of memory for the text and data
sections. These memory requirements are multiplied by the amount of LPs. And
finally a process switch is comparably slow. Each switch generates a kernel trap,
where the actual process content is swapped and replaced with another one. Con-
sidering the already mentioned downsides of real processes, the implementation as
a process is not efficient and therefore this approach will not be pursued.

A thread implementation would be the next logical choice. Using a threading
library like pthread, based on the Portable Operating System Interface (POSIX)
definition, implements a thread as a light-weight user process. The name is cho-
sen because a thread is literally implemented as a process. Some features like a
user managed stack allow the programmer to influence the behaviour at runtime.
Especially the user-managed stack could prove valuable for the project. Not only
that a stack as small as 4kbyte can be used, but also the PDES synchronisation
mechanisms get an easy access to allocating memory on the heap. Here is no need
for special stack operations because the allocated memory can be addressed as a
native datatype array. In a simple test program, which originally was written to
verify the availability of the user-managed stack feature, an initial stack usage of ~
3kbyte could be calculated directly after the thread enters its starting routine, see
test program A.1. This stack memory is used to store some of the threads’ struc-
ture data. This allows for a very low memory footprint. Further a thread’s content
switch should be faster than the content switch of a process because shared re-
sources like address space, signal handler, timer, etc. will not be changed invoking
the switch. Sharing resources bears advantages as well as disadvantages. Depend-
ing on the implementation of the program being simulated sharing file descriptors
and signal handlers can be a hindrance. Without certain mechanisms sharing them
could change the program’s behaviour. Wrapper functions would be necessary to
prevent the simulator from altering the program’s characteristics. Nevertheless,
this is one possible implementation strategy.

23

By inspecting the implementation of a cell (LP) in the JCAS source code, a third
approach can be found. Here a pool of cells runs in one single thread. The con-
tent switch itself is implemented and executed completely in user space [22]. This
approach is not only basically an extension of using multiple threads but it also
reduces the stress on the OS. Still from the LP’s point of view everything runs in
one real thread, but the content switch is speed up. So far it is the best course of
implementation to keep the simulation’s resource overhead low.

4.2.2 Virtual MPI

Considering the solution of the runtime environment analyses, running an LP in
a thread does not allow the LP to be assigned to a real MPI rank. The current
MPI definition determines only a process as a rank. To overcome this restriction
a virtual MPI layer enables the simulator to address each LP with a virtual MPI
rank. Keeping the datatype, a 32-bit integer defined by the MPI standard for
a rank, allows to address 10° elements. This is 10 times more then the project
was specified for. Each virtual rank will be assigned to a real MPI rank. The
simulation size will be distributed in two parts. First, a sequential distribution
of all virtual ranks to the real MPI ranks keeps adjacent LPs on the same node.
The LPs are distributed this way because often communication occurs between
neighbouring ranks and if they are on the same physical CPU, it is not absolutely
necessary to communicate over the network. If the LPs have to be distributed
unevenly, then the first n MPI ranks get one virtual rank more. For example, a
simulation size of 100 LPs on 6 MPI ranks will be distributed as followed:

MPI rank Virtual ranks

range amount

0 0-16 17 big chunk

1 1733 17 big chunk

2 34 — 50 17 big chunk

3 51 — 67 17 big chunk

4 68 — 83 16 | small chunk

5 84 — 99 16 | small chunk
Total 500

In the second part, the relative virtual rank counts the assigned chunk from zero
again. This chunk will now be distributed incrementally between the VMs. Dis-
tributing the 17 LPs of the MPI rank 2 among 3 VMs, looks like this:

VM Relative virtual ranks Virtual ranks

0 |0, 3, 6, 9, 12, 151 17, 20, 23, 26, 29, 32
1 |1, 4, 7, 10, 13, 16 18, 21, 24, 27, 30, 33
2 2, 5, 8 11, 14 19, 22, 25, 28, 31

24

Finally, the VM keeps an array with the corresponding LPs. The incremental
distribution is chosen because it is a fixed way to calculate the necessary routing
information through the simulator. Neither lookup tables nor the simulation size
affects the costs of calculation. The destination of a message is determined by
three values.

1. An MPI rank
The calculation requires stored information like chunk size, either big or
small, the first virtual rank within the small chunk and the amount of big
chunks.

e virtual rank < first virtual rank in small chunk (rl)
virtual rank

- 4.1
big chunk size (4.1)
e virtual rank >= first virtual rank in small chunk (rl)
irtual k—rl
Lt Tan ,T + amount big chunks (4.2)
small chunk size
2. A VM index
= relative virtual rank % amount of V Ms (4.3)
3. An array index
_ relative virtual rank (4.4)

amount of VMs

All MPI communication messages are wrapped into a simulator message. Gener-
ally, an additional header is attached to the message. Besides the necessary routing
information, the header describes the nature of the message, see Image 4.2. A Tag
allows to determine which function or event was responsible for the creation. Such
a tag is called send, broadcast or barrier for example. The first version of the
simulator will not simulate network delays. However, later versions will be able
to address different kinds of topologies and component latencies. Therefore each
message is stamped with two virtual time values, see Section 4.3 for the definition
of virtual time. The first time value refers to when the message was created and
the second is the calculated time which determines when the message should be
available for the receiving LP. The user data of every MPI message gets stored
within the wrapper message.

Intercepting MPI functions, defined in the class ¢ VIRTUAL MPI, emulate the
outside behaviour of the original MPI library. Internally, the functions perform a

25

s_MPI_Message

+Next_message : s_MPI_Message"*" «enumeration»
+Last_message : s_MPI_Message"*" e_MESSAGE_TAG
+Message_tag : eMESSAGE_TAG g — - - — —

+Communicator : uint32_t M_send
+Broad_cast_received : uint32_t M_receive
+Vrank_transmitt : sSLP_RANK g — — — — —

+Vrank_receiver : sLP_RANK 4— - — — — —l

+VT_stamp_send : uint64_t |
+VT_stamp_receive : uint64_t
+VMPI_tag : INT N2
+Message_data_length : uint32_t s_LP_RANK
+M Jui

B uintet[0] +MPI_rank : uint16_t

+VM_rank : uintl6_t
+VRANK_index : uint32_t
+abs_virtual_rank : INT

Figure 4.2: Concept of the virtual MPI message struct

number of operations: message wrapping, sending or receiving, message unwrap-
ping. The functions are also used to trigger an LP content switch, in case the data
is obtainable. For example when MPI Recv() is called and the source has not
sent the message yet.

4.2.3 Integrating The Application Into The Simulator

The first idea was simply to rename the main function, which would be done by
an additional header file from the simulator. The file would provide a macro for
the main function as well as for the MPI methods.

e Example: #define main(int argc, char *argv||) main_app(int arge, char *argv||)

Further consideration brought up some weaknesses concerning this approach. One
is the problem of global variables. Without an additional mechanism such vari-
ables would also be globally available to the simulator itself. Every LP would
therefore access the same global variables. Unpredictable behaviour and wrong
program output would very likely be the outcome.

Another problem is presented by the calls to the intercepted functions. The re-
named main and its subfunction have no relation to the VM object in which the
executed LP is located. Additionally, information has to be passed to the inter-
cepting functions like a reference to the object. Complex programs with nested
functions pose a problem as no assumption about the structure of the application
can be made. So it cannot be determined where the reference actually has to be
added.

26

Changing the main function into a member function of the Virtual Machnine (VM)
object allows the LP to access it. All MPI calls can now be redirected by using
the C characteristic, which links all MPI calls of a member function to the object’s
inherited MPI implementation first. The current design for this problem is still a
preliminary one because it does not solve the global variable issue and only partly
solves the object relation problem. Nested functions within the main routine will
result in failure. As soon as an application calls a function which is no member
of the object and this function does an MPI call, the real MPI library will be ac-
cessed. If this does not lead to the abortion of the simulation, the further course of
the simulation is unpredictable. Hence there are two temporary restrictions with
respect to the application being simulated.

1. No global variables are allowed

2. No MPI calls outside of the main function

c_VIRTUAL_MACHINE

-VM_incomming : sQueue_Attrib_P
-VM_outgoing : sQueue_Attrib_P
-VM_logical_process_pool : sSLOGICAL_PROCESS_P [1..%]

+c_Virtual_Machine(attributes : sVirtual_Machine_Attrib_P)
+VM_synchronise() : VOID
+VM_main(argc : INT, argv : CHAR_P [0..*])

Figure 4.3: Concept of the Virtual Machine

4.2.4 Content Switch Logical Processes/Synchronisation

As designed in Section 4.2.1, each VM object is single-threaded. The function
VM _synchronise() allows in the first place to run a pool of LPs. From the LPs’
point of view it seems as though it is placed as a self-contained process. The worker
thread, a pthread with a usermanaged stack, will be started with a reference to
the Virtual Machine object that created it. The thread’s run_ function() calls
the object’s start_up(). It is only used to call the VM synchronise() and could
be skipped, but the synchronisation method should never be called from outside
the object. The inline assembly used for the LP content switch is only intended
to cope with the object’s thread. By calling the synchronisation, the VM starts to
cycle between two states.

27

1. Execute synchronised code
2. Execute LP code

Each time the state changes, it triggers a content switch. The swapping relies
on the x86 architecture and the implementation of the C function call, which
comprises a set of tasks.

e Store parameters on the stack or in registers
e Store jump back address on stack and call function
e Save used register

After entering the function, the stack is saved and replaced by the one reserved for
the synchronisation tasks, see activity diagram 4.4. Before leaving the function,
the data of another LP is restored. When the return statement is executed, the
stored jump back address for this LP is used to brunch back to the position in the
code when the LP called the synchronisation. As far as the LP is concerned, it
only returned from a subfunction without having been swapped.

All LPs
terminated?
No
Switch to next
LP object

Check status of LP
incoming queue

LP
resumable?
\l/ Yes

(Redirect message into corresponding buffer J (Restore LP stack contend)

Incoming 1
queue empty?

Figure 4.4: Activity synchronisation function

activity Virtual Machine [[Z§] Synchronisation]J

| Save stack contend

Restore synchronisation
L stack contend

Get next message from
‘ virtual machine

Jumping with the stack from one memory section to another can be done by

28

overwriting the stackpointer (SP) and basepointer (BP) registers. This is due to
the fact that all stack operations are addressed relatively to the memory where
they are pointing at. Unfortunately, no standard C or C++ way could be found
to alter the register. So the current solution uses inline assembly.

e Intel

#define SET STACK POINTER(new pointer)

__asm("mov %0, %%esp": : "r"(new_pointer) :)
#define SET BASE POINTER(new pointer)

__asm("mov %0, %%ebp": : "r"(new_pointer) :)
#define GET STACK POINTER(store pointer)

~_asm("mov %%esp, %0": "=r"(store pointer) :)
#define GET BASE_ POINTER(store pointer)

__asm("mov %%ebp, %0": "=r"(store_pointer) :)

e AMDG64

#define SET STACK POINTER(new pointer)

__asm("mov %0, %%rsp": : "r"(new_pointer) :)
#define SET BASE POINTER(new_pointer)

__asm("mov %0, %%rbp": : "r"(new_pointer) :)
#define GET STACK POINTER(store pointer)

__asm("mov %%rsp, %0": "=r"(store_pointer) :)
#define GET BASE POINTER(store pointer)

~asm("mov %%rbp, %0": "=r"(store pointer) :)

When porting the simulator to another architecture than Intel’s x86 or AMDG64

machine specific assembly code has to be added to the assembly code.h header
file.

4.3 Virtual Time/Global Virtual Time

Even though modern timers and libraries support resolutions within a nano sec-
ond (ns=107%s) range, they are too inaccurate for this purpose. Considering that
today’s CPUs operate with a clock frequency of n GHz (10°Hz), n clock cycles
represent a ns. Thread timers usually do not use one of the hardware timers but
are implemented as software timers. Synchronising software timers to ns cannot
be accurate since a refresh probably requires more then n cycles. The lowest
eligible time base would be a us (107%). However with this time step, which
represents thousands of clock cycles or thousands of operations respectively, the
PDES synchronisation by virtual time can result in undetectable causality errors.
To overcome this potential cause of errors, in a future survey an alternative solu-
tion like event-based logical clocks as in [10] has to be implemented.

29

Only the 64-bit C standard datatype allows to store an acceptable range of time
in ps. Within this size, a range of up to 10° years can be represented. Using
the next smaller datatype 32 bit would only allow a runtime of shortly over one
hour. This counter will be updated whenever an LP executes synchronisation or
virtual MPI code. The time span an LP utilises the CPU is calculated in two
simple steps. First the thread’s current CPU time, ascertainable by the func-
tion clock gettime(CLOCK THREAD CPUTIME ID, struct timespec *tp), is
stored directly after an LP’s content is restored and before it is resumed. Then the
thread executes the target application until a synchronisation section is entered
again. Here the LP will be suspended like described in Section 4.2.4. By calcu-
lating the time difference between the stored and the now current CPU time, we
get as results the LP’s last run duration, which will be added to the LP’s virtual
time.

The design of the PDES’s synchronisation mechanism is based on that VT. It is
used to get the messages into a certain sequence and to ensure a causality error
detection. The GVT of the system is the smallest VT value of the simulation.
This time can be regarded as the safe time for event execution. All messages
tagged with a younger virtual receive time cannot cause a causality error. Since
all LPs have past this point in time, no LP generates a message at a point in time
before the GVT anymore. An easy and very accurate way to get the GVT is a
synchronised implementation. Here all LPs will be suspended, then the minimum
VT will be determined and finally the simulation will be resumed. Suspending and
resuming the simulation forces the system to waste some computational time at
each reconciliation. When determining the GVT asynchronously, the determined
value represents a time in the past of the system. Asynchronously means, that
the simulation keeps running while updating the GVT. So the used data is only a
snapshot of the system’s past. The actual GVT of the continuously running simu-
lation may already be ahead of the currently published one. Neither way we have
extensive negative impact. The asynchronous approach is chosen because there
is no major drawback for a conservative PDES and the memory consumption is
only a little higher for the optimistic approach if the time span between published
and actual GVT is small. The additional memory is required to store checkpoints
which are collected during this time span.

Additionally to the wasted computational time the drawback inherent to the syn-
chronous approach also raises a memory issue when the reconciliation interval is
not suitable for the simulated application. At the beginning of the interval the
determined time is the actual GVT of the system, but for the rest of the duration
it also represents the point in time when the last update took place. To keep it
accurate would require very short intervals and therefore a high computational

30

need for that task. On the other hand long intervals would have a higher memory
need corresponding to the asynchronous approach.

Some asynchronous approaches propose to send a special message to all LPs. A
corresponding response is sent back. By finding the smallest send time stamp of
all messages, a possible past GVT is found. But the cost of this solution grows
with the simulation size. In the PDES, not only the message has to be created,
which is at a simulation size of 107 already a lot to handle but additionally all
messages have to be sent over an expensive network connection. Also the LP itself
has to be modified to participate correctly in the synchronisation process, which
is contradictory to the requirement that the application is not to be adjusted to
the simulation. Determining the GVT by generating such a huge traffic is too
much stress for the system. Splitting the GVT replication into two steps allows to
reduce the network traffic significantly. Instead of one single MPI node having to
deal with finding the lowest VT among all simulated LPs, each MPI node finds the
lowest VT within its assigned LPs as a first step. Afterwards this time called Local
Virtual Time (LVT) is used to find the GVT. Thus each MPI node has to send
only one value over the network instead of hundreds or thousands. The iterative
search process is illustrated as a tree structure in image 4.5. The next higher level
always represents a copy of the smallest element in the layer below. We have the
root which is the GVT, the LVTs make up the branches and the VTs represent
the leaves.

Appointing the LVT to one node can be done without any messages, even if more

GVT
Find smallest .
element. -
LVT LVT
MPI rank 0 MPI rank 1

Find smallest Find smallest
element. element.
vT VT VT VT VT
MPI vrank 0 MPI vrank 1 MPI vrank 2 MPI vrank 3 MPI vrank 4

Figure 4.5: Dependency between GVT, LVT and VT

than one VM is running on it. A VM is nothing more than the thread of a process.
With the address space being shared between the threads of a process, it is possible
to do a VM-wide search for the LVT without creating additional communication

31

interfaces. Several implementations are being considered here. The general fact
that a node only has to update the LVT at a change of the represented VT, is
used here.

1. Reducing lists with all VTs.
The idea was to generate a sorted list in which all VTs are stored. In case
one LP’s VT becomes greater than the next VT, it can be removed from the
list and does not have to be checked any further, because there is at least one
LP with a lower VT. Only changes on the head node, which always represent
the LVT of the MPI node, initiate a search for the new LVT, by adding all
removed VTs again. Afterwards, the new head node value is posted forward
for a GVT synchronisation. The advantage here is that identifying a change
in the LVT and finding the new LVT is simple. Also the time an LP needs to
access its list elements can be reduced to a single dereferencing by providing
a pointer to the list node in the LP’s struct. The most CPU time consuming
operation is to refresh the list. Each element has to search for the correct

position O(n), where n is the amount of current nodes in the list, and has to
be inserted O(1).

2. Sorted array of the VT

All VTs of one MPI node are stored in a sorted array. As well as in the
first idea a change of element zero of the array initiates an update of the
LVT. An LP finds its own element by addressing the array with a stored
index. Keeping the values always sorted allows to improve the complexity
of the search to ©(log(n - x))!, when moving an element. To achieve this
advantage every change of a VT generates additional costs for copying ©(y)
of the y elements between the VT’s old and new position within the array.
Also, the stored indices of the LPs belonging to the moved elements have
to be updated. That could be avoided by storing a copy of the VT in the
LP’s object instead of the index. An LP does not know anymore on which
index its virtual time is stored but it can search the array ©(log(n)) for its
last VT. We get rid of updating the LPs indices but now have to search the
array. Neither way generates high costs.

3. Array of the LP’s rank, sorted by VT
To store the virtual rank instead of the VT would save half of the memory.
The ranks are sorted in the array by the VT of the LPs. The memory usage
is cut in half because a virtual rank is defined as datatype int. This datatype
consists of 32 bits both on a 32-bit system and on a 64-bit system as opposed

1Cost for sorted array is ©(log(n)), but since the VT can only advance in time the x lower x
elements of the array can be ignored.

32

to the 64-bit datatype used for the VT. However sorting the array by the
VT means that the virtual ranks are arranged stochastically in the array.
So the search complexity is ©(log(n)) to find an LPs index in the array.
Additionally the repositioning creates costs of O(log(n - x)) for searching the
new position and O(y) for moving elements.

4. Unsorted array of the VT
Here each LP addresses its VT by the relative virtual rank on the node. A
copy of the LVT will be stored in an additional variable. If the time which is
to be changed matches the LVT, the array is searched for the now youngest
VT. Even though the search costs are ©(n) since it is an unsorted array, the
even more time-expensive writes for moving elements which are necessary in
an approach with sorted arrays can be avoided.

Under the assumption that only a fraction of the VT changes effect the LVT the
last approach should be the most effective.

Designed to utilise multi-core CPUs efficiently by running a set of VMs (worker
threads) on one node, the array needs the appropriate thread-secure mechanisms.
Therefore in the class “c_ VIRTUAL TIME TABLE”, see image 4.6, operations
are protected by a pthread mutex against racing conditions. During normal op-
eration the VT can only advance. By passing the last running duration of an
LP to the function VI'T update wvirtual time(...) the time is added to the ele-
ment. Allowing optimistic PDES approaches to rollback an LP a second function
VTT set_wirtual time(...) has to be able to set the absolute time.

The next iteration synchronises the LVTs to a GV'T, which can be done the same
way by setting up an array with all LVTs of the system. Every change to an LVT
generates a message which is sent over the network to the root node. The root
updates the time in the array. Detecting a change of the GVT follows the same
rules applied to the LVT array. Considering that only the way of transmitting the
values to the array is different using the class “c_ VIRTUAL TIME TABLE” for
both arrays is possible. Finally, by sending a broadcast message the root publishes
the new GVT.

4.4 Message Queue

DES as well as PDES implementations have to arrange the events or, in this case,
the messages in a consecutive temporal order. Naturally, the amount of messages
varies constantly during a simulation. Using rigid structures like an array would
mean either that the array has to be big enough for peak amounts or that it has to
be resized once in a while. Adding a message would require to move data to create

33

c_VIRTUAL_TIME_TABLE

-VTT_table : uint64_t [1..%]
-VTT_table_size : SYS_INT
-VTT_LVT : uint64_t
-VTT_table_sync : pthread_mutex_t

+C_VIRTUAL_TIME_TABLE(table_size : SYS_INT)

+~C_VIRTUAL_TIME_TABLE()

+VTT_update_virtual_time(relative_rank : SYS_INT, run_duration : uint64_t) : sMessage_P
+VTT_get_virtual_time(relative_rank : SYS_INT) : uint64_t

+VTT_get_local_virtual_time() : uint64_t

Figure 4.6: Concept of the Virtual Time Table

c_QUEUE

-Q_head : sMessage_P
-save_virtual_time : uint64_t =0

+c_Queue(attributes : sQueue_Attrib_P)

+insert(new_Message : sMessage_P) : sMessage_P
+getMessage(timeout : uint64_t) : sMessage_P
+setSaveVTime(new_save_time : uint64_t)

Figure 4.7: Concept of the Message Queue

a slot for a new element. In order to remove an element all following elements
would have to be moved to close the gap. Using the array as a ring buffer would
reduce the effort. This is mainly due to the fact that the head message will be
primarily removed.This is done by increasing a single pointer without moving any
data.

Dynamic data formats like a chained lists can adapt to the current message’s
appearance. A general benefit is the constant amount of operations for adding a
new element. On the downside for lists, the search of the new element’s position
has a complexity of ©(n) compared to O(log(n)) in a sorted array.

Whatever the storing structure used is, the queue is used likewise as an inter-
process communication pipe to transport all messages from one code section or
thread to another. Internally, it sorts all added elements by their receiving virtual
time stamp. When the read function is called, the head element is returned.
Considering the fundamentals of the conservative PDES here, a queue can be
created which provides such a PDES synchronisation functionality. Based on the
GVT, only messages which are save, with a receiving virtual time stamp which is
lower or equal, will be returned. All other messages will be detained in the queue

34

until the advancement of the GVT releases them. With this approach, the queue
only has a minimal additional overhead when removing an element. Instead of
checking only for an empty queue, also an integer has to be compared. The get
message function additionally allows to pass a timeout in ms. If the list is empty
or only unsafe items are left, the method is blocking for the time specified. If
a message becomes available during this time span, it will be returned. A zero
is passed if blocking is unwanted and the constant WAIT INFINITE to block
infinitely.

The messages can be divided into two categories, point-to-point and collective.
Group communication like a broadcast will not be replicated for each addressee.
Instead, when a LP of a VM asks for one, a deep copy is returned. When a
message-internal counter reaches one, the actual message is removed from the list.

The LPs run in fact not parallel, some can be more advanced in VT then others.
In the worst case, a minority of LPs drop behind. This can stall other VM objects
of the simulator. Only messages with timestamps younger or equal GVT will be
delivered, to prevent causality errors from happening. In the worst case, all LPs of
a virtual machine already wait for a message in the future of the GVT. Even if the
right ones are already stored in the queue, they will not be released. To avoid such
a scenario, a lookahead mechanism can deliver these messages if a combinational
attribute footprint like source, mpi tag and communication type matches. Tagging
the messages immediately when it is being inserted into the queue will reduce the
search overhead. However, the list itself cannot identify a potential candidate since
it has no information about the LP’s status. Therefore, the VM could provide a
check method which will be called before the message is added to the queue.

As the queue can be accessed by more the one thread, protection against racing
conditions is necessary. Because of that all manipulating operations are enclosed
by a mutex. An additional condition variable for the mutex is used to implement
the timeout component.

4.5 Message Transport

A threaded communication class instance on each MPI rank binds the VM objects
to the MPI _COWMM _WORLD communicator by forwarding the messages. Mes-
sages which address the same node are simply redirected from the outgoing queue
to the corresponding incoming one of the VMs. Running the communication ob-
ject in an own thread moves the real communication into the background. Which
means that the actual exchange of MPI messages takes place asynchronously to
the execution of the LPs. Theoretically the worker thread itself could also take

35

c_COMMUNICATION

-Comm_input_queue : cCQUEUE_P
-Comm_ouput_queue : cCQUEUE_P [1..%]

+c_Communication(attributes : sCommunicator_Attrib_P)

+COMM_receiveMessage(available_message_status : MPI_Status, communicator : MPI_Comm) : sMessage_P
+COMM_sendMessage(message : sMessage_P, communicator : MPI_Comm) : MPI_Request
+COMM_calcReceiveRank(message : sMessage_P) : VOID

Figure 4.8: Concept of the Communication

care of that in a synchronisation section. However, long intervals between such
sections could lead to an MPI buffer overflow. So using a threaded communication
object should avoid such a scenario. Also current and future deployment systems
are very likely equipped with multi-core CPUs. Increasing the priority of deliver-
ing messages by assigning one core to maintain the communication could improve
the runtime behaviour of the simulation.

4.6 Overall Concept Of The Simulator

The concept of a process is schematically displayed in the image 4.9. Every process
has at least three and up to n threads. The original thread of the process is idle
and waits for the others to finish their work and return. One is spawned to handle
the communication see Section 4.5 and one or more are created for the VM objects.
Regarding a thread as a combination of resources, the VM threads could be seen
as threads without a stack. Instead, allocated memory of the LPs will be used as
such. Certainly a thread stack is also just a memory chunk, but in the sketch it
shall highlight the way how a LP content switch is realised. When the simulator
is enhanced by an optimistic approach, each LP needs images of its content from
its past. This is already included into the draft.

However, a MPI environment has to be able to send messages. The process-
internal message transport is shown in image 4.10. The separate components of
the simulator are connected by message queues. Their use can be compared with
a conventional pipe. Two or more objects get a reference to a message queue.
At least one object primarily adds to the message queue and the others mainly
receive from it. The current concept uses one queue to transport the messages
to the communication object. This object collects all generated messages of the
LPs and their VMs and arranges them in a chronological order. This optimises
performance because the VT wise youngest messages are likely the next ones to
be processed. By design, the queue see 4.4 returns them first. Therefore, the
lower the VT, the higher the priority to be redirected or actually sent over the

36

Text

e ——————— (T —————
: Main thread Virtual Machine threads
VM_main(int, char) Register Stack Register 0
BC Register :
SP »
Reg ‘ly Register n|
g 1T === 11 dFc]
Reg | & --—--——---—] -
= 1 R
| 9| mea
I L] Reg

L

Communication) Register Stack
{
while(comm) ;g »
{
sendirecv(); -f— %ﬂ— *
)} Reg
\ J :

Figure 4.9: Simulator schematic draft

network. In the other direction, each VM is linked with an own queue. Basically,
one would be enough, but then the queue would need to return the messages VM
selective. Partitioning the messages to the VMs guarantees that each message
from the queue belongs to a LP from the local pool. The sharing out is done by
simply addressing an array of queues by the virtual rank’s element "VM rank".

Event Queue

Sim_Communication

Event Queue

Event Queue

Figure 4.10: Process communication concept

37

Bunrem

puadsns

41U LLY NOILVDINNWWOD™S

QAIOA : (d™2beSSaNS : 9beSSaW PUBYIAIRINYI[BIWINOD+

1sanbayTIdIN : (WWODTIdIA : 10IBdIUNWWOD ‘4 abeSSIS : 9beSsSaw)abessappuss ANOD +
d79bBSSANS 1 (WWODT[dIA : 40IBIIUNWILLOD ‘SNIRIST[dIN : SNIB1S 6B SSaW ~3|ge|leAR)2beSSINDAIIRI“NWNOD+
(d™qly~J101edIUNWWODS | S9INCI41IE)UONEIIUNWWOD D+

buruuna
paleulw.I9]
parieisTiou

SNLV1S™d17®
«uonesawnu»

L

[+"11d™3N3IND2 : ananb-indno~wwo)-

d~3N3IN0?3 : enanb indui"wwo)-

NOILVDINNWWOD 2

|

d"AIOA :3dBIS+

([x"0] d"¥VHD : ABuae ‘N : 2bue Jurew WA+

QIOA : ()3SIUOIYDUAS WA+

(d™qIMY AUIYDBN T[ENIIAS | SAINQIJIIE)UIYDBN “[ENLIA D+

AINITSAS : Jo1uj0d-3seq+
INITSAS : J21u10d RIS+ o
SNLVLS d1e : sneis+

$S33044 1216077

[+"1]1d7SSID0Ud~IVIIDOTS : |00d~559204d 7 [E2160| " WA~

d~qumy-enanQs : bulobino WA~

d~quNYaNaNYs : Bulwodul“NA-

(17$91UIN : SWIITIABS MIU)3WI | ASABSISS +
d~9beSSINS : (3" 9IuIn : Inodw)abessaIab+
d9besSNS : (4 96eSSINS : 9BBSSIN MU)II3sul+
(d7qVy7aN3aNYSs : SaINGLIIIe)aNanD I+

0 = 1 $9IUIN : BWIIT[eNIIATIARS-
d9bBesSas : peay -

ANIHDVINTVNLYIATY

anand™

QLY BUIYIRN T [BNLIATS

o
()9ZIS"WWo) |dIN+ ANVY TS
Ov_:mA_ulEEoU|_n=>_+ Kt

PZI[eULdTIdIN + AAIRIITI
QU IdN+ pUSSTI

()9SIUOIYDUAS WA+

NI djuedT[BNLIIATSqR+
17ZEIN T X3PUITINVIA+
179TIUIN DY URITNA+

IdWTTVNLYIAT

DVL IDVSSIN
«uoMeIBWNUI»

[0]3783uIn : e1ep+
17Z€win 1 ybus|Tejep+
17$91UIN : SAIRIRITIWNA+
17H91UIN : puU3STBWINA+
SINVY TS : ued~puas+
MINVY 1S : v_CmL|0>_wuw_+
DV1 IDVSSIN D : ber+

abessap~s

quNIy 2n3nY~s

ﬁ pa|ie1eQ ﬂ ImaIAIBAQ abeyded

: Detailed design overview

Figure 4.11

38

5 Implementation

This chapter describes in detail some of the implementation’s key features. It
gives an overview of how an LP is being executed. Also the supported MPI func-
tionality and how the transport in the virtual MPI layer is realised are described.
Additionally background information related to issues, which have arisen during
the programming, is given.

5.1 Background Knowledge Function Call

A function call is not only a branch to a specific address in the program memory.
It is a set of operations. Depending on the programming language, the program-
mer has to do some of this by writing the explicit code. When using high level
programming languages, all these tasks are usually hidden by a simple function
call like foo();. The compiler is then responsible for adding the required code, so
that the statement is translated into a valid function call.

e Storing parameters.

e Store jump back address.
e Jump to address in code.
e Save used register.

As usual, there are many ways to achieve the desired goal. The programming
language used, the compiler, compiler flags, etc., will all have their effects and
therefore this analysis is mainly based on the mpic++ — GNU Compiler Collection
(GCC) wrapper compiler using no flags. In this setup, a call creates a stack
segment named stackframe (SF) storing the local data of the active function. In
the majority of cases, such a frame is used in high level programming language to
combine several sections [21].

e (Callee parameters
e Return address to caller

e Saved registers

39

e Local variables

Depending on the implementation the separate sections may be handled in a mul-
tisegment approach, one stack storing only parameters, a second the remaining
data.

The image 5.1 shows the stack some time after a process/thread was created. The
coloured regions are SFs. These frames combine the previously mentioned sections
for one function. In some cases, again depending on the various aspects, the stack
frame [34] of the calling method may overlab the one of the callee. This is the case
here. The addresses shown on the left side of the stack are added only to show
that data is added to the bottom of the stack. A symbolic address representation
of 0xXXXX will be used for further images related to the stack.

As in this project, an object-oriented programming language is used, the calling

Stack
0x4000 —> m <«— upper bound

0xX

active functions
parameter

Stack
growth
direction

Return Address|

Basepointer

OXXXxX —» <« ebp (base-/framepointer)

active :
Stack frame @ local variables
(N

preallocated memory
for subfunction calls

<— €SP (stackpointer)

N

0x1000 —» & <«— lower bound

Figure 5.1: Call stack

of a member function will be examined. In particular of the VM main(...) of a
virtual machine instance. The this pointer serves as a mechanism to connect the
function to the object. Accessing object attributes without a valid this pointer
leads to unpredictable behaviour or a segmentation fault. This is why it is explic-
itly displayed here.

The image 5.2 shows the initial situation. On the left side, the program memory
is listed with pseudo assembly code which is executed directly before and after a
function call. The assembly code actually generated for the call is listed in the

40

appendix see B.1. The stack itself is shown in the the upper middle and in the
lower middle there is the virtual machine object, which is located in the heap.

First the parameters are fetched. As usually done in C, this happens from the left

Stack

OXXXXX —»

Progamm code

p + 3 * wordsize
p + 2 * wordsize
p + 1 * wordsize
P

points to

Return Address|
Basepointer

b
b
b

<« e
<«— é!
<— el
<«— e

VM_main(argc, argv); —»

mov argv, %edx get (argv) parameter
mov argc, %eax get (argc) parameter
mov %edx, 0x8(%esp) | (push) argv

mov Y%eax, 0x4(%esp) | (push) arge
mov__basepointer, %eax get this pointer

mov Yeax, (%es) (push) this pointer

. | call OXXXXXXXXX <(VM_main)>| push return address

~~~~~~~~~ and brunch to function

Stack frame
/\/\/

[l ol ad il

<«— esp

next command —»

Heap

1

* Register file

OXXXXXXXXX | eax
OXXXXXXXXX | ebx
| OXXXXXXXXX | ecx
OXYYYYYYYY | edx

copy address of

VM_main: —»

ush %eb create new
7< [mov %esp, %eb) stack frame
sub 0xn, %es

* Register file
OXYYYYYYYY | eax
[ OXXXXXXXXX | ebx
OXXXXXXXXX | ecx
[OXYYYYYYYY | edx

copy value

——

Figure 5.2: Call stack movements step one and two

to the right. Thus the last parameter is read from the memory first and stored in
a register. Followed by the next to last parameter into another register and so on.
Although it is now possible to pass these parameters by register, all parameters
are actually passed by stack when using the mpic+-+ without optimisation option.
This means the values have to be copied there. Although after entering the callee
function it looks like the parameters are pushed ! onto the stack, they are instead
written relative to the SP, as shown in image 5.3. To allow such a write, the
memory space has to be preallocated. To determine how much memory will have
to be preallocated, the compiler parses the whole function for calls. The function
which requires the largest amount of memory to store the parameters dictates the
size of the allocated parameter section in the SF. This can been interpreted as
"overlapping" into the next frame, since the parameters belong to the method

!Two main nodes of operation: either write data to stack then manipulate SP or manipulate
SP then write data to stack

41



which is called.

Then an additional, not explicitly declared parameter is copied: the pointer to
the virtual machine object. For this, see step five in image 5.4. Now, after all
parameters are on the stack, the actual call can finally take place. It is a two step
command. First the address of the next code line, the return address, is pushed,
second the program branches to the address of a function which is called. Shown
as step six in image 5.4.

Heap

0xXX:

points
to

<— VM object OXXXX guxxx —p  —StACK

3 . Return Address|
Basepointer
eax| OxYYYYYYYY I~ Ebp
ebx | OxXXXXXXXX i
Functions :
ecx| OxXXXXXXXX | (push) parameter 2 Stack frame  +

e [ORYYYYYYY e
—X’ M_argvchar®| € esp + 3 * wordsize

- <— esp + 2 * wordsize
4. | VWM argeint | o  gsp + 1 * wordsize

(push) r 1 <«— esp

eax| OxYYYYYYYY
ebx | OXXXXXXXXX
ecx| OxXXXXXXXX
edx| OxYYYYYYYY

Figure 5.3: Call stack movements step three and four

As initial step, the function which is now active creates a new SF. Immediately
after the function is entered, all registers which are currently in use, but at least
the BP, will be pushed onto the stack. These saved values are automatically re-
stored after the function’s return statement. After that the current SP is copied
into the BP register and becomes the new framepointer (FP). All local variables
the active function will be addressed relative from this FP. To preallocate memory
of the locals the SP is manipulated (subtract/add) by n bytes, which creates the
frame. This already includes the maybe overlapping parameter bytes from to the
subfunction calls, see image 5.5.

42



Progamm code

Stack
OXXXXX —» m
) . <— last stack frame
VM_main(argc, argv); _>1. mov argv, Yeedx

2.[mov argc, %eax

3.|mov %edx, 0x8(%esp)

4. [mov %eax, 0x4(%esp) R

5.[mov__basepointer, %eax -« egp + g : worgs!ze

6.mov %eax, (%esp) <«— ebp + wordsize
next , 6. [call OXXXXXXXXX <(VM_main)>) _5' R‘:“’" Address . ebp + 1 * wordsize

e copy this asepointer - ebp

pointer

Functions
Stack frame
("
IVM_argv char**|
VM_argc int
This pointer

<«— esp + 3 * wordsize
<«— esp + 2 * wordsize
<«— esp + 1 * wordsize
<«— esp

< [mov %esp, %ebp push return
sub 0xn, %esp address

VM_main: —b{ ush eeb,
7

Figure 5.4: Call stack movements step five and six

5.2 Virtual Machine

5.2.1 Content Switch Logical Processes

The actual content switch is realised in the synchronisation function. This is the
key function. It allows the VM to run multiple LPs. Depending on the amount of
communication between the separate LPs, a large percentage of the total calls will
be assigned to this function. Since the efficiency of the project is determined by
the computation resources which the target application can use, it is important to
keep the synchronisation function efficient.

Due to some complications during the implementation, two versions have been
realised.

1. Copy the content.
This approach is slightly simpler than the second one. Although the basic
principle is the same, simply copying all of the content contains a smaller
risk of programming errors. The concept is to store the BP and SP when
first entering the function as point of reference. Thus whenever entering the
method again all data between the current SP and the stored reference BP
will be copied into a memory section assigned to the current active LP. As

43



Stack

OXXXXX —» m

Return Address|
Basepointer

OXXXXX — <«— last stack frame

Last .
Stack frame ¢

<«— esp (ebp)

7.

create new stack
frame by set ebp to
esp and substract
n bytes from esp.

<«— esp

Figure 5.5: Call stack movements step seven

well as the BP and SP will be saved. Resuming an LP is done by copying the
saved content back onto the stack, and restoring the saved BPand SP. Even
though BP and SP have to be manipulated here, they are not designated to
be set outside of the working thread’s assigned stack boundary.

. Move the BP and SP.

By just manipulating the pointers, the actual stack content of the indepen-
dent LP never has to be copied. As with the other approach the BP and
the SP are saved as points of reference when first entering the function. But
instead of copying the content, the pointers are manipulated in a way that
each LP uses its own assigned chunk of memory as stack while it is actively
running. When entering the synchronisation again the BP and the SP will
be saved. To switch to another LPs content, the stored pointer values of this
LP are restored. To do so it is necessary that the pointers are set outside
the working thread’s assigned stack boundary.

With both implementations, the synchronisation method serves two main pur-

The first is to redirect the messages from the incoming queue into the

corresponding buffer queues. The second is the briefly described content switch
between the LPs of an VM object.

Both version are displayed in the final activity diagram 5.6. The green and

44



turquoise sections highlight the difference between the two implementations. Green
highlights the implementation, in which the stack content is simply copied, tur-
quoise the one which only manipulates the pointers.

The redirection of the messages themselves is realised in a simple loop in which
one message after another is fetched and added to the receiving rank’s message
buffer. In the case that it is no point-to-point communication, like a broadcast,
the message will be added to a VM wide single queue. By separating point-to-
point and broadcast communication, the messages addressed to multiple ranks can
be stored as a single entry in the VM’s global queue. Right now, only one MPI
function is designed to be processed immediately after fetching a message from
the queue. This is the barrier command, which releases all LPs waiting on that
barrier by setting the LP’s status back to running.

As proposed in sections 4.1, an LP itself is implemented as a struct, see image 5.7.
An LP object array is created in which all LPs are stored. By adding an addi-
tional LP object, the synchronisation function can be implemented so that it is not
necessary to check if the function is called for the first time when the referential
BP and SP have to be saved. An object-based structure of the array is displayed
in the image 5.8. As shown the memory used as a stack for the LPs is allocated
as one chunk. The stack size can be determined by a program parameter whose
value is multiplied by half of the system’s page size. Allocating the memory as
one chunk should avoid possible memory fragmentation and the chosen increment
size is to guarantee a correct stack alignment.

After the creation of the thread, the index of the current active LP is set to the
additional object in the array. When now entering the VM synchronise_ LP(),
the first two assembly commands will save the BP and the SP into the additional
object. Thus, the same code which saves the pointers of the LPs when entering,
also stores the referential values. Even though, by using the additional object no
check is necessary if the function is called for the first time. However, accessing the
saved stack and base pointer causes additional overhead by addressing the object
in the array first. Storing the values directly in a variable would be faster, but
then a check would be required. With the approach which only manipulates the
pointers, this simple mechanism basically saves the content of an LP. The other
solution requires that additionally, the actual content is copied. When examining
the code you can see that the copying is done in a loop, which copies byte per byte.
Using a well tested standard library function like memcpy(. .. ) instead would not
only improve the code, it would also improve the efficiency. However, although
this could be done when saving the content, it does not work when the data is
restored. Such a function would of course perform a call, but the corresponding SF
would be overwritten if the content to be copied extends the previous. Therefore

45



Sem ¢4 A

U3 3pO3 Ul U

03 uIia1 |jim peal
uonauny

a2 buinea] UBYM

ﬁs&% 1 u1 paiois sawiodyIes 210159 |
T

ﬁ,uu.se d1 Ul paiois Jjutodaseq u.sms.u

paidod
Biep ||V

us o Alowaw
s133[q0 47 2Ande
wo.j 21Aq Adod

131UN0D PAJEUILLIR) ] JUBWRIDU]

23UBNUD 15113 JO IN[EA
01 J21ui0dBIS 240159y

2ouBAUD 1511 40 FNEA OF
01 121100058 210159y

([126.e, teyd 2618 JunuRW WA |23

199(q0

4194 uj anfea paons
a1 03 JuIOdIEIS 31 1S

101U0> PaUIED 41
Jayi0ue e [nun
pea.L 3 Jo

Iu.:_. unJ pea.yy 190

Buiuuni 0} Smes 41 19s

Smeis uo
6uipuadap

- - EEI

(urew WA S wou.
d7°© USYM paIUaWRDUL
34 1M *J21UN0> © S pasi|eay

12200 417 3x3u 0) YNIMS

B

12y4nq Buipuodsa.iod Bujuuns 01 smes 105
o1} abessaw 13011paY 211G UO BUNIEM 547

abessaw
uo ymg

ananb Bujwodul ausdew
[eMAIA WO} 96eSSOW 1X0U 19D

9OUBAUD 15113 JO IN[EA O} dS 101SY

\
I
]
an[en o) 4g 210159y |
I
oE1S uopesuoIUAS 210152

\\\\\\\\ v

paido>
adl)

)

|

|

|

|

12[q0 41 2An%e Jo i
Asoupw 0w 1S |
wo.y 31q Adod ,

|

|

|

|

|

|

|

|

192[q0 41 2AN3 01 dg AdoD

1200 41 3A2e 01 ds Adod

PURIO3 oes Ines

n wonesiuoiypuAs (5| ] 3dH-a1eds 26127 Auande

Figure 5.6: Activity diagram of implemented synchronisation function

return statement.

the application will crash when the memcpy(...) executes it’s

both the saving

b

Since it is not possible to use subfunctions to restore the content

as well as the restoring is performed by a simple loop.

In the following step, the reference call stack is restored by copying the pointers
back into the registers. Through that the SF created when the function was called

the first time is now active. Thereby from the view of the application flow it seems

as if this is the initial call to the synchronisation function. From that point, each

46



s_LOGICAL_PROCESS

+LP_relative_vrank : SYS_INT

+LP_virtual_rank : INT

+LP_stack_pointer : SYS_INT

+LP_base_pointer : SYS_INT

+LP_used_stack : SYS_INT

+LP_status : eLP_STATUS

+LP_stack : VOID_P

+LP_argv : CHAR_P [0..¥]
+LP_incomming_buffer : cQUEUE_VMPI_BUFFER

Figure 5.7: The logical process (LP) struct

LP can start the VM main(...) function based on the same basis regarding the
program flow.

The first approach needs no additional mechanism since it uses the original stack.
All LPs can be started in such a way that the SF of the VM _main(... ) is consec-
utively aligned with the one created when the VM synchronise LP() was called
for the first time. When starting or resuming the next LP, the data written to
the stack of the previously running LP can be considered as random data after
being saved. The initial approach on the other hand does not write further SF's
on the thread’s original stack. Calling the main function is manipulated in a way
that it does not arrange the frames in sequence but instead the VM main(...)
function’s SF is placed in the LPs’ allocated memory area.

This method starts at the same initial scenario described in section 5.1, except one
additional assembly command before calling the main routine, highlighted red in
the image 5.9. With this command, the SP is set n times the system’s wordsize
from the assigned memory boundary of the current active LP. The distance is
required due to the mpic+-+ implementation of the call stack. Here, parameters
are been written relative to the SP in the SFs overlapping section. If the offset
to the boundary is to small, each call generates a segmentation fault, which was
one issue during the implementation described later in this section. In case of any
changes in the amount or types of the VM main(...) parameters, this distance
has to be adjusted. The implementation of a function call now creates a new stack
frame at the position where the SP points to. After the synchronisation function
has been called as often as there are LPs in the virtual machine, every LP has
it’s own VM _main(...) SF. These are all basically aligned behind the same last

47



SN S ) Stack P, SRk,

Figure 5.8: Array structure of the logical process (LP) array

active one, shown in image 5.10. When now a LP is resumed and the content is
restored by copying the pointers, all further SFs are created independently and
transparently to the other LPs in his own stack.

At this point during the development I was confronted with two issues. Both
founded on a faulty knowledge about the real implementation of a function call.

The very first basic implementation of the content switch simply moved the SP
of the executing thread from one LP’s memory to another. The assumption was
that the local variables are addressed relative from the SP. By setting the SP to
an address in memory which points to a separate chunk of allocated memory for
this LP, the content of the running thread should be switched.

The earliest test version based on this idea did run successfully. All LPs seemed
to complete their main function and the program terminated afterwards without
an error. All LPs had executed a simple ’hello world!” program. There was no
communication nor synchronisation call at all during the execution of the main
function, each LP terminated in a single subroutine call. Thus, this early test pro-
gram can be seen simply as a loop which calls the main function multiple times.
For a more real scenario the complexity of the main function had to be enhanced
from a simple print statement to some loops which do calculations on dummy
data. With a periodical call of the synchronisation method during the execution
of the loop, the current LP is forced to suspend and transfer the control to the
next LP. Thereby, multiple content switches are tested. To determine if a content
switch was successful, a progress message is printed right before the synchronisa-
tion function is called. Despite the expectation that the LPs would cyclic print a

48



Stack
OXXXXX —>

Progamm code
OXXXX.

points,
to
points to
Return Address|

Basepointer

OXXXXX —>

VM_main(argc, argv); —p [0V address, %esp | Heap active B
fmov  argv, %edx | Stack frame ¢
mov argc, %eax m /\)_\_/
mov %edx, 0x8(%esp) H
mov %eax, 0x4(%esp) E

mov__basepointer, %eax
mov %eax, (%esp)
- |call 0XXXXXXXXX <(VM_main)>|

<«— esp

OO WN 2

next command —»

N

(" Upper address bound

in: —» Set stack- of LP's stack memory
VM_main: push %ebp pointer to
74 |mov %esp, %ebp <«— esp
sub 0xn, %esp Moved to

points to

0xXX

Figure 5.9: Start up initial situation

message, the prints indicated that only at the first cycle, until all LPs are started
up, a content switch occurred. After starting the last LP it seemed that it never
handed over the control until it finished. After that, it seemed like the next to last
LP gained control and also did not release it until it finished. This pattern repeats
itself until all LPs have terminated.

To determine the cause of this phenomenon, the application has been analysed
using a debugger. At first everything seemed to be correct. Before the main func-
tion is called the SP has been moved to the desired position in the memory and
after calling the main function, the local variables are located in the preallocated
area. Further the control has been handed over to the LP next in line whenever
the synchronisation method was called. In the control switch the corresponding
SP has been copied into the SP register. After all LPs have been started and the
content (SP) of the first has been restored again, but the LP still accessed the
variables from the last started LP. Inspecting the assembly code produced of the
main function, it was discovered that the variables are addressed relative from the
BP instead of from the SP.

49



Heap
H Stack

OXXXXX —»

Active LP —
\

Stack memory % \ans RotunAddress
<«—esp
: : // active
: /f

t i -
o 4,0’> OXXXXX Basepointer
/ Stack frame ¢

/[ ("

Figure 5.10: Stack after all LP s are started

This way, the phenomenon could be explained. Since the BP was never manip-
ulated at the starting of all LPs, they did not really start independently, it was
rather that each VM _ main(...) function was indirectly a subcall of the previous
one. Also the calls to the synchronisation did not switch the content, it only de-
fined where in the memory the SF of the next call to the function will be created.
A real switch to another content was only triggered when an LP hit the return
statement of the main function. Until then, all LPs accessed the same content.
However, a successful run of this test application was only possible because it is
has such a basic main routine. If there were nested submethod calls and the syn-
chronisation function would not be called symmetrically during the program flow,
then it would very likely end in a segmentation fault.

The second issue was a segmentation fault. The curious about this behaviour was
that the error took place at different points in the program flow. Additionally,
the exception was always thrown from inside a malloc(...)/free(...) function,
called from different positions in the code. The real source of the segmentation
fault could finally be tracked down with a combination between the use of a de-
bugger and the memory analyse tools valgrind/efence. The VM main(...) call
of the n.th LP violated the boundary of the allocated memory. More precisely,

20



the assembly section which passed the parameters did not push the data with the
actual assembly command push, instead the data was written relative to the SP
see 5.1. After all, the SP was already placed at a distance of a system word size
to the boundary of the allocated memory. Certainly it was not enough to store
the parameters. Originally, the reason for placing the pointer not directly at the
boundary was that the mode of operation could not be determined without using
inline assembly. To make the application highly portable, the inline assembly code
should be used as little as possible. By reserving one word size as buffer, no writ-
ing outside the boundary of the allocated memory could be caused by the stack
operating principle.

5.2.2 Virtual MPI

The still small amount of supported MPI methods already allows to programme
basic parallel applications.

e MPI Init()
The init function is used to initialise some of the LPs variables. However,
contrary to the real implementation it is not blocking. Assuming that all LPs
will eventually call the function and the fact that the VT is not deployable
yet, the runtime behaviour is changed to avoid a simulation delay at this

point. For later versions, this method has to be extended by a barrier on the
virtual communicator MPI _COMM WORLD.

e MPI Finalize()
This function is right now a non blocking call, too. According to the produced
result of an application, this does not matter. By not blocking, it simply
terminates the LP. The structural program flow does not change because of
this. Likewise to finalise a blocked mpi rank, the terminated LP does not
participate at the communication any more. Still, this alters the runtime
and has to be corrected in versions with VT measurements.

e MPI Comm _rank() & MPI_Comm _size()
Identical to their counterpart the virtual rank and the virtual communication
size is determined and returned immediately.

e MPI Isend()
The MPI_Isend function has been implemented before the MPI Send(... ),
because the blocking send can be realised in the handshake sequence of its
non blocking version and the blocking receive. As far as this function’s
purpose is concerned, it is to create an appropriate struct with the header
information. The data is stored in a cross-platform manner appended to that.

51



As we can relinquish of a serialisation in homogeneous configurations a define
switches between a memory copy and an MPI _Pack solution for adding the
data. The define HOMOGENEOUS can be found in the file datatypes.h.
Afterwards the new message is inserted into the outgoing queue. By copying
the data the simulator may correct racing contition programming errors.

e MPI Recv()
The specified message will be searched in the LP’s own buffer in an endless
loop. If the matching one is found, the data from it is restored into the
memory space passed as parameter. There is no verification between de-
manded, datatype size times amount elements, and the actual message data
length. Trying to receive more data than present, will most likely result in
a segmentation fault like in its real counterpart.

e MPI Barrier()
The barrier is not fully implemented yet. The principle was that every virtual
rank sends a barrier notification to the root rank. After all communicator-
associated virtual ranks are counted, a broadcast message allows them to
resume.

5.2.3 Virtual Time

The design missed to address one potential source of causality errors during a GV'T
synchronisation. What happens with messages with smaller or equal VT stamps,
which are still to be routed while an update is posted?

To ensure that there are no such messages, there is an interaction between the
implementation characteristics of the queue and the communication class. This
issue only arises if the simulator operates on the GVT. This implies the use of
a sorted list. The sorting algorithm positions new elements before the first one
with a greater receive VT. By adding the LVT change message after all critical
ones, only items with a greater VT stamp can be following. To ensure that it is
the last one, the virtual MPI send method’s add the change message as last tasks.
This works because of the sequential execution of the LPs. If the LVT changes,
all LPs have already passed this time and therefore have placed their message in
the queue.

Sorting the messages is the first step. The fact that the queue always disposes the
head forces the communication to send the VT wise youngest messages first. As a
transfer has to be concluded before the next can be commence, all messages have
to be already at their destination when the GVT change is initiated. After all, the
GVT is only the minimum of the LVTs, therefore no critical message relating to

52



the published GVT can be present on the network.

When implemented, the theoretical solution worked, unfortunately the time as-
certainment for a thread is far too inaccurate. The design already proposed an
increment of 1 us for the VT. Using the function clock gettime(...) with the con-
stand CLOCK _THREAD CPUTIME ID there are variations up to several ms.
A set of theoretical reasons could be responsible for the divergence. Modern CPUs
equipped with multi-cores could be the first one. If there are slight variations in
the operating frequencies of the separate cores, each one would have a different
clock cycle time. Therefore, the same application would execute the same instruc-
tions in different durations. The same is true if using two separate unequally fast
computers.

Furthermore, threads will be swapped for other tasks after a while. With a given
accuracy of the OS-internal timer tick, which is in good system may a couple of us,
the determined runtime can only be a approximation. In the worst case, a thread
will be resumed directly before or after a system tick and swapped just otherwise.
Each swap can shift the stored runtime by almost a OS tick duration. Additional
features like dynamic frequency scaling, also called CPU throttling, variate the
clock cycle time even more. The extent of the variations is analysed in the section
6.1.

Due to the imprecision, the VT variates in dimensions, with undetectable causality
errors possibly overlapping several thousand instructions. The current approach
definitely has to be redesigned to be accurate enough for deployment.

5.3 DES/PDES

The current version of the project implements a conservative PDES synchronisa-
tion. Unfortunately, the general strategy may lead to a deadlock situation. If the
virtual MPI Recv(...) function cannot find the matching message yet, waiting
for it does not advance the LP in VT. The design of the simulator assumed that
a message neither would have arrived in the past, so that the virtual receive time
stamp is lower then the VT of the LP, nor that the message would arrive some
time after the receive function was called. In this case, the virtual receive time
stamp determines the time the function will be blocked and this becomes then
the new VT of the LP. As long as messages from the virtual future are delivered,
this principle work. However, this violate against the rule of not releasing unsafe
messages. Only when using a lookahead algorithm, this rule can be bypassed for
messages which are certain not to generate a causality error. Speaking in terms of
MPIthe MPI ANY SOURCE tag cannot be used as addressing attribute.

93



Assume that the LP which declares the GVT, waits for a future message of any
source. Even though there would be a lookahead, the LP would keep waiting.
However, since the waiting does not advance his VT, the GVT stucks. Thus, no
further message will be delivered. In real systems, the messages will not be de-
tained and all processes advance continuously in time. Letting all LPs progress
in VT while waiting cannot be done in the simulator, because this could alter the
sequence of events. Allowing just the LP which holds the GVT to increase its
VT cannot produce an error. The question is how to determine the size of the
increments. Too small and the system will be massively delayed, too great and a
causality error my could occur again. The inaccuracy of counting the CPU utili-
sation intensifies the problem. Even a well-balanced application and an increment
of 0.2ms ends in massive stalls.

Be that as it may, moving the perspective of the project in a slightly different angle
we can get rid of the PDES and see the system as a “emulation of a computer
network in which all messages are delivering regardless to the GVT. The MPI self
tasks mostly care of the synchronisation. Only in a scenario like load-balancing
applications which operate with MPI _ANY SOURCE could end in faulty results,
if the network is seen as homogeneous. The results can be compared more with one
which would be gained from a heterogeneous. This new aspect initiates a redesign
of the messages queue to operate as a FIFO. No sorting is necessary here because
the order is given by the MPI attributes.

5.4 Message Queues

The datatype list was chosen for the implementation of the queues. Arrays like
lists have their disadvantages, a dynamic behaviour seems to be of more benefit
here. The different message occurrence of every application will be supported best
by this approach.

The functions for allocating and freeing memory are again a likely source of seg-
mentation faults. The messages are one basic component. They are continuously
created and destroyed in various code section. Centralised operations will remove
this source of error. Therefore one function, adopted to the queue class, should be
used to create messages. It ensures that the user defines the type and size of the
message. Five different types can be generated right now. When passing a invalid
value, an empty message is returned by default.

e MTYPE EMPTY
All values except the amount of databytes have to be set by the user.

e MTYPE QUEUE TAIL

o4



Messages created with this tag are designed to indicate the end of a queue.
The virtual receive time stamp is set to max value of 25us, which should
be never reached by the application. In a sorted list, this keeps the message
always at the end, because all other entries have to have a smaller value and
therefore be in front. Additionally, this fact is used in the queue implemen-
tation. The get function has to keep all unsafe messages in the queue. With
a value which is never reached, the tail node will be never removed from the
list, without additional check.

e MTYPE ILVT CHANGED
This message is used to forward the new LVT.

e MTYPE VM FINALISED
This control message is send with a higher priority by setting the virtual
time stamp to zero. By doing that, it will the next message which will be
send by the communication, in a sorted list.

e MTYPE DISABLE COMM
Also a high priority control message. Designed to shutwon the communi-
cation in case of an interrupt or at the end of the program. Without the
communication, the simulator is not able to run, and therefore it implies also
the termination of the VM and so the abort of the application.

A second function creates a deep copy of the message struct and returns a pointer
to the new object. Finally, a third function is used to delete a message. Before the
memory will be freed, tests like if the message is still connected to a queue can be
done here.

The queue itself is realised as a double chained list. For the current use, the double
chained list only slightly simplifies the removing of an element. A good example
would be the planned broadcast message. This message will be not replicated,
instead each LP will get a reference to the same object, which will be retained in
the list. When the last LPs acknowledges the receiving of the message, it can be
removed from the list immediately because it has pointers to the previous and the
next node. However, the main reason for the doubled chained list was a concept
for a lookahead implementation. It proposes to create a second list which links
nodes of already existing queue together, see image 5.11.

The test implementation uncovered some exposed weak points in the design. Mes-
sages of a node are already distributed amongst the running VMs. Narrowing
down the amount of messages to only VM-specific messages eliminates redundant
operations. Also it was envisaged that the top of the queue should always be
executable, if it is in the past of the GVT. This is not true. For example, if one

95



Queue head pointer
Lookahead pointer

Crrrs
R

W%
Message
5|2 8

Figure 5.11: List with a second overlaying list

virtual rank is about to receive a sequence of messages from different sources, in
a specific order. According to the concept until now, the queue only allows to
extract the head message, the message with the youngest virtual time stamp. The
chronological order of arrival does not have to match the desired order. If the
head message is from source y instead of x, the next returned message cannot be
processed. In fact, message after message has to be fetched until a matching one is
found for either one of the LLPs in the VM pool. Afterwards, all gathered elements
have to be resubmitted to the queue.

Clearly this is an unacceptable implementation. Introducing the designed looka-
head could improve this situation. With this implementation, if a head message is
not executable, the lookahead points to one that is. In the short term this seems
to keep the simulator running, but once a message is added to the list it cannot
be marked as lookahead anymore. Consequently when a set of messages with the
same LP as receptor is breed before the LP gets the turn to resume its work, only
one is approved as lookahead candidate. Considering this, the implementation
definitely needs a search ability.

When starting to search the queue, it would also making sense to continue the
partitioning thoughts. Further separation on the LPs would simplify the delivery
and improve the search time. Based on that, the original concept is expanded to
a more MPI-like structure. Each LP is now equipped with a non-shared virtual
MPI buffer. This buffer is a specialisation of the standard queue searchable for a
union of MPI attributes. Apart from that, each VM gets a LP comprehensive MPI
buffer for collective communication. Otherwise, a replication would be memory-
intensive.

However, the new perspective that the PDES could be skipped in certain situa-
tions allowes to develop a second queue protocol. It simply forwards the messages
in a First In First Out (FIFO) manner. The queue gets a pointer to the head
and tail message. Appending a message can now be done directly, without passing

o6



trough the whole list, since there is no need to comply with a certain order. This
significantly lowers the queue overhead.

The current version of the project implements the queues as displayed in the image
5.12. All functionality of the sorted queue and the FIFO queue is defined in the ab-
stract superclass ¢ QUEUE. A define controls the instantiation type of the object
and therefore the mode of operation. The described MPI buffer queue is inherited
from the FIFO queue type. It is possible to do so even with GVT, through the
cascading sharing of the messages. If the GVT is active, the VM input queue will
only release safe messages. To be save the message has to have a younger virtual
time stamp then the GVT. Therefore all messages have to already be in the queue.
So they are already sorted upon the GVT by their receiving virtual time stamp
when extracting them from the queue. Adding them in that sequence to the FIFO
based virtual MPI buffer they stay in the right order. Maintaining the time order
can thus be guaranteed without a sorted queue with more overhead.

Cc_QUEUE

-Q_read_write_access : pthread_mutex_t
-Q_sig_message_available : pthread_cond_t
-Q_GVT : uint64_t

+Cc_QUEUE()
+~C_QUEUE()

O create message( type : eMESSAGE TYPE, data size in byte :int32 t): sMessage P
+0 copy message(message :sMessage P):sMessage P

#Q_destroy_message( message : sMessage_P) : VOID
+Q_get_message( timeout_ms : uint32_t ) : sMessage_P
+Q_insert_message( new_message : sMessage_P ) : sMessage_P
+Q_free_message( message : sMessage_P ) : VOID
+Q_update_GVT( new_GVT : int64_t ) : VOID

+Q_get_GVT() : uint64_t

c_QUEUE_SORT c_QUEUE_FIFO

#Q_head : sMessage_P -Q_head : sMessage_P
-Q_tail : sMessage_P

+c_QUEUE_SORT()
+~C_QUEUE_SORT() +Cc_QUEUE_FIFO()
+Q_get_message( timeout_ms : uint32_t ) : sMessage_P +~c_QUEUE_FIFO()
+Q_insert_message( new_message : sMessage_P ) : sMessage_P +Q_get_message( timeout_ms : uint32_t ) : sMessage_P
+Q_free_message( message : sMessage_P ) : VOID +Q_insert_message( new_message : sMessage_P ) : sMessage_P
+Q_update_GVT( new_GVT : int64_t ) : VOID +Q_free_message( message : sMessage_P ) : VOID

T

¢_QUEUE_VMPI_BUFFER

+c_QUEUE_VMPI_BUFFER()

+~C_QUEUE_VMPI_BUFFER()

+Q_search_message_any_source_any_tag( timeout_ms : uint64_t, tag : e_MESSAGE_TAG ) : sMessage_P
+Q_search_message_any_source( timeout_ms : uint64_t, tag : e_MESSAGE_TAG, VMPI_message_tag : INT ) : sMessage_P
+Q_search_message_any_tag( timeout_ms : uint64_t, tag : e_MESSAGE_TAG, send_vrank : INT ) : sMessage_P
+Q_search_message( timeout_ms : uint64_t, tag : e_MESSAGE_TAG, send_vrank : INT, VMPI_message_tag : INT ) : sMessage_P
+Q_free_message( message : sMessage_P ) : VOID

+Q_wait( timeout_ms : uint64_t_p ) : BOOL

Figure 5.12: Implemented queue structure

o7



5.5 Communication

The message flow correlates with the application to be simulated /emulated. It is
uncertain which of the MPI ranks have to interact and when they have to do so.
So the implementation needs to be flexible. Various communication structures are
imaginable. To start with, the nodes could be connected as a ring. All messages
will run in the cycle until they are at their destination, comparable to an endless
object stream, where every MPI rank can add and remove items. Here every MPI
rank has only two fixed interface partners. One as origin of the stream and the
other as the one the stream has to be forwarded to. However, this simple concept
comes with its downsides. Albeit it seems that the stream is on the network, most
parts are actually stored in the MPI process’ buffer. A high message exchange
between the LPs could lead to a buffer overflow. Further messages may need more
than one hop, which is network overhead. As the overhead increases with the
growth of the simulators communication size, this concept will not be used for the
implementation.

Also a star-like configuration, where all messages are being sent to one specific
MPI rank from where they are distributed, would be conceivable. Regardless of
the scale, a message has to do at most two hops. Depending on the implemen-
tation of the PDES synchronisation, having a centralised event queue could be
beneficial. For example when updating a centralised queue in case of a rollback
instead of coordinating the update on a distributed one. However, drawing the
communication onto one node very likely becomes a major bottleneck that could
be avoided by using other configurations.

Finally, a non-blocking all-to-all communication concept is used. The communi-
cation thread runs here in an endless loop. Each loop cycle can be used either
to initiate a receive MPI Irecv(...) or a send MPI Isend(...). The result of
the function MPI Iprobe(... ), checking if there are messages at hand, is used to
branch between the two tasks. As long as the check is positive, the message will be
fetched. By that criterion, receiving messages gets a higher priority than sending
messages. This should theoretically reduce stress on the network. However, no
further study has been done to verify this assumption.

Most of the data exchange consists of virtual MPI messages between the spread
VM objects on the MPI ranks. There are still some control mechanisms like the
LVT, GVT, etc., where no virtual MPI message header should be send. They will
be handled directly and the additional information of the header is not necessary.
In total the simulator operates with five different kinds of messages. Distinguish-
ing between the different types is done by a message tag. All backed up tags are
collected in an enumeration to increase the readability of the code and also to

o8



reduce programming errors.

MPI_VMPI MESSAGE

This tag indicates a virtual MPI message which is sent from one VM to
another. After reconstructing the message, it is routed to one of the virtual
machine input queues.

MPI CHANGE ILVT SYNC

To enable the root rank to keep track of all the LVTs and therefore the GV'T
of the system, the separate ranks only have to send their new LVT value.
The associated source rank can be obtained from the MPI message itself.

MPI_UPDATE GVT

The root rank sends a message with the new value to each node in case of
a change. Unfortunately, this cannot be done by MPI Bcast(. .. ), because
of the non-blocking strategy. Right now a message is sent in sequence to all.
A more optimised variant would be to send it in a tree structure.

MPI RANK FINALISED

When a VM terminates, it sends a final message to inform the specific MPI
rank. Each time the communication object receives such a message it counts
the on the MPI rank running VMs down. After all VMs have been shut
down, the system is informed by a MPI RANK FINALISED message that
on the MPI rank no active LP will be processed anymore.

MPI_SHUTDOWN COMM

On the basis of the MPI RANK FINALISED packages, the root rank mon-
itors if there are still LPs active. Finally, after all nodes have reported their
LP chunks’ termination, the root nodes send the final message with the
MPI_SHUTDOWN COMM tag. Receiving this message, the communica-
tion objects break out of their loop and allow the simulator to exit.

Although the data is send with non-blocking methods, by waiting of the completion
of the transmission with MPI Test() the messages are sent sequentially. Sending
multiple messages simultaneously by using of the non-blocking MPI methods could
improve the throughput, but this could also complicate the GV'T synchronisation.
So the first implementation is a more simple variant in which the messages are sent
consecutively. Also this feature is used by the GV'T synchronisation mechanism.
However, the polling characteristic can potentially cost computational CPU time.
Therefore, the thread is forced to suspend and sleep for the time span defined
in sim_comm.h SUSPEND TIME US; if there are no incoming messages in the
MPI buffer and if a send is not yet completed or if no messages are in the outgoing
queue.

99



6 Testing

6.1 Time Measurement

An accuracy measurement of two time functions, the function clock gettime(...)
defined in time.h and the function sg get cpu_ stats_diff() from the statgrab li-
brary, was initiated by the implementation of the VT. The GVT synchronisation
mechanism which is based on VT leads to massive simulation stall. Variations
in the VT accounting for the separate LPs are responsible for the high frequency
of GVT synchronisations. An alternative approach to count the clock cycles by
the function clock(), also provided by time.h, has been considered. However, the
returned datatype is in general only 32 bit long. With a count range of 10° and
modern CPUs where the clock frequency is already in the GHz range, an overflow
will occur almost every second. Because of that, the use of this function was ruled
out immediately.

In three test scenarios, the accuracy of the functions shall be tested in different

Time Standard Deviation
100 Loop Executions A Measurment Series
3,5ms 1,3tick

% '-"*‘s Hmme o pelTmmeen wmm="""
———— Mol g2 g .
3,0ms === HC * 1,1tick
/_—s\ / \/ \_/ 0,9tick
2,5ms ~_
- 0,7 tick
2,0ms —+— Debian 32 bit
P >~ JUEEL . 05tick i Ubuntu3zhit
Pl BRSSP S . —M—Debian 64 bit
Lems = = ——Ubuntu 63bi
" D,Stink e untu it
I./m A /’\ A ). — %= User Ticks
1,0ms = ®= Kernel Ticks
/ \ / \ / \ / \ / 0,1tick
0,0ms ; & * 4 + + : ———% .0,3tick

1 2 3 4 5 [ 7 - 9 10

Run series

Figure 6.1: Experimental Standard Deviation 100 measurements a run

running environments. Regardless of the implementation, the test runs a loop, in

60



which dummy calculations are being done. This loop is the basis of the measure-
ment. Measuring the execution time of the loop should theoretically always return
the same duration.

The first scenario is a single process. The program collects a measurement series of

Time Standard Deviation
10.000 Loop Executions A Measurment Series

250us //—/
200us /
. ./_\-\
=4 Debian 64bit
- Ubuntu 32bit
100us
‘\// \

1 15 2 25 3 35 4

Figure 6.2: Experimental Standard Deviation 10 thousand measurements a run

multiple loop executions. Additional to the duration of the loop execution itself,
the arithmetic mean of the durations, experimental standard deviation and the
standard deviation of the mean is calculated. The second application is an MPI
parallelised version of the first one. Multiple processes on separate compute nodes
collect their data in the same manner. Afterwards, it will be gathered together
and evaluated. Finally, the third version operates like the parallelised version but
it uses threads instead of compute nodes.

Comparing the standard deviation results 6.1 of the single process runs shows that
accuracy is related to the used OSThe test application was the only one running
except for the basic OS tasks on the evaluated platform. So the periodical char-
acteristics are caused by the system tasks. Best results are still far higher than
the desired 1 ps. On the other side, the function sg get cpu_ stats diff() returns
comparatively equal values for each measurement. Only one exemplary series of
system and kernel ticks is shown in the same chart 6.1 as dotted lines. Noticeable
is, that according to the gained values a system tick would be ~5ms. Yet, if no
more accurate solution can be found, counting in system ticks would be acceptable
with regard to the variation of the measured values.

61



Repeating the test with a series performing 10.000 instead of 100 measurements
6.2 shows that the deviation converges to several pus. Anyhow, running the par-
allelised test 6.3 where one compute node does 10.000 measurements, has in all a
deviation of a couple of ms. Finally the threaded version shows 6.4 also values up
to a couple of ms. In conclusion, a VT clock has be at most of the order of several
ms in order to avoid meanderings when counting the time in a wall clock manner.

Time Standard Deviation
30.000 Measurments A Series (10.000 A Node)

1,30ms

1,25ms

1,20m
1,15ms I\ /
1,10ms

1,05ms \.\ /

1,00m \ /

AN /
AN /

0,85ms

0,80 ms

Figure 6.3: Experimental Standard Deviation 30 thousand measurements a run

6.2 Simulator

Two simple MPI applications have been written in order to prove the operability
of the simulator. Either of them will be run with varying communication sizes
on a small cluster. For the simulation ten nodes of the XTORC cluster are used.
Each node is equally equipped with the following hardware:

The small amount of memory - compared to state-of-the-art systems - allows only
a restricted pool of LPs on each node.

6.2.1 Application: Heat Transfer

The application simulates the heat distribution on a two-dimensional area over
time. The size of the surface is specified as float values in the dimension X and
Y. Each temporal iteration step forces a synchronisation between the nodes in the

62



Time Standard Deviation
2.000 Measurments A Series (100 A Thread)

10,00 ms

1,00ms

—4—Debian 32bit
—#-Debizn 64bit
C Ubuntu 32bit

0,10 ms e —— — —<Ubuntu 64bit

0,01ms

Run series

Figure 6.4: Experimental Standard Deviation 2 thousand measurements a run

Processor Type Intel P4
Processor Architecture | 32-bit
Cores per Processor 1
Clock Frequency 2.0GHz
Memory 0.75GB

Table 6.1: Test Platforms

communicator. The number of messages exchanged grows with the communication
size and the number of iteration steps. Therefore this is a good application to get
a stress test of the routing of the virtual MPI layer. Furthermore, the system does
not only have to cope with a high amount of messages, but it is also forced to swap
each LP content once in every iteration step.

Initially the area is distributed amongst the MPI ranks, see example with commu-
nication size of 100 nodes Image 6.6. A constant temperature source marked red
is attached to each edge of the area. The temperature values have to be passed as
parameters to the program. Except for these edge elements, the rest of the array
is initialised to zero. The heat distribution is now calculated based on a simplified
formula.

63



Figure 6.5: Heat Distribution

T'z' o+ T[up] + T'[doum] + T'[le 1t + T.[Mght]
T% — 1 i—1 1—15 1—1 i—1 (61)

Where:

e T; is the temperature of a point at the new time-step i;
e T, i is the temperature of the point at time-step i - 1;

o Ti[fli], Ti[iolwn], Tl[l_elf 1 ﬂ[iifht] are the temperatures at the previous time-step,
i- 1, of the upper, lower, left and right neighbouring points;

Figure 6.6: Distribution area amongst ranks

64



Runtime Overhead Analysis
Test App.: Heat Transfere

70s “/q-\

o\

\
£ ., \ T~
T s —+—Real MPI
“ «/_\ ~ -/.\I—/. ~#-Vrank = MPI rank

80s Difference

0 \_/ \—o\.__:

10s

0s T T T T T T T T 1

1 2 3 4 5 6 7 8 9 10
MPI nodes
Figure 6.7: Runtime comparison where p = LP
Simulator Runtime At Different Comm Sizes
Test App.: Heat Transfere

610s b4

510s

410z //
: /
E 310s o —4—2Nodes

~fi-4 Nodes
10 Nodes
210s /
110s

b

10s F T T T T T T T |
MPI LP=1 LP=10 LP=50 LP =100 LP =500 LP=1000  LP=5000  LP=10000

Simulation size

Figure 6.8: Virtual Scale Analysis

The output of the application is controlled by an optional filename parameter. If
passed, the results will be written into a binary file. Otherwise the results will be
printed on the screen, which is useful for small arrays of about 10 by 10 elements
for a visual verification of the program output.

e Program usage:

mpirun_-np_"p"_./heat_"it"_"dim x"_"dim_y"_"top"_"right"_"bottom"_"left"_[filename]

65



e p = Amount of MPI processes

e it — Calculation iterations

e dim x = Array elements (float values) dimension x
e dim_y = Array elements (float values) dimension y
e top = Constant floating point value for arrays top row

e right = Constant floating point value for arrays right column

e bottom = Constant floating point value for arrays bottom row

o left = Constant floating point value for arrays left column

e filename = The filename in which the results will be written in binary form
tion: File will be overwritten.

70s

60s

50s

Runtime

20s

10s

30s

Runtime Analysis Overhead
Test App.: Heat Transfere modified

=

N\

\

—l

| \
\\\,/’\

~N—""

=
[N
w
B

5 [ 7
MPInodes

~—+—Real MPI
~-Vrank = MPI rank

Difference

. Cau-

Figure 6.9: Runtime comparison where p = LP With Modified Application

The Image 6.7 shows a direct comparison between running the application in an

MPI environment and running it hooked up to the simulator.

To investigate

the simulator’s overhead at a small scale, each simulator node only hosts one
LP. The yellow line represents the observed overhead. It stays at around 120%
of the MPI run. Clearly the simulator is not meant to run that way. That is
why the next series 6.8 analyses the runtime when increasing the LP pool on a
fixed amount of nodes. Surprisingly, the runtime rapidly increases at a virtual
communication size of 1,000 LPs. The reason for this behaviour is found in the

66



application that has been simulated. With the simulator supporting only a part
of the MPI functionality, the results are gathered sequentially from each virtual
rank. In addition a barrier was created, where all LPs wait for a message from
the root node. As inefficient as this is already in MPI in combination with the
stacked scheduling of the LPs, the run is delayed even more. As long as the next
message is not in the root’s virtual MPI buffer, LPs of the VM object are tried
to be resumed. Considering a pool size of over 1000, resuming and searching the
active LP’s MPI buffer, requires significant computational time.

To confirm this analysis, the application has been modified. The gathering of the

Simulator Runtime At Different Comm Sizes
Test App.: Heat Transfere modified
70s

cos AN

VAR /N
") \/\/

30s ~B-aNodes
/ \\ / \ / 10 Nodes
205

Runtime

MPI LP=1 LP=10 LP=50 LP =100 LP =500 LP = 1000 LP = 5000 LP = 10000

Simulation size

Figure 6.10: Virtual Scale Analysis With Modified Application

result data and the barrier have been removed. Though the communication after
each iteration will still generate message flow, this time the small scale overhead
test 6.9 shows an increasing discrepancy between the MPI and the simulation run,
starting with about 100% growing to 130%. This is a more expected behaviour
when all messages have to be routed through the virtual MPI layer.

The virtual scale test also presents a more anticipated result. The execution time
stays more constant especially for a pool size of 1,000 LPs. Here the running
time is drastically reduced. However, in both runs we get a substantial peak at
a virtual communication size from about 500 nodes. Inspecting the real MPI
run, it shows a slight peak when running on five nodes, too. Therefore, this
should be a characteristic of the test application. This is proven with the second
test application in the Section 6.2.2, where such a pool size shows no special
characteristic.

67



Simulator Runtime At Different Simulation Sizes
Test App.: Heat Transfere
1.0005

——=MPI
---LP=1
—LP=10
1005 = —=eLP =50
1 \-’\ —#=LP =100

~—LP =500

Runtime

LP = 1000
<
LP = 5000
LP = 10000

MPlInodes

Figure 6.11: Efficiency Of Different Pool Sizes

Simulator Runtime At Different Simulation Sizes
Test App.: Heat Transfere modified

——MPI
--LP=1
—-LP=10
—<LP=50
—=LP =100
—e-LP=500
LP = 1000

Runtime

——LP = 5000
LP = 10000

0s T T T T T T T 1

MPInodes

Figure 6.12: Efficiency Of Different Pool Sizes With Modified Application

Setting the results in another context shows that a higher virtual communication
size, see Image 6.12 can be processed faster then a lower one. Emulating 50 or 100
LPs is more efficient, because the message size between the ranks is reduced. One
feature of the simulator is that not all messages will be sent over the network. Only
if the receiving virtual rank is located on a different MPI rank, the data is sent
over the network. Otherwise the message is simple redirected to the corresponding

68



message queue. By reducing the message size, with the increased LP pool, less
data is actually sent over the network. Without the collecting, in the modified
version, this effect can be seen even more clearly in the chart 6.12.

After all, a valid application output has to be verified. Therefore, the binary output
file from each run is compared with one generated by a real MPI execution. Since
all files are identical to the reference, a correct program flow is assumed.

6.2.2 Application: Numerical Quadrature

The second application calculates the value of a definite integral. In order to
solve the integral, we can divide it into n subintervals. These subintervals can be
calculated - approximated as trapeziums - by the formula:

hi - (f(x;) + f(2ig1))

A b A b A b
j or j or j yor
a a a
) ) ™ )
S}
Su S1 Su S| Sz Sa S4
< a b ; < a b ; « a b ;
v v v

Figure 6.13: Integral

Summing up the values calculated for the separate subintervals gives an approx-
imation for the solution of the original integral. The only communication in a
parallelised version is the gathering of the subintervals. For this, each LP will be
suspended and resumed while collecting the data. The simulator overhead should
be low without frequent communication.

e Program usage:
mpirun_-np_"p"_./num_quad_"input_file"_"a"_"b"_"i"

e p = Amount of MPI processes

e input_file = This file contains the coefficient of the equation.
File format: First line the number of coefficients as integer and in the second line

69



the coefficients, separated by blanks.
Example:

10

9.4.8.8.10_2_4_8_3_6

e a = Integral lower bound
e b = Integral upper bound
e i = Subintervals on each MPI rank

The complexity of the problem of the program "numerical quadrature" is not re-
lated to the communication size. The defined subintervals are simply distributed
amongst the compute nodes. Considering that the only communication and there-
fore the only content switch between LPs occurs when gathering the data, the
simulator overhead should only increase slowly. However, this is only true up to a
simulation size of about 5,000. Likewise to the heat distribution application, the
results are gathered sequentially. As already known from Section 6.2.1, gathering
the data in that way is even more inefficient in combination with the LP schedul-
ing. This can be seen again in the chart 6.14.

Runtime At Growing Virtual Comm Size
Test App.: Numerical Quadrature
10.000s

1.000s

—+—1MPI nodes
~-2 MPI nodes
=#—3 MPI nodes

100 =4 MPI nodes

=5 MPI nodes
=06 MPI nodes
7 MPI nodes

8 MPI nodes
10s

9 MPI nodes

10 MPI nodes

T T
10 100 1000 10000 100000

Virtual Comm Size

Figure 6.14: Runtime behaviour at growing virtual communication size.

By modifying the application in the same way as the heat transfer simulation, each
LP can run with only a single content switch. With this modification, up to 10,000
nodes the runtime does not increase significantly while increasing the communica-
tion size. This can be seen in the Image 6.15. The complexity of the problem is

70



Runtime At Growing Virtual Comm Size
Test App.: Numerical Quadrature

267 min
133 min o——10 —+—1MPInodes
~8-2 MPI nodes
\ — —#—3 MPI nades
X —<—4MPInodes
67 min ' =#=5MPlnodes
3 4 " ,‘ =" —5-6MPInodes
‘———\\"‘—% = o ——* 7 MPl nodes
8 MPl nodes
38 min -~ 9 MPl nodes
10 MPlI nodes
17 min T T T 1
10 100 1000 10000 100000

Virtual Comm Size

Figure 6.15: Runtime behavior at growing virtual communication size.

Simulation Efficiency At Different Comm Size
1,0500

1,0000 — -

0,9500

~&~—LP= 5000

Efficiency

LP = 10000
0,9000 LP = 50000

LP= 100000

0,8500

0,8000

1 2 3 4 5 [ 7 g 92 10
MPINodes

Figure 6.16: Efficiency when scaling the simulator.

increased in this test, which is why the runtime is already several minutes.

The very low memory footprint of the application already allows to simulate 100
thousand LPs on a single node in comparison to the five thousand of the heat dis-
tribution application. The simulator scaling efficiency chart 6.16 shows a constant
drop down. At ten nodes, the efficiency compared to the run on one node has
gone down to below 90% . Since the modified version does not communicate and

71



the GV'T synchronisation is inactive, the parallelisation of the simulation should
be almost 100% . The most likely source for the performance loss is the commu-
nication thread. In the design, the thread should suspend and transfer the CPU
control while running idle. Because the first test runs of the heat distribution
application have been slowed down by this feature, it has been disabed. Thus,
the communication threads runs in a polling mode. In the end, the more MPI
nodes are used, the more communication threads are wasting computational time.
A proper suspend time which is adjusted to the application to be simulated has
to be found, so that the message flow constraint between the separate MPI nodes
stays low.

72



7 Conclusions

The final status of the project is a runable version, supporting the minimum re-
quirements defined in Section 3. Although a conservative PDES approach is imple-
mented, due to large variations between the measured values of the CPU utilisation
of the separate LPs it is extremely inefficient. Therefore, from a practical point of
view, the project does not meet the minimal requirements. The dimension of the
discrepancy is analysed in the section 6.1. Furthermore, a suggestion to improve
the efficiency or to use another approach is made in section 7.1.2.

When analysing MPI applications, there is only one case in which the PDES syn-
chronisation is actually needed. When the MPI ANY SOURCE tag is used it
can happen that a messages are processed in the wrong order. By defining the
source this cannot happen, even when the MPI ANY TAG constant is used.
This is because the messages are neither handled in a FIFO or a sorted queue. If
a GVT is used, the sorting algorithm of the queue arranges all messages by their
receive VT stamp. Thus the relative receiving time stamp calculated from the
LPs VT has to advance, too. Therefore, sending messages sequentially from one
LP to a specified other one cannot cause a causality error. In a FIFO approach
it is basically the same: the mode of operation does not allow a message that is
generated later to be sent earlier.

While the project does not meet the specifications practically, the current version
could be seen as an emulator. It emulates a dynamic heterogeneous computer
network. As long as the MPI _ANY SOURCE is not used, the program flow
stays accurate as desired. When an application which uses this tag is hooked up
to the simulator, it is like deploying the application on a heterogeneous computer
network. Therefore the execution flow may change from run to run.

7.1 Future Prospects

7.1.1 Overcome Restriction: MPI Calls Only In main(...)

The current implementation is still restricted in that MPI methods can only be
called from the main function. New ways to integrate a more complex application
into the virtual machine class have to be investigated.

73



One could imagine to generate an object file of the application, which will be
parsed for local function calls. By modifying them to act like a class member call,
the application can keep a connection to an object. Furthermore, the addresses of
the MPI library calls are replaced by the VM wrapper functions. Hence the calls
should be redirected to the matching object. It is very important to be able to
distinguish between local and library calls in order to make this concept work.

Another idea would be to enhance the VM class with an array of references to the
VM objects. One additional static VM object is then created by each process. This
static object is actually the only instance using the array. It contains references to
all other instances. Now all functions to be intercepted will be simply renamed by
a macro to call the member functions of the static object. When now entering the
wrapper functions, the array will be searched for the matching reference. Therefore
either the array holds reference and the running worker thread id combined or the
VM object provides a getter function for its worker thread id. However, the thread
itself can determine its id by using the function pthread_self(). Overwriting this
pointer with the one from the array should move the scope to the corresponding
object. Further function flow will therefore only manipulate the correct variables.
The switch itself is a single operation and searching the array could be reduced to
©(log(n)) if the elements were sorted by the thread id. So this could be an efficient
solution.

7.1.2 Implementing The Virtual Time

The test results from the section 6.1 show clearly, that counting the VT in a wall
clock manner is not a feasible solution. However, when the VT strategy is retained,
the system has to be prevented from massive stalling due to the resulting variation
in the VT. One solution could be to keep track of the two lowest LVTs. The lowest
is still referred to as the GVT. The second one is used to enhance the search for
the LP whose VT is equal to the GVT. Theoretically, more than one LP could
be at the GVT, anyhow with the way of recording the time it is very unlikely.
Nevertheless this is a weak point of the strategy. Assuming that the LP is the
only one, this one LP can be allowed to be looked up a second time, since it is the
only one that can emit any events in the duration between the two times. Fetching
messages from its future cannot cause a causality error. In case the result is still
negative, the VT of the LP will be set to the second LVT + network delay + one.
If network delay + one would not be added, we would have again two LPs on the
GVT. In the worst case all LPs are blocked and the GVT increases in a step size
of network delay plus one, which can again stall the simulator. However, it should
improve the performance.

More suitable for the simulator could be a clock based on the events/messages

74



[33]. The enormous amount of memory needed is a major disadvantage of such an
approach. The message header would have to be extended by an integer array as
large as the size of the simulation. Using a 32-bit datatype would generate at a
simulation size of 107 an additional message overhead of almost 40MBytes. Even
applications with a small message flow would have a great need for additional
memory. Despite this, a logical clock would be one way to know for sure the
sequence of the message creation.

7.1.3 Scheduling Policy

Without a scheduling policy, the simulator may waste a great amount of com-
putational time. A good example for this is the collecting algorithm of the test
application heat distribution. As soon as the root node has to wait for a message,
all other LPs on the node get their chance to resume, even though they are wait-
ing for a message from the root. In that case a fair-share scheduling algorithm is
inefficient. To privilege the LPs which have received a message last can improve
the performance. Whatever strategy is used, it is as well as the PDES synchroni-
sation, strongly dependent on the application to be simulated. Therefore it should
be possible to switch between different algorithms.

7.1.4 Migration Of An LP To Another Node

The current mechanism to calculate the rank is based on a fixed distribution. The
migration of an LP from one MPI rank to another is not provided. However, if
requested this could be implemented with a small overhead for the system, as long
as only a small part of the simulated LPs are moved. The transfer of the content
can be done actually in a very simple way, since every content is stored in the
LPs status variables. They can be serialised and sent as a message to another VM
object. The more complex part is the address distribution. By design instead of
using lookup tables the address is calculated. By that approach, the complexity
of this operation stays fix while scaling the simulation size. Migrated LPs would
be assigned new addresses although they should be addressable by their initial
virtual mpi rank. Adding a lookup table for such LPs could be used to overwrite
the calculated routing information. To do so migrated objects have to be appended
to the initial object pool. Furthermore, the source object will be kept and marked
as moved in the array in order to avoid an unnecessary update of the routing
information of the following LPs. So the virtual rank will still be calculated, but

if a migration entry exists it will overwrite the data and send the message to an
additional LP in a VM object.

75



7.1.5 Enhanced MPI And System Call Instruction Set

The MPI instruction set - which is still rudimentary - is suitable for a proof of
concept, but it can only support a narrow range of applications. The group com-
munication would obtain the highest priority. Also, without wrapper functions
for system calls, especially memory management, an optimistic PDES approach is
impossible. Restoring an LP’s stack content without restoring the allocated mem-
ory areas, can lead to wrong results, memory holes or segmentation faults. In the
best case, it is only false results. However, if memory was allocated in during a
rollback, resuming the application would again allocate the memory without free-
ing the previous one. A segmentation fault can also occur, even if memory was
already freed before a rollback. Resuming the application generates at least an
error when freeing the same address again.

In addition all I/O functionality has to be considered when wrapper functions are
required to guarantee a correct application execution.

7.1.6 Optimistic PDES Approach

Optimistic PDES synchronisations have to store the status variables of the LPs
periodically. These variables include current status information, the stack and all
allocated memory sections. Therefore the simulator has to keep track which LP
occupies memory where and of what size. After a defined number of events, all this
data will be serialised and stored as a checkpoint. Furthermore, the bottleneck
in memory that is often mentioned would require the simulator to swap these
checkpoints to a mass storage device. A prediction which sorts the checkpoints
according to their probability to be restored again, could be used to reduce read
and write accesses to the mass storage. Depending on the implementation of the
PDES, also a history of the processed messages older then the GVT has to be
stored. Finally, the system needs a causality error detection.

7.1.7 Fault injection

Simulating applications correctly is only the first step of the project. Fault injec-
tion mechanisms shall allow to investigate the behaviour of the programs in case
of errors. Therefore the simulator needs an interface to intercept the messages.
Based on failure distributions the manipulation of messages should be possible,
manually or at random.

76



7.2 Known lIssues

7.2.1 Memory (Segmentation Fault)

Segmentation faults are still a big issue in the simulator. A known reason is that
often the stack size assigned to the LPs is too small. The stack memory for all
LPs is allocated in one sequential chunk. If a stack is too small, an LP can exceed
into the space of the next one. In that case stack frames might get messed up.
This leads at best to an invalid output, but more likely to a segmentation fault
when unwinding a stack frame and returning to an invalid address in the program
memory.

Without any knowledge of the application, a minimal size estimation cannot be
done. Integrating a stack overflow protection would require that each stack is
extended by at least one guard page of memory. This page has to be checked at
every content switch. However, when an overflow is detected, the application may
have already compromised other components of the simulator. A content switch is
only done in an MPI wrapper function, but the stack usage between two such calls
can be high. So in the end the LP could already use far more memory than it was
assigned. Since all threads share one address space, it is possible that the allocated
stack memory is placed behind a simulator object. Writing in that memory causes
now no segmentation fault since the memory belongs to the process. Although it
can obstruct a regular shutdown.

7.2.2 QOut of resources

The current version of the simulator does not detect when the system runs out
of memory. In such a case the first step is that the system starts to swap the
memory. As could be observed in the tests, this often leads to a situation where
a node does not respond anymore and needs to be restarted. The right stack size
and the maximum amount of LPs have to be found by try-and-error.

Again at this point memory allocation and free functions can be used to at least
detect when the simulation’s memory usage reaches a certain level, therefore mem-
ory usage has to be monitored. If a certain threshold level is reached, the simulator
should still be able to initiate a regular shutdown without blocking the node.

7.2.3 Printf And Floating Point Values

Applications hooked up to the simulator are not able to print floating point value
at CPUs with a 64-bit architecture. The test simulations have revealed that print-
ing the datatypes float or double on a 64-bit platform generates a segmentation

77



fault. Running the same code on a 32-bit architecture terminated successfully. The
source of this error has not yet been determined, but it only concerns the code
section of the to been simulated application, not the simulator. More specifically
the error occurs only when one of the LPs’ stacks is active.

Missaligned variables or the passing of an invalid pointer can be ruled out as the
cause of the error. When casting the floating point value to an int datatype, it
prints the expected integer part. Therefore the pointer has to be valid. Printing
the addresses showed that the float variables are aligned correctly with a step size
of four Bytes. More surprising is that it is even impossible to print a constant
which is passed directly to the printf(...) function.

Somehow manipulating the stack and base pointers in combination with the oper-
ating principles of the printf(... ) function leads to an error on 64-bit systems.

78



List of Acronyms

ALU: Arithmetic logic unit
API: Application Programming Interface

BP: basepointer

CMGVT: Continuously Monitored Global Virtual Time
CPU: Central Processing Unit

DES: Discrete Event Simulation

FIFO: First In First Out
flop/s: Floating point Operations Per Second
FP: framepointer

GCC: GNU Compiler Collection
GPU: Graphics Processing Unit
GS: Grain Sensitive

GVT: Global Virtual Time

HPC: High Performance Computing

1/O: Input/Output

JCAS: Java Cellular Architecture Simulator
LLTF: Lowest Local Timestamp First

LP: Logical Process

LTF: Lowest Timestamp First
LVT: Local Virtual Time



MIMD: Multiple Instruction Multiple Data
MISD: Multiple Instruction Single Data
MPI: Message Passing Interface

NetPIPE: Network Protocol Independent Performance FEvaluator
OS: Operating System

PC: Personal Computer

PDES: Parallel Discrete Event Simulation
POSIX: Portable Operating System Interface
PVM: Parallel Virtual Machnine

SCL: Scalable Computing Laboratory
SFE: stackframe

SIMD: Single Instruction Multiple Data
SISD: Single Instruction Single Data
SP: stackpointer

VM: Virtual Machnine
VM: virtual machine

VT: Virtual Time

VTS: Virtual Time Stamp

WVT: Wide Virtual Time

i



Glossary

W

Bandwidth

Core

Latency

MPI

Node

SPEEDUP
State

The name prm is a Greek abbreviation for the En-
glish acronym MUPI for micro parallel performance
investiagtor, [20, p. 3.

The bandwidth defines the maximal amount of data
in bit per seconds which can be transfered over a
medium.

A core is a combination of at least one ALU, mem-
ory and I/O interfaces. New models of processors
combine several cores together.

The latency defines the time how long data takes to
pass a component.

The message passing interface API allows a commu-
nication based on messages bewteen multiple com-
puters.

The definition of a node is depending on the system.
Usually a node are the resources combined under one

OS.

Defines how much faster a application runs.

State in term of a LP in this document referec to all
data which belongs to a LP. This includes the stack,
allocated memory in the heap and the simulators sta-
tus variables.

1l



Throttling CPU throttling/processor throttling is the process

TOP500

when the CPU tries to avoid damage by overheating
or reduces the power consumption. So if the tem-
perature of the CPU exceeds some specified limits,
the system will throttle down the CPU, allowing it
to cool down and avoid damage. Also while a CPU
utilisation is low the throttling to lower opperation
frequency consumes less energy. This technique is
used by many modern CPUs

A list with the 500 most powerful computer systems,
which is first assembled in 1993 and since maintained.

Twice a jear computers ranked by their performance
on the LINPACK Benchmark.

v



Bibliography

1]

2]

13l

4]

5]

[6]

17l

18]

19]

[10]

1]

How parallel processing works.
http: //communication.howstuffworks.com /parallel-processing1.htm.

John von neumann and von neumann architecture for computers (1945).
http://w3.salemstate.edu/ tevans/VonNeuma.htm.

Netpipe.
http://www.scl.ameslab.gov /Projects/NetPIPE /Net PIPE.html.

An overview of hpc and challenges for the future.
http://www.nchc.org.tw /en/research /index.php?RESEARCH ID=9.

Standard for information technology — portable operating system interface
(posix). Electronic, December 2008. Base Specifications, Issue 7.

Exascale expectations.
http://www.hpcwire.com /specialfeatures /sc09 /features /Exascale-
Expectations-70680617.html, 2009.

Nael Abu-Ghazaleh. Optimized parallel discrete event simulation (pdes) for
high performance computing (hpc) clusters. Technical report, AIR FORCE
RESEARCH LABORATORY, August 2005.

ACM International Conference on Computing Frontiers.
Scaling Time Warp-base Discrete Event Executiomn to 10* Processors on a
Blue Gene Supercomputer, May 2007.

Gene M. Amdahl. Validity of the single-processor approach to achieving large
scale computing capabilities. In Proceedings of the AFIPS Conference 1967,
volume 30, pages 483-485, Atlantic City, NJ, USA, 1967.

Koenraad Audenaert. Clock trees: Logical clocks for programs with nested
parallelism. [EFEE TRANSACTIONS ON SOFTWARE ENGINEERING,
23(10):646-658, 1997.

William Butera.
Programming a Paintable Computer.
PhD Thesis Proposal.


http://communication.howstuffworks.com/parallel-processing1.htm
http://communication.howstuffworks.com/parallel-processing1.htm
http://w3.salemstate.edu/~tevans/VonNeuma.htm#Von_Neumann_Architecture
http://w3.salemstate.edu/~tevans/VonNeuma.htm#Von_Neumann_Architecture
http://www.scl.ameslab.gov/Projects/NetPIPE/NetPIPE.html
http://www.scl.ameslab.gov/Projects/NetPIPE/NetPIPE.html
http://www.nchc.org.tw/en/research/index.php?RESEARCH_ID=9
http://www.nchc.org.tw/en/research/index.php?RESEARCH_ID=9
http://www.hpcwire.com/specialfeatures/sc09/features/Exascale-Expectations-70680617.html
http://www.hpcwire.com/specialfeatures/sc09/features/Exascale-Expectations-70680617.html
http://www.hpcwire.com/specialfeatures/sc09/features/Exascale-Expectations-70680617.html

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

20]

21]

22]

Ewa Deelman and Boleslaw K. Szymanski. System knowledge acquisition in
parallel discrete event simulation. In 1997 IEEE International Conference on
Systems, Man and Cybernetics, Smc, pages 2296-2301. Institute of Electrical
& Electronics Enginee, 1997.

Christian Engelmann. JCAS - TAA simulation efforts at Oak Ridge National
Laboratory. Invited talk at the IAA Workshop on HPC Architectural Simu-
lation (HPCAS), Boulder, CO, USA, September 1-2, 2009.

Pierluigi Frisco. Computing with Cells Advances in Membrane Computing.
Oxford University Press Inc., 2009.

Prof. Richard M. Fujimoto. PARALLEL DISCRETE EVENT SIMULATION.
Commun. ACM, 33(10):30-53, 1990.

John L. Gustafson. Reevaluating amdahl’s law. Communications of the ACM,
31:532-533, 1988.

Helmut Herold. Linuz/Uniz-Kurzreferenz. Addison-Wesley, Martin-Kollar-
Strake 10-12, D-819829 Miinchen/Germany, 3., aktualisierte auflage edition,
November 2006.

Chao Huang, Gengbin Zheng, Sameer Kumar, and Laxmikant V. Kalé. Per-
formance evaluation of adaptive MPIL. In Proceedings of ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming 2006, March
2006.

Laxmikant V. Kale and Sanjeev Krishnan. Charm++: A portable concurrent
object oriented system based on c++. Technical report, Champaign, IL, USA,
1993.

Ph.D. Kalyan S. Perumalla. ur A SCALABLE AND EFFICIENT PER-
FORMANCE INVESTIGATION SIMULATOR FOR PARALLEL APPLI-
CATIONS. Oak Ridge National Laboratory, draft edition, February 2009.

Christian Lindig and Norman Ramsey. Declarative composition of stack
frames. In Proc. of the 14th International Conference on Compiler Construc-
tion, number 2985 in Lecture Notes in Computer Science, pages 298-312.
Springer, 2004.

J. Liu, D. Nicol, B. Premore, and A. Poplawski. Performance prediction of a
parallel simulator. pages 156 —164, 1999.

vi


http://www.cs.sandia.gov/CSRI/Workshops/2009/IAA
http://www.cs.sandia.gov/CSRI/Workshops/2009/IAA

23]

28]

[29]

[30]

[31]

32]

[33]

[34]
[35]

Scott Mcmaster and Atif Memon. Call stack coverage for gui test-suite re-
duction. In In Proceedings of the 17 th IEEE International Symposium on
Software Reliability Engineering (ISSRE 2006, pages 6-10. IEEE Computer
Society, 2006.

Zdzislaw Meglicki. Quantum Computing without Magic. MIT Press, 55 Hay-
ward Street, Cambridge, MA 02142, 2008.

E. Mollick. Establishing moore’s law. Annals of the History of Computing,
IEEFE, 28(3):62 —75, july-sept. 2006.

G.E. Moore. Cramming more components onto integrated circuits.

Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
pum: A Scalable and Transparent System for Simulating MPI Programs, March
2010.

K.S. Perumalla. pusik - a micro-kernel for parallel/distributed simulation sys-
tems. 2005.

T. Phan and R. Bagrodia. Optimistic simulation of parallel message-passing
applications.

S. Prakash and R.L. Bagrodia. Mpi-sim: Using parallel simulation to evaluate
mpi programs. volume 1, pages 467 —474 vol.1, dec 1998.

Francesco Quaglia and Vittorio Cortellessa. Grain sensitive event scheduling
in time warp parallel discrete event simulation. In PADS ’00: Proceedings of
the fourteenth workshop on Parallel and distributed simulation, pages 173-180,
Washington, DC, USA, 2000. IEEE Computer Society.

Francesco Quaglia and Vittorio Cortellessa. On the processor scheduling

problem in time warp synchronization. ACM Trans. Model. Comput. Simul.,
12(3):143-175, 2002.

Abhishek Rawat, Rohit Grover, and Sachin Maheshwari. Clock synchroniza-
tion, 1998.

Bjarne Stroustrup. An overview of the c++ programming language, 1998.

Nianle Su, Hongtao Hou, Feng Yang, Qun Li, and Weiping Wang. Opti-
mistic parallel discrete event simulation based on multi-core platform and its
performance analysis.

vil



[36]

[37]

[38]

[39]

[40]

[41]

Summer Computer Simulation Conference.
WIDE VIRTUAL TIME WITH APPLICATION TO PARALLEL DIS-
CRETE EVENT SIMULATION AND THE HLA RTI., July 1998.

University of Tennessee, Oak Ridge National Laboratory, University of
Manchester.

An Overview Of High Performance Computing And Challenges For The Fu-
ture, March 2009.

Winter Simulation Conference.
SCALING AN OPTIMISTIC PARALLEL SIMULATION OF LAGE-SCALE
INTERCONNECTION NETWORKS, 2005.

Winter Simulation Conference.
PARALLEL AND DISTRIBUTED SIMULATION: TRADITIONAL TECH-
NIQUES AND RECENT ADVANCES, 2006.

Workshop on Principles of Advanced and Distributed Simulation (PADS).
Seven-0’Clock: A New Distributed GV'T Algorithm Using Network Atomic
Operations, November 2004.

G. Zheng, Gunavardhan Kakulapati, and L.V. Kale. Bigsim: a parallel simu-
lator for performance prediction of extremely large parallel machines. page 78,
april 2004.

viil



Appendices

1X



© 0 N U s W N

e e
N =]

15

A Test Programs

A.1 Test pthread inital stack usage

Compiled by: g+-+ -Wall -0 output input.c -1 pthread

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <pthread.h>
#include <sys/time.h>
#include <limits.h>

#define PTHREAD OK 0
#define STACK SIZE (2 % PTHREAD STACK MIN)

void *thread function(void * arg)

{
int dummyvar;
int a;
int b;
printf("The stacks lower bound is: \t\t%X\n",
(unsigned int)arg);
printf ("The stacks upper bound is: \t\t%X\n",
(unsigned int) ((int)arg + STACK SIZE));
// Check stack growth direction
if (&a > &b)
printf("At down growing stack \t\t\t %d = %X Bytes used\n",
(((int)arg + STACK SIZE) — ((unsigned int)&dummyvar)),
(((int)arg + STACK_SIZE) — ((unsigned int)&dummyvar)));
else
printf ("At down growing stack \t\t\t %d = %X Bytes used\n",
(((unsigned int)&dummyvar) — (int)arg),
(((unsigned int)&dummyvar) — (int)arg));
}
fflush (stdout);
return NULL;
}
int main(int agrc, char xargv|[])
{

int return_ value;



47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64

65
66

67
68
69
70
71
72
73
74
75
76
7
78

void * mem = valloc (STACK_ SIZE) ;
pthread attr t attrib;
pthread t tid;

// Initialise a attribute object for the VN thread.
if ((return_ value = pthread attr init(&attrib)) != PTHREAD OK)

printf("Error while creating attribute\n");

}

// Set up the application managed stack into the wuser space

if ((return value = pthread attr setstack(&attrib, mem, 2 % PTHREAD STACK MIN))
!= PTHREAD OK)

{

}

// Create thread

if ((return_ value = pthread create(&tid, &attrib, thread function, mem)) !=
PTHREAD OK)

{

printf("Error while set stack in attribute\n");

printf("Error while creating the logical nodes worker thread.\nError code: %d\
n", return_ value);
fflush (stdout);

}

// Wait for thread to be finised
if (pthread join (tid, NULL) != PTHREAD OK)

printf("Error while joining the worker thread");
fflush (stdout);

}

return 0;



© 0N U W N =

e e e e
© 0N W N = O

20

N OOl W

10
11
12
13
14
15

16

B Project

B.1 MV _main function call assembly code

VM_main(VM_argc, VM logical processes|[VM active LP|.LP_ argv);
mov 0x8(%ebp),%eax
mov Oxcc(%eax),%ecx
mov 0x8(%ebp),%eax
mov 0x40(%eax),%eax

lea 0x0(,%eax ,4),%edx
mov Yedx ,%eax

shl $0x5,%eax

sub Yedx ,%eax

lea (Yoecx ,%eax ,1),%eax

mov O0x1lc(%eax),%edx

mov 0x8(%ebp),%eax

mov (Teax ), %eax

mov Yedx ,0x8(%esp)

mov Yoeax ,0x4(%esp)

mov 0x8(%ebp),%eax

mov Joeax ,(Yoesp)

call 0x8056a9c <c_VIRTUAL MACHINE::VM main(int, charsx)>

INT cVIRTUAL MACHINE:: VM _main(INT argc, CHAR P argv [])
push  %ebp
mov Y%esp ,%ebp
sub $0x18,%esp

B.2 assembly code.h

#ifndef _ ASSEMBLY CODE H
#define _ ASSEMBLY CODE H _

/! | file assembly code.h
x \brief All used inline assembly code is defined in this file

* %

The designed contend switch between LPs are rely on inline assembly. To
switch from one contend to another a

x threads stack is moved to a spesific section in memory allocated for a
logical process. When the simulator

* shall be deployed on a new platform the defines my has to be modified.

*/

/! \def  SET STACK POINTER
x | brief Stores the current stackpointer

* The macro stroes the current stackpointer in a system wordsize width
vartable. The address of the wariable has to passed to the macro.

x Additionally before saving the stackpointer all register will be pushed onto

the stack. This is because the implemented wversion of a



17 * LP switch. By default C/Ct+ does save the used register but since a diffrent
LP can be exzecuted while a LP is suspended C/C++ compiler

18 * can not pedict which regisers have to be saved

19 *

20 /! \def  SET BASE POINTER

21 * |brief Stores the current basepointer

22 *

23 * The macro stroes the current basepointer in a system wordsize width wvariable

The address of the wvariable has to passed to the macro.

24 *

25 /x! \def GET STACK POINTER

26 * \brief Restores the current stackpointer

27 *

28 * The macro restores a saved stackpointer from a system wordsize width
variable. The address of the wvariable has to passed to the macro.

29 * This is the counterpart macro to SET STACK POINTER, which pops the stored
register again.

30 *

31 /x! \def GET BASE POINTER

32 x |brief Restores the current basepoiner

33 * The macro restores a saved basepointer from a system wordsize width wvariable

The address of the wvariable has to passed to the macro.
34 */
35 // The following define and undefine block is only for doxygen which requieres

active define so that thay will be added to the documentation

36 #define SET STACK POINTER
37 #define SET BASE POINTER
38 #define GET STACK POINTER
39 #define GET BASE POINTER
40 #undef SET STACK POINTER
41 #undef SET BASE POINTER

42 #undef GET STACK POINTER
43 #undef GET BASE POINTER

44

45 #ifdef INTEL32

46 #define SET_ STACK_ POINTER(new _pointer)

47 ~_asm( "mov %0, %%esp": : "r"(new_ pointer) : )
48 #define SET_BASE POINTER(new _pointer)

49 ~asm( "mov %0, %%ebp": : "r"(new pointer) : )
50 #endif

51

52 #ifdef AMD64

53 #define SET STACK POINTER(new pointer)

54 ~_asm( "mov %0, %%rsp": : "r"(new pointer) : )
55 #define SET_BASE POINTER(new _pointer)

56 ~asm( "mov %0, %%rbp": : "r"(new pointer) : )
57 #endif

58

59

60 #ifdef INTEL32

61 #define GET STACK POINTER(store pointer)

62 __asm( "mov %%esp, %0": "=r"(store pointer) : )
63 #define GET BASE POINTER(store pointer)

64 __asm( "mov %%ebp, %0": "=r"(store_ pointer) : )
65 #endif

66

67 #ifdef AMD64

68 #define GET STACK POINTER(store pointer)

69 __asm( "mov %Y%rsp, %0": "=r"(store pointer) : )
70 #define GET BASE POINTER(store pointer)

71 __asm( "mov %%rbp, %0": "=r"(store_ pointer) : )
72 #endif



73
74

N OO W N

oo

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

#endif // ASSEMBLY CODE H _

B.3 datatypes.h

#ifndef _ DATATYPES H
#define _ DATATYPES H _

Jxl o\ fil

\brief Definitions for datatypes and includes are done here.

All non standard datatypes wused in the simulator are defined here.
include this one

e datatypes.h

since all files
includes are done centralised here

* all

*/

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdint .h>
<stdio .h>
<stdlib .h>
<unistd .h>
<pthread .h>
<limits .h>
<string.h>

have to

<sys/time.h>

<algorithm>
<mpi.h>
<sched .h>

<sys/user.h>

"defines .h"

using namespace std;

#define
#define

#define
#define

typedef

typedef

typedef

typedef

typedef
typedef
typedef
typedef

typedef
typedef
typedef

PTHREAD OK 0

MPI ROOT RANK 0

TRUE 1
FALSE 0
void

int

int

char
int8 t
intl6_t
int32 t
int64 t
uint8 t
uintl6 _t
uint32 t

VOID,
*VOID_P;

INT,
«INT_P;

BOOL,
*BOOL_P;

CHAR,
*CHAR P;

*int8 t p;

*intl6_t_p;
*int32_t_p;
xint64_t_p;

*uint8 _t p;
xuintlé_t_p;
*uint32_t p;

Also



54
55
56
57
58
59
60
61

63
64
65
66
67

68

s
78
79
80
81

82

83

84
85
86
87
88
89
90
91
92

93
94

95

96

97

98
99

typedef uint64 t
typedef struct timespec

typedef struct timeval

#if _ WORDSIZE — 64

*uint64_t_p;

timespec_t,
xtimespec_t_p;
timeval t,
xtimeval _t_p;

typedef int64 t SYS INT, // System architecture

dependent integer wuses always full system bit with (here 64bit)
*SYS INT Pj;

#define MPI BOOL MPI CHAR

#define MPI_INT8 T  MPI_CHAR

#define MPI_INT16_T  MPI_SHORT //According to the stdint.h,
where the intl6 t is defined, a short is 16bit on 32bit arch as well
as 64bit arch

#define MPI INT32 T  MPI_INT //According to the stdint.h,
where the int32 t is defined, a int is 82bit on 32bit arch as well
as 64bit arch

#define MPI INT64 T  MPI LONG //According to the stdint.h,
where the int64 t is defined, a long int is 64bit on 64bit arch

#define MPI_UINTS T  MPI_UNSIGNED CHAR

#define MPI UINT16 T MPI UNSIGNED SHORT

#define MPI UINT32 T MPI UNSIGNED INT

#define MPI UINT64 T MPI UNSIGNED LONG

#define MPI SYS INT  MPI LONG LONG

#else

typedef int32 t SYS_INT, // System architecture

dependent integer uses always full system bit with (here 32bit)
*SYS INT P;

#define MPI_BOOL MPI _CHAR

#define MPI INT8 T MPI CHAR

#define MPI_INT16 T  MPI SHORT //According to the stdint.h,
where the intl16_t is defined, a short is 16bit on 32bit arch as well
as 64bit arch

#define MPI_INT32_ T  MPI_INT //According to the stdint.h,
where the int32 t is defined, a int is 32bit on 32bit arch as well

as 64bit arch
#define MPI_INT64 T

where the int64 t is

MPI_UINT8 T
MPI_UINT16_T
MPI_UINT32 T
MPI_UINT64_T
MPI_SYS_INT

#define
#define
#define
#define
#define
#endif

/+! \struct s LP RANK
*  |brief
virtual rank
* This struct splits
can easy directed
* to another
recieve queue (the
* corresponding virtual
the wvirtual machine
* object itselfe.

* Additional the absolute virtual rank is

s LP RANK, sLP RANK, sLP RANK P: This struct
into components.

the

logical process.

MPI LONG LONG

defined , a long lont
MPI UNSIGNED CHAR
MPI_UNSIGNED SHORT
MPI_UNSIGNED INT
MPI_UNSIGNED LONG LONG
MPI_INT

//According to the stdint.h,

int is 64bit on 32bit arch

splits the absolute

virtual rank into tree parts. Through that a message

The split seperates mpit rank, the index for the

machine) and the index in the logical process array in

stored for may future application



100 *

101 x List of wvalues:

102 * — MPI_rank: uintl16_t

103 * — VM_rank: uintl6_t

104 * — VRANK index: uint82_t

105 * — abs_wirtual rank: INT

106 */

107 typedef struct s LP_RANK

108

109 uintl6 _t MPI_rank; /1< The mpi rank on which this logical process
is rummning on. */

110 uintl6 t VM rank; /*1< The wvirtual machine index in which the
logical process is running on the mpi rank. x/

111 uint32 t VRANK index; /x!< The lp index where the logical process data

is stored in the threads LP array. */
112
113 INT abs_virtual rank; /+*!< The original absolute wvirtual rank
*/

114

115 } sLP_RANK,

116 *sLP RANK P;

117

118 /x! |def CREATE LP_RANK MPI _DATATYPE

119 * |brief Creates a MPI datatype for the struct s LP RANK

120

121 * \warning To allow a more easy modifikation and also to improve the code
readability a MPI datatype for the struct s LP RANK

122 * 48 created. Important this macro has to be modified when ever the struct is
changed.

123 */

124

125 #define CREATE IP RANK MPI DATATYPE(MPI Datatype pointer)\

126 do\

127 {\

128 INT blocks = 3;\

129 INT block count [] ={ 2 , 1 , 1 1\

130 MPI_Aint block displacement [] ={ 0 , 4 , 8 1\

131 MPI Datatype block datatypes|[|] = {MPI INT16 T, MPI INT32 T, MPI INT};\

132 MPI Type create struct( blocks ,\

133 block count,\

134 block displacement ,\

135 block datatypes,\

136 MPI_Datatype_pointer) ;\

137 MPI Type commit(MPI Datatype pointer);\
138} while (FALSE)

139

140

141 #endif // DATATYPES H _

B.4 Function VM _synchronise LP()

VOID c¢VIRTUAL MACHINE: : VM _synchronise_ LP ()
sMPI_MESSAGE_P next message = NULL;
BOOL break sync = FALSE;

GET STACK POINTER (VM logical processes [ VM active LP|.LP stack pointer);
GET BASE POINTER (VM _logical processes|[VM active LP|.LP base pointer);

© 0 N3O s W N



10

11
12
13
14

15
16
17
18

20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38

39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56

// Go back to in stack to the pointer there this function hast been called in
the first placed.

SET BASE POINTER (VM logical processes[VM_LP Thread index|.LP base pointer);

SET STACK POINTER (VM _logical processes [VM_LP_ Thread index|.LP _stack pointer);

// Redirect all message into the buffer of the seperate LP(s) or into the one
bcast buffer
do

{

next_message = VM _receive_queue—>Q _get_message(0) ;
if (next message != NULL)

switch (next message—>Message tag)

{
case MT MPI BARRIER:

break;
}

default:

PRINT_DEBUG(HIGHEST DEBUG_LEVEL, '"Debug@QcVIRTUAL MACHINE:
VM _synchronise LP: VM received message from \n\tvrank ’%d’: \tmpi
rank %d’, \tvirtual machine '%d’, \tLP index ’%d’ to \n\tvrank
"%d ’: \tmpi rank '%d’, \tvirtual machine '%d’, \tLP index ’%d’!
Data size '%d’\n", (next message—>Vrank transmitt).
abs_virtual rank, (next message—>Vrank transmitt).MPI rank, (
next_message—>Vrank_transmitt).VM_rank, (next_message—>
Vrank transmitt).VRANK_ index, (next_message—>Vrank receiver).
abs virtual rank, (next message—>Vrank receiver).MPI rank, (
next_message—>Vrank receiver).VM_rank, (next_message—>
Vrank receiver).VRANK index, next message—>Message data length);
fflush (stdout);
if (next_ message—>Broad cast_ received > 0)

// A message which is supposed to be received by multiple LP(s)
VM incomming buffer.Q insert message(next message);

}

else

// Direct adressed mesage (Point to Point) so appent message to the
LPs incommin buffer

(VM _logical processes|[(next message—>Vrank receiver).VRANK index].
LP incomming buffer).Q insert message(next message);

}
break;
}
}
else
break;
}
} while (TRUE);
// Seach for the mnext LP which can be resumed
//TODO: Check theoretical event that no LP can be resumed.
// Through VM active LP— the current active LP is checked first if it can be

resumed
//VM _active LP——;



57 while ((VM _ finished _LP < VM_IP_on_VM) && (break_sync != TRUE))
58

59 VM _active LP = (VM _active LP + 1) % VM _IP on VM;

60 PRINT DEBUG (HIGHEST DEBUG LEVEL, "Debug@cVIRTUAL MACHINE: VM synchronise LP:
Try to set index %lld as aktive vrank\n", (int64 t)VM active LP);

61 // Act depending on the LPs status. (start main, do noting, resume)

62 switch (VM _logical processes|[VM _active LP].LP _status)

63 {

64 case LP STATUS FINISHED: // Do mnothing LP already finished

65 break;

66 case LP STATUS BARRIER: // Do mnothing LP is waiting on a barrier. If

all

67 break;

68 case LP STATUS NOT STARTED: // Run the main function

69 PRINT DEBUG (HIGHEST DEBUG LEVEL, "Debug@cVIRTUAL MACHINE:

VM synchronise LP: Virtual Machine %lld starts vrank %lld\n", (
int64 t)VM rank, (int64 t)VM comm handler [0]. VC offset relativ_rank
+ ((VM_per _mpi rank * VM _active LP) + VM rank));

70

71 // Set the status of the LP to running

72 VM logical processes|[VM active LP|.LP status = LP_STATUS RUN;

73

74 VM _CPU _time thread = VM _get thread CPU _time() ;

75 SET STACK POINTER (VM logical processes|[VM active LP|.LP stack pointer);

76

7 //TODO: Pass the real parameters to the main function

78 VM_main(VM_argc, VM _logical processes [VM _active LP|.LP_argv);

79

80 SET_BASE POINTER (VM _logical processes [VM_LP_Thread index].
LP base pointer);

81 SET_STACK_POINTER (VM _logical processes [VM_LP_Thread index].
LP stack pointer);

82

83 // Set the status of the LP to running

84 VM logical processes|[VM active LP|.LP status = LP_STATUS FINISHED;

85

86 PRINT DEBUG (HIGHEST DEBUG LEVEL, "Debug@cVIRTUAL MACHINE:
VM _synchronise_ LP: Virtual Machine %lld vrank %lld has finished the
main function!\n", (int64 t)VM rank, (int64 t)VM comm handler[0].
VC _offset relativ_rank + ((VM_per mpi rank = VM _active LP) + VM _rank
)) s

87

88 VM _ finished LP-++;

89

90 break;

91 default: // Resume this LP

92 // Restore matching base and stack pointer.

93 SET BASE POINTER (VM logical processes[VM active LP|.LP base pointer);

94 SET STACK POINTER (VM logical processes|[VM active LP|.LP stack pointer);

95 // To break out of the for loop around the switch the index is set equal
to VM _LP on VM

96

97 break sync = TRUE;

98 break;

99 }

100 }

101

102 return;

103}



User Manual

for the simulator of
advanced large HPC architectures



C.1 Requirements

The simulator is deployable on all x86 or AMDG64 systems. To port it onto another
architecture see C.5

The simulator requires the following libraries:
e OpenMPI <=1.2
e boost <=1.35

e pthread

C.2 Installation

The simulator does not need to be installed. The project has only to be unpacked,
compiled and linked with an MPI application.

e Unpack: tar -xf simulator.tar.gz

e Compile and Link: see C.3

C.3 Usage

C.3.1 Simulation Restrictions

Due to the simulators architecture it is currently only possible to do MPI library
calls inside the main(...) function.

Also the simulator cannot deal with global variables in the MPI application.

C.3.2 Supported MPI calls
e int MPI Init (int *argc, char **argv]])
e int MPI Finalize()
e int MPI Comm rank(MPI Comm comm, int *rank)
e int MPI Comm _size(MPI Comm comm, int *size)

e int MPI Isend(void *buf, int count, MPI Datatype datatype, int dest, int
tag, MPI _Comm comm, MPI Request *request)



e int MPI_ Recv(void *buf, int count, MPI Datatype datatype, int source,
int tag, MPI Comm comm, MPI Status *status)

C.3.3 Prepairing the application for simulation

Since the simulator comes with its own main(. .. ) function the applications will be
renamed by a macro. The macro is defined in the simulator.h header file. Thus the
main function will become a member function of the simulators virtual machine
class. The header file has to be included into the file where the main(. .. ) function
is implemented.

e #include "simulator.h"

Now the object files of the application have to be generated.

C.3.4 Compiling the simulator

The generated object file path(s) and maybe required linking options have to be
passed to the simulator’s make command by the variable TARGET.

e make TARGET="list target application object files and linking options"

The object files and the linking options have to be separated by a whitespace. The
simulator’s binary output file is named "sim".

C.3.5 Executing the simulator

To run a simulation, the simulator needs three parameters.

1. Simulation size
The amount of virtual MPI ranks. This has to be a positive integer which
is greater then used real MPI rank(s) times virtual machine object(s) a MPI
rank.

2. Virtual machines objects on each MPI instance
The amount of virtual machine objects running on each MPI rank. Each
virtual machine object has a worker thread of its own which executes a
chunk of the virtual MPI ranks. This is designed to utilise multi-core chips.

3. Stack size for each virtual MPI rank
The stack size is defined as a multiple of a half system page size. This
parameter has to be chosen carefully. A to small stack results very likely
in a segmentation fault. Furthermore the possible simulation size is directly
related to the stack size. The amount of virtual MPI ranks that can be
simulated is basically only restricted by the amount of available memory.



The current version does not keep record of resources usage especial memory. So
the right balance between stack and simulation size has to be determined by a
trial and error.

e Usage:
mpirun -np Sim_size ./sim V_size VM _objects Stack size app app param_list

Where:

e Sim_ size:
is the amount of real MPI ranks the simulator is distributing

o V size:
is the amount of virtual MPI ranks to be simulated (For details see above).

e VM objects:
the amount of virtual machine objects on each MPI instance of the simulator
(For details see above).

e Stack size:
the stack size assigned to each virtual MPI rank (For details see above).

e app:
the name of the of the binary to be simulated. The provided string will be
passed as argv|0] to the simulated application.

e app param _ list:
the parameters which have to be passed to the application which is to be
simulated.

C.4 Example: Ring message

This test application sends a ring message starting at a specific node passed as
parameter. The simulator.h is already included in the test application. To compile
it as an MPI application this include has to be commented.

Usage: mpirun -np x ./ring start _rank

Hooking the application up to the simulator:

1. Creating the test application’s object file.
$ c¢d /Inst Path/simulator/Test Applications/Ring Message
$ mpic+-+ -Wall -c ring.c



2. Compiling and linking the simulator with the application.
$ c¢d /Inst_Path/simulator
$ make clean $ make TARGET="./Test Applications/Ring Message /ring.o"

3. Executing the simulation
$ mpirun -np 2 ./sim 10 2 2 . /ring 3

4. Program output:
MPI rank ’/

MPI rank ’5’ received message from rank 4’

recetved message from rank ’3’

MPI rank 6’ received message from rank 5’
MPI rank 7’ received message from rank 6’
MPI rank ’8’ received message from rank "7’
MPI rank ’9’ received message from rank °8’
MPI rank 0’ received message from rank 9’
MPI rank ’1’ received message from rank 0’
MPI rank ’2’ received message from rank ’1’
MPI rank ’3’ received message from rank 2’
The program runtime was 488252376ns = 488252us = 488ms = 0s

Note: The printed runtime is the runtime of the simulator. This includes the
simulator’s start up and finalise tasks. Determining the application’s runtime is
not supported in the current version.

1 #include <mpi.h>

2 #include "./../../simulator.h"
3 #include <stdio.h>

4 #include <stdlib .h>

5 #include <unistd.h>

6 #include <string.h>

7

8 int main(int argc, char xargv|])
0 {

10 int rank;

11 int comm _size;

12 int received = —1;
13

14 MPI_Status status;
15 MPI Request request;

17 MPI Init (&argc, &argv);
18 MPI_Comm_rank(MPL COMM WORLD, &rank) ;
19 MPI_Comm_ size(MPL_ COMM_WORID, &comm _size) ;

21 int start rank = (argc < 2) ? 0 : (atoi(argv[1l]) % comm size);

22 start rank = (start rank < 0) ? 0 : start rank;

23

24 if (rank = start rank)

25

26 MPI Isend(&rank, 1, MPI INT, ((rank + 1) % comm size), 0, MPL COMM WORLD, &
request);

27 MPI Recv(&received , 1, MPI INT, ((rank — 1) % comm size), 0, MPL COMM WORLD, &
status);



28
29
30
31
32
33

34
35
36

37
38
39
40
41

printf ("MPI rank ’%d’ received message from rank '%d’\n", rank, received);
fflush (stdout);

}
else
{
MPI Recv(&received , 1, MPI INT, ((rank — 1) % comm size), 0, MPL COMM WORLD, &
status);
printf ("MPI rank ’%d’ received message from rank '%d’\n", rank, received);

}

fflush (stdout);
MPI Isend(&rank, 1, MPI INT, ((rank + 1) % comm size), 0, MPL COMM WORLD, &
request);

MPI Finalize();
return 0;

C.5 Deploying the simulator on a new

architecture

To make the simulator deployable on a new architecture the inline assembly code
of the simulator has to be enhanced. Four inline assembly commands have to be
created especially for the architecture. The four assembly commands are:

1. Push all CPU registers and save the stackpointer into a variable.
2. Save the basepointer into a variable.
3. Restore the stackpointer from a variable and pop all CPU registers.

4. Restore the basepointer from a variable.

See assembly code.h for Intel’s x86 and AMD64 versions.



