
Virtualized Environments for the

Harness Workbench

A Dissertation

Submitted In Partial Ful�lment Of

The Requirements For The Degree Of

Master of Science

In

Network Centered Computing,

High Performance Computing

in the

Facultty of Science

The University of Reading

by

Bjoern Koenning

28.02.2007

Supervisors: Prof. Vassil Alexandrov, University of Reading

Christian Engelmann, Oak Ridge National Laboratory

1 Acknowledgment

In the �rst place, I would to thank Christian Engelmann for his great and all-embracing
support during my stay in the USA and giving me his time and advice for my research
at the Oak Ridge National Laboratory.

As well, thanks Stephen L. Scott and Christian for their invitation and the �nancial
support.

Furthermore, merci and thanks to Geo�roy R. Vallee and Thomas Naughton for their
kernel and Linux experiences.

Last but not least, thanks to Al Geist for showing me the magic side of the Laboratory.

This research is sponsored by the Mathematical, Information, and Computational Sci-
ences Division; O�ce of Advanced Scienti�c Computing Research; U.S. Department of
Energy. The work was performed at the Oak Ridge National Laboratory, which is man-
aged by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725.

I

2 Abstract

The expanded use of computational sciences today leads to a signi�cant need of high
performance computing systems. High performance computing is currently undergoing
vigorous revival, and multiple e�orts are underway to develop much faster computing
systems in the near future. New software tools are required for the e�cient use of petas-
cale computing systems.

With the new Harness Workbench Project the Oak Ridge National Laboratory intends
to develop an appropriate development and runtime environment for high performance
computing platforms.

This dissertation project is part of the Harness Workbench Project, and deals with the
development of a concept for virtualised environments and various approaches to create
and describe them.

The developed virtualisation approach is based on the chroot mechanism and uses
platform-independent environment descriptions. File structures and environment vari-
ables are emulated to provide the portability of computational software over diverse high
performance computing platforms. Security measures and sandbox characteristic are in-
tegrable.

II

Contents

1 Acknowledgment I

2 Abstract II

3 Introduction 1
3.1 Project Description . 3
3.2 Key Problems and Speci�cations . 3

3.2.1 Virtualisation Approach Speci�cations 4
3.2.2 Description Concept Speci�cations 7
3.2.3 Software System Strategy and Milestones 8
3.2.4 Project Advancements . 10

3.3 Background . 11
3.3.1 Modern Architecture of High Performance Operating Systems . . . 11
3.3.2 Emulation versus Simulation . 14
3.3.3 Virtualisation . 15

4 Preliminary System Design 18
4.1 Detailed Project Strategy . 18
4.2 Basic Virtualisation Approach . 19

4.2.1 Application Environments . 19
4.2.2 Abstract Virtualisation of Environment Variables 21
4.2.3 Abstract Virtualisation of File Structures 22

4.3 Detailed System Work�ow . 25
4.3.1 Evaluation . 27

4.4 Related Research . 28
4.4.1 GNU Build System . 28
4.4.2 Oscar . 31
4.4.3 XEN . 32
4.4.4 Netbuild . 33

5 Implementation Strategy 36
5.1 File System and Structure Virtualisation 36

5.1.1 Copy Method . 37
5.1.2 Link Method . 37
5.1.3 Unionfs . 39

5.2 Environment Variables . 55
5.3 Performance Tests . 56

III

5.3.1 File Structure Creation . 56
5.3.2 veStarter Performance . 57
5.3.3 Runtime Performance . 57

6 Detailed Software Design 63
6.1 XML Concept for Virtualised File Structures and File Integration 63

6.1.1 File Element . 63
6.1.2 Directory Element . 65
6.1.3 Subdirectory Element . 67
6.1.4 Branch Element . 67
6.1.5 Usability Aspects . 72
6.1.6 Inheritance . 73
6.1.7 Creation Order of the File Structure Elements 74
6.1.8 Environment Element . 74

6.2 XML Concept for Environment Variables 75
6.2.1 Con�g File Syntax . 78

6.3 Implementation challenges . 82
6.4 veCreator . 82
6.5 veStarter . 83
6.6 Security Aspects . 84

6.6.1 Password Security and Security Environment Descriptions 85
6.6.2 Sandbox Characteristic . 86

7 Conclusion 89
7.1 Results . 89
7.2 Future Work . 90

A Appendix 98

B program code 99
B.1 veCreater.sh . 99
B.2 veStarter.sh . 113
B.3 recSynDelete.sh . 119
B.4 XML Schema . 120

C User Manual 125

3 Introduction

The expanded use of computational sciences today leads to a signi�cant need of high
performance computing systems. High performance computing is currently undergoing
vigorous revival. Spurred by science needs, technical advances, and national priorities,
multiple e�orts are underway to develop much faster computing systems in the near fu-
ture.

These new systems, like current systems, will di�er from each other in multiple aspects
like architecture, hardware, interconnects, operating systems, compilers, library versions,
runtime environments, debugging, and monitoring tools.

This diversi�cation leads to two main challenges for scientists in the computational area.
First, seamless portability of scienti�c programs is not given without tedious adaptation.
And second, it is related to the fact that many programs are optimized to use a particular
system. Portable program code is mostly not running e�ciently on diverse systems.
Therefore, computational scientists have to expend considerable time and e�ort dealing
with development, deployment, and runtime interfacing activities. This burden results
in ine�cient use of hardware and human resources, and to a reduction of scienti�c dis-
covery, e.g., it leads to higher costs.

Motivation of the Harness Workbench Project

With the new Harness Workbench Project [1], the Oak Ridge National Laboratory in-
tends to develop an appropriate development and runtime environment for high perfor-
mance computing platforms. The Harness Workbench will help to enhance the overall
productivity of computational sciences on diverse high performance computing platforms
by increasing the portability of scienti�c programs. It gives users uni�ed and adaptive
access to diverse high performance computing platforms and hides the complexity in the
background.

The Harness Workbench consists of two main components. The �rst component is a vir-
tualised command toolkit (VCT) for application building and execution that provides a
common view across diverse HPC systems. It is a software backplane architecture, which
presents a uniform, extensible interface, and is capable of interoperating with existing
and third-party toolkits. It will interface to native platform functionality via plug-in
modules that encapsulate vendor-speci�c knowledge and are further con�gurable at the
system and application levels.

1

The second component of the Harness Workbench is a uni�ed runtime environment that
similarly consolidates access to runtime services via an adaptive framework for execution
time and post processing activities.

The Harness Workbench Project addresses to the entire area in which substantial bene�ts
can be derived by optimising the development and deployment process, and by facilitat-
ing software reuse.

Traditionally, programmers write code for a given runtime environment o�ering a de-
�ned set of functions and properties. The runtime environment itself can be seen as a
layer between operating system and application, which emulates a uni�ed environment
on diverse operating systems.

A problem of this approach is that applications running in a runtime environment may
experience a loss of performance. Other problems are caused by the fact that a lot of
runtime environments are not available for all platforms, or it is not possible to make
use of the full performance with them. Thus, by accepting a loss of portability many
applications running on supercomputers are written for one speci�c supercomputer to
achieve a maximum of performance.

The previous e�orts in research of Harness tries to provide a uni�ed runtime environment
on supercomputers via pluggable runtime environment software modules.

It is the intention of the Harness Workbench Project to solve these problems by using
a new way to ensure portability. The run-ability of an application on another super-
computer can be facilitated by using the Harness Workbench, which creates appropriate
virtual environments required by applications. Therefore, Harness will simplify applica-
tion development, deployment, and portability.

The crucial di�erence between the Harness Workbench approach and traditional runtime
environments, like OpenRTE, and previous variants of Harness is based on its ability
to create di�erent virtual environments. It provides an automated adaptation of virtual
environments according to the requirements of each speci�c program.

In other words, not the programmer has to �t the code to a given runtime environment
standard, but the operating system with the help of Harness has to �t to the application.

This dissertation project is a part of the Harness Workbench e�ort. The overall software
development of the entire life cycle of an application is considered, while traditionally,
e�orts for accelerating computing processes are only addressed to faster hardware, faster
algorithms, and more optimized (lightweight) operating systems.

The objective of the Harness Workbench is to simplify software development and deploy-

2

ment by making scienti�c application software more portable using appropriate tools and
runtime environments.

3.1 Project Description

As mentioned, the crucial di�erence between the Harness Workbench and traditional
runtime environments is based on its ability to create di�erent appropriate virtualised
environments for speci�c applications. This dissertation project is a �rst step to enable
the Harness Workbench to create such appropriate virtualised environments.

In opposite to traditional runtime environments, the Harness Workbench will create an
environment, which is not �xed to a standard environment with a de�ned set of proper-
ties. It will create appropriate environments according to a given environment description
based on application needs.

Therefore, this dissertation project deals with the development of a concept for virtu-
alised environments and various approaches to create and describe them.

The development of a description concept for these virtualised environments represents
the main part of the theoretical basis of this dissertation project. This description concept
can be used as an approach-independent information format for software environments.
This means other application in addition to Harness will use this concept.

The practical part of this thesis deals with the development and tests of tools for creating
virtual environments according to a given description. Especially, the portability of such
tools is important.

The abstract work�ow starts with writing an application on an arbitrary computing
system. If it is required to port the application to continue the work on another system,
it is required to describe the original environment in an environment description. Finally,
provided that Harness is available on the new system, it will create a new virtualised
environment, in which the application can be compiled and executed, see Figure 3.1.

3.2 Key Problems and Speci�cations

After considering the projects main objectives, the following speci�cations and key prob-
lems can be summarized.

3

Figure 3.1: Abstract Situation

3.2.1 Virtualisation Approach Speci�cations

Portability

The main goal of the entire virtualisation approach is the portability of software. This
can be achieved by emulating an environment in which a program can �nd their required
functionality to be runnable. Normally, virtualised environments are emulated by run-
time environment software which can be seen as a layer between the operating system
and the application. The properties of these runtime environments are more or less �x
de�ned. A software cannot be ported to such traditional environments if the original
software environment is not equal or similar. Therefore, the required environment has
to be described in a way that allows recreating it in a virtualised environment. This de-
scription contains all required information needed to create the virtualised environment
on another operating system. For these environment descriptions a concept is needed.

In addition to ensure the portability of software over various operating systems, the ap-
proach itself has to be portable as well and should be runnable on almost all Unix-type
operating systems.

Portability means as well that the virtualisation application can be easily installed or
integrated in an operating system. Hence, kernel modi�cations cannot be required.

Furthermore, the portability of the virtualisation approach is also valid for operating
systems of modern high performance computing platforms, as described in Section 3.3.1.

Portability to the Mircrosoft Windows operating system is not intended because it is
not used for high performance computing [2]. However, in theory, portability to these
systems could be realized with use of Cygwin [3]. Cygwin o�ers a Unix shell-like envi-
ronment on Microsoft Windows platforms.

4

Applications for Creating and Starting Virtal Environments

Furthermore, command line based applications are required to create appropriate virtu-
alised environments and to start given scienti�c applications in them. These command
line based applications should provide suitable command line options for convenient use
and process all the information read from an environment description �le. As mentioned
the entire dissertation should lead to an enrichment of the Harness Workbench. There-
fore, these applications have to be integrated as part of the Virtual Command Toolkit
(VCT) of Harness. It is intent to provide commands as noticed below.

vct -env install myDescr.conf

vct -env start myDescr.conf myApp

While the �rst one installs an environment according to the description �le myDescr.conf
the second line shows a command which starts the program myApp in the environment
described in myDescr.conf.

Within the scope of this dissertation project, the creation of virtual environments is fo-
cused on �le structures and environment variables. Currently, the Harness Workbench
research at the Oak Ridge National Laboratory is not concentrated on package manage-
ment, services, or network related issues.

Merged Virtual File Structures

For e�cient and �exibility reasons the virtualisation of �le structures should be performed
by merging both, new �les and local �les already existing on the target system. This will
save disk space and allows arbitrary combinations.

Virtual Environments in User-Space

The capability to create user-space-based virtual environments should be mentioned as
a more speci�c purpose, see Figure 3.2. This feature could be very helpful to simplify
system administration of supercomputers.

In a traditional high performance computing development and execution model, system
administrators are solely responsible for system-wide installations of supporting software
and scienti�c libraries. Users write, compile, and run codes that utilize these resources.
While this model works perfect for general-purpose software components, like vendor-
optimized MPI implementations, it is less appropriate for libraries that are unconven-
tional and more problem speci�c. For example, in situations when only a few scientists
in an organization need some packages, it might be more reasonable to enable them
to perform user-speci�c installations in their home directories rather than placing that
burden to on-site administrators. It is possible to use multiple library versions without
con�icts by installing each version in a di�erent virtual environment.

5

Figure 3.2: Virtualised Environment and User Space

Master Environemt Scope

The virtualisation approach has to work in a way that the system-level scope of an appli-
cation running in a virtual environment can itself be considered as a master environment.
For a program running in a virtual environment, the root of the �le structure in a virtual
environment should look like the original �le structure root.

Security

To avoid security vulnerabilities a secure approach is needed. The virtualisation approach
has to work without giving normal users special access rights. But it has to enable
normal users to start applications in user-space-based virtual environments. Otherwise
these users would be able to run programs with super user rights on their own virtual
environment, being capable to destroy the entire system.

Support Shell-Less Systems

As described in Section 3.3.1, there are various high performance computing platforms
with lightweight operating systems without any kind of Unix-type shell. In this case shell
script-based applications cannot work. For supporting also such systems, it is useful to
implement the functionality of the virtualisation approach in libraries. In this case a
computational application itself has to change into a particular virtual environment by
including these libraries and using their functionality. Reading of the description �le and
creating the virtual environment has to be performed in the same way.

6

Administration Support

Apart from normal users creating their own user-space-based virtual environment, a sys-
tem administrator should be allowed to exploit these virtual environments. This could
be bene�cial in two situations.

First, if a normal user needs help from a system administrator for a complex installation
in their virtual environment to complete it. And second, if a system administrator
modi�es libraries or �les which were already integrated in a virtual environment it is,
in some cases, necessary to modify the a�ected virtual environments to avoid security
vulnerabilities.

3.2.2 Description Concept Speci�cations

Flexibility

As mentioned, the core of the theoretical aspect of this dissertation project is a descrip-
tion concept for virtual environments running on various high performance computing
platforms.

This description concept should be as �exible as possible to allow all-embracing de-
scriptions of environments. It should allow arbitrary combinations of environmental
properties, like environment variables, library paths, package dependencies, and device
�les.

Extensibility

The description concept should be as �exible as possible to allow future extensions. This
will make the concept powerful for all-embracing descriptions of nearly all thinkable com-
binations of existing and new environmental properties like new �le permissions, library
and package management, and con�gurations of speci�c services and network identities.

Therefore, the concept should be constructed in a way that future extensions can be
easily included without reconstructing existing concept elements. Otherwise such exten-
sions will lead to nonuniform concept elements and makes old environment descriptions
unusable.

Level of Detail

Furthermore, the concept has to provide a hierarchical scheme. This scheme o�ers di�er-
ent levels of detail to simplify the description process. furthermore, a hierarchical order
can be used to implement an inheritance principle.

7

Inheritance

The ability of virtual environments to inherit from one another is a preferable feature,
which is important for both, the technical implementation and the description concept.
This feature provides an easier way to describe virtual environments with regards to
security issues.

Figure 3.3: Inheritance of Environment Descriptions

XML

The concept has to be developed as a XML dialect. XML is the most widespread and
supported meta language. XML is easier to develop and process than other meta lan-
guages and o�ers su�cient functionality for the implementation of the mentioned concept
related requirements.

Usability

Usability deals with the question how convenient the concept can be used in practice. To
enable a user to modify such XML-based environment descriptions, it is required that it
is a human readable XML format and follows simple syntax rules.

3.2.3 Software System Strategy and Milestones

The outlined requirements of the abstract virtualisation approach and its used environ-
ment description concept lead to the following project strategy.

As shown in Figure 3.4, it is planned to implement two applications: one application for
the creation of the virtualised environment, the veCreator (virtual environment creator).

8

And another one for starting applications in virtualised environments, veStarter (virtual
environment starter). These applications are implemented as shell scripts.

As a consequence to the mentioned requirement the concept has to be implemented as
an XML [4] dialect. This requirs XML parsers, like Expat [5], for reading, validating and
interpreting environment description �les. As an optimal solution these XML parsers
should be used to transform the XML concept description in a shell-script-processable
�le format, called con�g �le. This transformation can be described via XSLT [6]. Such
con�g �les can be read very comfortable by shell script applications.

After these achievements two preferable extra goals can be formulated to sophisticate the
prototype more towards a production-type tool. For a convenient use of the description
concept it is required to have a possibility to validate a created concept against syntax
rules. The second additional goal is connected with the mentioned requirement to pro-
vide the virtualisation approach on shell less operating systems. The entire approach can
be re-implemented as a library.

Figure 3.4: Milestones

In order to ful�ll and achieve the described key problems, speci�cations and this project
strategy, a dissertation project plan has to be organized. There are three di�erent mile-
stones categories, which outline the project development status:

9

Milestone Category A: A minimum set of the requirements and task will be ful�lled.
The achievement of this category leads to a useful concept and a good working prototype
which shows the feasibility of the concept and the integration of Unionfs [7].

Milestone Category B: This category includes an optimal set of requirements and
tasks. The achievement of this category results to more sophisticated description con-
cept and more functionality of the prototype application.

Milestone Category C: This category includes some extra project features, which will
provide the validation of the description concept and will o�er a library for shell-less
operating systems.

The following table shows which tasks and requirements are involved in the three mile-
stone categories.

Required Capability Milestone

Preliminary description concept for �le structures and environment variables A
De�ning notation rules for the con�g �le format A
Shell script application veCreator A
Shell script application veStarter A
Installation and con�guration of Unionfs A
Enable veCreator and veStarter to use Unionfs A
Performance tests A
Enhance description concept especially security features B
XSLT Transformation description for XML to con�g �le format B
XSLT implementation by using an existing parser B
XML Schema de�nition for validation of environment descriptions C
Re-implementation of the shell scripts as a C library C

Table 3.1:

3.2.4 Project Advancements

The achievements of this dissertation project lead to a portable virtualisation approach
which is easy to integrate. It will bene�t application development and deployment by in-
creasing the portability of software, especially for scienti�c computation on modern high
performance computing systems. Another important advancement is addressed to a sim-
pli�ed administration of supercomputers via installation in user-space. Finally, the most
important advancement is a powerful description concept for virtualised environments,
which will be used by the Harness Workbench and other virtualisation and software de-

10

velopments tools.

3.3 Background

At �rst a short description of the abstract architecture of modern high performance
computing platforms is explained to give a better understanding of the advantages and
disadvantages of related projects.

3.3.1 Modern Architecture of High Performance Operating Systems

The abstract architecture, which is described in this section, is not valid for all super-
computers. But it shows a high-level view of the latest design trend implemented, for
instance, in the Cray XT3 and IBM Blue Gene/L which dominates in the Top 500 list
of Supercomputers [2].

A Modern high performance computing system can have thousands of processors, called
nodes. Currently the IBM Blue Gene/L with its 131.072 processors is the biggest and
fastest supercomputer.

In the past, according to the original Beowulf cluster system architecture [8], the op-
erating system of each node of a high performance computing system was designed for
multi-purpose use. Each node runs a full operating system and a number of middleware
services.

Figure 3.5: Beowulf [9]

The recent trend in modern high performance computing system architectures employs
nodes with dedicated roles, each of them optimized to process its role more e�ciently.
Therefore, modern high performance computing systems can include the following node
types:

• compute nodes,

• I/O nodes,

• front-end nodes,

11

• service nodes,

• �le server nodes.

Compute nodes are dedicated to run application processes, whereas I/O nodes are ded-
icated to perform system functions. The operating system of a compute node supports
often less then hundred system calls and has mostly no local �le system. Service nodes
run control software, which monitors all activities of the compute and I/O nodes as well
power supplies and fans.

Figure 3.6: Modern High Performance Operating System Architecture

Due to the principle that the structure of the software should re�ect the structure of
the hardware [10], compute nodes run an adopted lightweight operating system. Certain
parts of the operating system as well as other system software services are moved to I/O
and service nodes in order to increase performance and scalability.

This architecture modi�cation increases the scalability of such big systems. The func-
tional separation avoids interferences caused by system functions. Interferences are the
main problem for scalability.

However, such systems are accessed by the user via a front-end node. Depending on
the concrete realization of the system, the user can compile its application direct on the
front-end or the compilation task is submitted to a specialized service node. Further-
more from the front-end node the user can initialize the execution of an application. The
application code is submitted to a number of compute nodes, where the code is executed.

As illustrated in Figures 3.7 and 3.6 the application runs in a Runtime Environment
(RTE) [11] which is responsible for the communication between compute nodes,for in-

12

Figure 3.7: Traditional(a) and Modern Compute Node Software Architecture(b) [9]

stance via MPI [12]. While front-end and mostly service nodes too, run a full Unix-type
operating system, the kernel on the compute node has not to be, and mostly is not, an
Unix-type kernel.

Thus, compilation on such systems means cross-compilation of application code written
for Linux to the kernel of the compute nodes. According to Figure 3.8, a Linux sys-
tem call library has to be available to support Linux system calls. For instance, if a
running application on a compute node invokes the I/O system call read which requires
the infrastructure of the �le system, the compute node kernel ships it to its assigned
I/O node and waits for reply. The I/O node reissues the system call and connects to
a �le server node to get access of the speci�c �le and sends the data to the compute node.

The described architecture modi�cations must have an in�uence to the upper software
stack particularly on compute nodes. The middleware concept of adding missing op-
erating system features between operating system and application as well the role and
architecture of middleware in modern high performance computing systems needs to be
revisited. The result is a paradigm shift in high performance computing middleware
design, where single middleware services are moved to service nodes, while runtime en-
vironments continue to reside on compute nodes [9].

13

Figure 3.8: Function Shipping

3.3.2 Emulation versus Simulation

In literature is seems to be not clear what the di�erence is between emulation and sim-
ulation. Often, both terms are used misleadingly as synonyms.

Emulation refers to the ability of a system to imitate another system [13]. Emulation
done by the emulating system returns or leads to the same result as the emulated system.
Both systems produce the same results via di�erent ways.

For the term simulation [14] there is no clear de�nition. There are several none-complete
de�nitions but there is commonness in all of them. Simulation can be described as an
abstract imitation of a system. The simulating system uses mostly a model of the sim-
ulated system to return or produce results closely to the original results. A model is an
abstract description of a (usually more complex) system. Simulations are often used to
estimate, assume or predict complex systems. Mostly these systems are too complex for
understanding, for instance weather forecast.

Depending on the point of view a system imitating another can be considered as both
simulation and emulation. For instance, a software system which imitates another one
can calculate exactly the same results. Therefore it can be considered as emulation. But
it can also be seen as a simulation if the di�erent amount of time is involved in the
consideration which is taken by the emulation.
Therefore, software emulation can be seen as a simulation if the emulation is slower or
faster than the original and time constraints are a focused issue. This is not the case in
the context of this dissertation project.

14

Furthermore, emulation can be seen as a special kind of simulation. Each system which
imitates another system in a way which has to be considered as perfect under the speci�c
conditions is an emulator.

This dissertation project concentrates on portability and functionality of software sys-
tems. If a virtual environment enables an application to run and produce the same
results as on their original environment, it can be seen as an emulation of the original
environment.

Therefore, the term emulation instead of simulation is used in the following.

3.3.3 Virtualisation

Virtualisation [15] is a broad term that refers to the abstraction of computer resources.
It is a technique for hiding the physical characteristics of computing resources from the
way in which other systems, applications, or end users interact with those resources.
This includes making a single physical resource such as a server, an operating system, an
application, or storage device appear to function as multiple logical resources; or it can
include making multiple physical resources such as storage devices or servers appear as
a single logical resource.

The common theme of all virtualisation technologies is the hiding of technical detail
through encapsulation. Virtualisation creates an external interface that hides an under-
lying implementation, e.g., by multiplexing access, by combining resources at di�erent
physical locations, or by simplifying a control system.

Virtualisation can be realized from hardware level, from operating system level and from
application level. Along these virtualisation levels the following terms can be classi�ed.
Depending on what should be virtualised two terms can be noticed: platform virtual-
isation and resource virtualisation. Platform virtualisation involves the emulation of a
complete computer environment (virtual machine) created by a host software running on
a given hardware platform, while resource virtualisation involves only the emulation of
combined, fragmented, or simpli�ed resources.

The following terms related to platform virtualisation can be listed. The terms listed
below, are related to several approaches to perform platform virtualisation. They di�er
in the completeness of the environment they emulate and on the virtualisation level being
built on.

Emulation

Emulation in this context means a virtual machine, which emulates the complete hard-
ware. Hence unmodi�ed guest operating system can be installed on it. The emulated

15

hardware can totally di�er from the physical hardware of the machine. That is why it
is possible to test the cooperation between a guest operating system and a new not-yet-
built CPU during the construction phase. Examples for such full emulators are the PPC
version of Virtual PC [16], QEMU [17] without acceleration.

Native Virtualisation and Full Virtualisation

Native virtualisation [18] and full virtualisation [19] can be realized by a virtual machine
which emulates enough hardware to allow an unmodi�ed guest operating system to be
run in it. This approach di�ers from the above in the fact that the CPU which is emulated
is the same type like in the physical machine. Typically, many instances can be run at
once and each is isolated from the other ones. Examples are Virtual Iron [20], VMware
Workstation and Server [21], Mac-on-Linux [22], and Win4Lin Pro [23].

Partial Virtualisation

A virtual machine [24] emulates multiple instances of a lot but not all of the underlying
hardware. Such an environment supports resource sharing and process isolation, but
does not allow separate guest operating system instances [25].

Paravirtualisation

Paravirtualisation [26] means that the virtual machine does not necessarily emulate hard-
ware, but instead or in addition o�ers a special API that can only be used by modi�ed
guest operating systems. The guest operating system is modi�ed to invoke instead of sys-
tem calls the same named functions of a special API. These API functions itself invoke
speci�c systems calls, named hypercalls, of the underlying virtual machine, and often
named hypervisor. Examples are Xen [27], Parallels Workstation [28], Enomalism [29]
and VMware Server, as well Win4Lin 9x [23].

Operating System-Level Virtualisation [30]

In contrast to all the above terms this approach does not emulate a guest operating
system which runs isolated. The guest operating system environments share the same
operating system as the host system, i.e., the same operating system kernel is used to
implement guest environments. This term addresses to the virtualisation of multiple
isolated and secure virtualised servers to run on a single physical server. An application
runs on the host operating system but has another view on it, so it works as if it runs
in an another guest operating system. The application cannot notice that it runs on the
host operating system. Examples are Linux-VServer [31], Virtuozzo [32], and FreeBSD
Jails [34].

16

Application Virtualisation

Application Virtualisation [33] is an approach which runs a desktop or server application
locally, using local resources, within an appropriate virtual machine. This is in con-
trast with running the application as conventional local software, i.e., software that has
been "installed" on the system. Such a virtualised application runs in a small virtual
environment containing the components which are needed to execute, such as registry
entries, �les, environment variables, user interface elements, and global objects. This
virtual environment acts as a layer between the application and the operating system,
and eliminates application con�icts and application-OS con�icts. Examples include the
Sun Java Virtual Machine [35], Thinstall [36], Altiris [37], and Trigence [38].

In practice, apart form these term de�nitions, the core of each virtualisation approach
can be seen very abstractly in form of function mapping.

System or function calls are invoked from an upper tier in the software stack and will
be mapped to another system or function call in the underlying tier. For instance, the
usage of included C library for I/O operations is the easiest way of function mapping and
can be considered as static. This is also valid for paravirtualisations when a modi�ed
operating system uses a library o�ering the functionality of a speci�c kernel.

Runtime environments can be seen as a layer which works as a con�gurable function map-
ping approach. Even the interpretation of Java byte code in a Java runtime environment
is a function mapping.

17

4 Preliminary System Design

4.1 Detailed Project Strategy

As shown in Figure 3.4, two applications are implemented. The veCreator, for the
creation of the virtualised environment and the veStarter, for starting applications in
virtualised environments. These applications are implemented as shell scripts. The shell
scripts are very convenient for prototype implementations. The program code can be
quickly adapted and a powerful set of shell functions can be used very easily. Shell script
implementations �t also to the portability requirements. A shell script application can
be very portable of over very di�erent operating system if it is written for a widespread
used Unix-type shell and if the code uses standard functions.

According to the mentioned speci�catoins the environment description concept has to be
implemented as an XML dialect. This requires the use of an XML parser for reading,
validating and interpreting the concept.

This causes two problems. First, if XML parsers are needed to read the description �le,
what would happen if an operating system is not equipped with it. Second, the descrip-
tion �le can be seen as a big set of parameters for the shell scripts applications.

There are two possibilities to read the input parameters from a �le. The �rst possibility
is writing an own shell-script-based parser. This has to be rejected because it is a big
burden and it is very ine�cient to implement an own parser during a changeful prototype
phase. The second possibility is more convenient. Unix-type shells provide an own parser
with the source command. This source command is able to read and parse con�g �les.
As shown below, it can be easily managed in two ways by using the source command or
a dot before the �le.

source myEnvironment.conf

. myEnvironment.conf

Therefore, an XML parser is needed, which, according to an XSLT description, trans-
forms the concept from XML format into a shell-script-processable or con�g �le format.
XSLT is an extensible Stylesheet language developed to describe transformations from
arbitrary XML dialects into other XML dialects as well into none XML dialects.

This intermediate step is the easiest way to enable a fast shell script prototyping. It also
provides a solution for the �rst above mentioned problem. On lightweight operating sys-

18

tems providing no XML parsers the user is still able to create virtualised environments by
using the con�g �le version of an environment description. As a precondition the speci�c
environment description �le has to be transformed on another capable operating system.
On such lightweight operation systems the user is able to create or modify environment
descriptions, if he is familiar with the use of this con�g �le format. Therefore, the con�g
�le format has to be human readable like the XML format.

It is assumed that in future, such lightweight operating systems providing only a narrow
set of functionality will be used more often, especially in face to operating systems created
and virtualised by Xen.

4.2 Basic Virtualisation Approach

This section begins with a short abstract description of what should be virtualised, the
environment of software. It describes the virtualisation of �le structures and environment
variables and critically discusses the outlined approach especially in face of the require-
ments of modern high performance computing systems.

4.2.1 Application Environments

The term environment has to be de�ned from the point of the applications. Software
may require a �le structure for I/O operations, the existence of appropriate compilers
and libraries for compiling and running, environment variables to get information about
the environment, a shell, devices, and installed services and network connections.

The application environment on the same operating system can di�er depending on from
where an application is started. An application specially written for a standard runtime
environment like Java can only be started in such a runtime environment. In this case,
the applications environment is the runtime environment and all the functionality of the
underlying operating system is mainly used indirectly via its interfaces, see 4.2.

The traditional way is starting an application inside a shell. In this case, the shell is
the direct application environment, as illustrated in Figure 4.1. The application uses the
operating system properties directly and in addition it can use the environment variables
and basic service programs of the shell.

On some modern high performance computing systems applications are started in a shell-
less environment. There is no runtime environment and no shell, see Figure 4.3. The
application is started remote from a service node and runs in an environment without
shell environment variables and shell programs.

The last two cases are addressed by this dissertation and the following virtualisation
approach.

19

Figure 4.1: Application Environment with Shell

Figure 4.2: Application Environment with RTE

20

Figure 4.3: Application Environment on a Shell-less OS

4.2.2 Abstract Virtualisation of Environment Variables

The virtualisation of environment variables is required to emulate the software environ-
ment of applications which are started in a shell. In this dissertation the emulation of
environment variables is achieved by starting a new shell and modifying the environment
variables of this shell until it �ts to the requirements of a speci�c application. Than the
scienti�c application is executed in the new modi�ed shell.

The use and data structure of environment variables is quite similar on all widespread
Unix-type shells. The mostly used and widespread Unix-type shells [39] are the bourne
shell(sh), the bourne again shell (bash), the korn shell (ksh), and the C-shell (csh).

For a shell, each variable is not more than a sequence of characters, a string data type.
The command lines below show in line 1 a common way to initialize a variable and in
line 2 how to use or print a variable's content.

export PATH=/bin

echo $PATH

It is possible to develop a portable approach, which creates environment variables in the
mentioned shells.

21

Most scienti�c applications running in one of the mentioned shells are using only the
environment variables and some service programs provided by the shell. The basic set of
shell-provided service programs is the same for the mentioned shells.

The most scienti�c applications can be started in a manipulated shell on all Unix-type
operating system using shells. There is still one of the mentioned shells available.

A shell script application cannot be started in a shell if both are not compatible. Then it
is required a compatible shell on the operating system or create a virtual �le structure,
which includes the required shell. After that the required shell can be executed and
manipulated and the shell script application can be started.

However, this case can be disregarded because shell script applications are to slow and
therefore they are not often used for computational core tasks.

The emulation of speci�c shells cannot be achieved on some modern shell-less operating
system. For instance, the Catamount operating systems used on the Jaguar Cray XT3
[40] at the Oak Ridge National Laboratory do not provide basic system calls, like fork,
which is used by a process to start a child process [41]. A shell is doing the same if an
application is started in them. It uses fork to create a child process. This child process
is an exact copy of the shell and includes all the environment variables. Then the child
process loads the instruction code of the application starts it.

The approach described in this section is implemented as a shell script application which
is called veStarter in the following.

4.2.3 Abstract Virtualisation of File Structures

The virtualisation approach is based on the use of the chroot Unix command [42] to em-
ulate a virtual �le structure. The chroot command changes the root directory of a given
process into a di�erent given directory. After this, a process can be called "chrooted"
process. Other processes are not in�uenced by this operation.

Only child processes of a "chrooted" process will be in�uenced. Figure 4.4 shows the
narrowed system level scope of a "chrooted" process. Files inside the new root directory
and its subdirectories cannot be named by its original path. A "chrooted" process cannot
name �les located outside its new root directory.

The �le test.conf illustrated in Figure 4.4, is originally located in /home/peter/test.conf.
If this �le should be opened by a text editor which was chrooted into the directory
/home/peter the editor has to name the new path /test.conf. The original �le path does
not exist from the editor's point of view.

22

Figure 4.4: Original View and View of a chrooted Application

For this reason many chrooted applications cannot work as usual without modi�cations.
Figure 4.5 illustrates the solving idea. The new root directory of the chrooted application
includes an emulated �le structure equivalent to the original one. It comprises all �les
required by the "chrooted" application.

Figure 4.5: chrooted Application View in a Appropriate Virtual File Structure

chroot is not mentioned by the IEEE [43] as a standard system call in the POSIX [44]
standard for system interfaces [45] but it is available as command or system call on many
Unix-type operating systems even on modern lightweight high performance operating
system like Catamount. Harness will be one of the important tools in high performance
computing. It will in�uence other lightweight operating systems to support chroot.

Furthermore, the chroot mechanism can be used by C libraries. Therefore, the chroot

mechanism can be used on both shell and shell-less operating systems if chroot is pro-
vided.

Security Issues

chroot can be used to trick security mechanisms of the operating system. Therefore,
only a super user can perform chroot. If a normal user would be allowed to perform
chroot, he could get super user rights. For instance, a normal user would be able to

23

recon�gure setuid programs vested with super user rights by chrooting such a program
in a directory primed with manipulated con�guration �les.

This example shows why chroot can only be used per default by super users and why
this con�guration should not be changed.

Protected Usage of the chroot Mechanism

It is required to enable normal users to use chroot for the virtualisation approach. Oth-
erwise no normal user could start speci�c applications in its user-space-based virtualised
environments.

A protected way to enable normal users to use chroot can be achieved with sudo. sudo
is a program that allows users to start programs with security privileges of another user.
sudo is an abbreviation for substitute user and is available on most Unix-type operating
systems.

Mostly, sudo is used by system administrators logged in as normal users, helping them to
con�gure the system which requires super user privileges. As shown below, a normal user
can run privileged programs with sudo if he knows the password of the super user. As
shown in the following command lines, sudo is used as a pre�x of the command or pro-
gram which should be started. Per default sudo will prompt for the super user's password.

sudo vi /etc/shadow

Password:

sudo gives only privileges for the execution of the given program. All privileges are
detracted after the execution, in this example after closing the vi editor. Per default
sudo cannot be used to enable normal users in a protected way to run chroot. But the
con�guration of sudo o�ers the possibility to examine which program can be used by
which users. The standard con�guration �le for sudo is located in /etc/sudoers. The
required syntax of the sudoers con�guration is given below:

peter notebook = myCalc

This line gives sudo the information that user peter logged in from the host notebook
is allowed to run the program myCalc. A more useful con�guration line is illustrated in
the following command line. This line allows all users logged in from anywhere to run
the chroot command. NOPASSWD means that there is no password required.

ALL ALL = NOPASSWD:/bin/chroot

This con�guration line is still not a secure solution. It enables all users to use chroot. A
con�guration is required which enables all users to use chroot only for the speci�c task

24

to start their computational applications in their virtual environments. Such a limita-
tion can be achieved by writing a shell script application which executes the following
command line.

sudo chroot $1 $2

This application uses chroot to change the root directory of a given program $2 into
a given directory $1. This application, named veStarter, should have super user rights
to perform chroot. Therefore, the permission and ownership of the veStarter program
needs to be modi�ed, as illustrated by the following command lines.

chown root veStarter

chgrp root veStarter

chmod 744 veStarter

The sudo con�guration in etc/suders includes the following line to enable all users to
execute the veStarter shell scipt instead chroot, providing veStarter is located in /bin.

ALL ALL = NOPASSWD:/bin/veStarter

So far, there is still the same security lack because veStarter works like the original
chroot command. But the replacement of chroot by the veStarter application provides
the implementation of a security mechanism into it. For instance, the veStarter appli-
cation can check if the user is allowed to start a given program and it can analyze the
given directory before it performs chroot. Since veStarter is owned by the super user,
the application has no permission limits and can process all instructions, and it cannot
be primed by other users.

This con�guration provides a secure solution to enable normal users to use chroot to
run their applications in a virtualised environment under secure conditions by replacing
chroot with the veStarter application.

The result of this con�guration is an encapsulation, implemented by limiting the appli-
cation's view of the �le structure via chroot mechanism.

4.3 Detailed System Work�ow

Following this description of the basic virtualisation approach the entire application work-
�ow will be outlined. Figure 4.6 illustrated the single steps in the right order.

First, the work�ow starts with the transformation of the environment description XML
�le into a con�g �le. This is can be done with an XSLT engine which transform the
formats according to the de�ned transformation rules. After that, the user has to start

25

the veCreator application with its required parameter, the con�g �le.

Then, the veCreator application creates the �le structure of the new virtual environ-
ment in a given location according to the environment con�g �le. Next, the user has
to start the veStarter application. It uses the chroot mechanism to start a new shell.
The root directory of this new shell is de�ned in the given the environment con�g �le.
After that, according to the environment con�g �le, the veStarter application creates
and manipulates the environment variables of the new shell. Finally in step eight, after
the mentioned security checks, the given application is executed by the veStarter in the
new shell.

Figure 4.6: Detailed Work�ow

The application is a child process of the new shell and runs as a "chrooted" process. It is
required to start the real application into a "chrooted" shell to ensure that the changes
of the environment variables will have no in�uence to the original shell.

Both applications veCreator and veStarter will be used via the virtual command toolkit
as illustrated and already mentioned in Section 3.2.1. Environment variables are only
temporary valid until the shell is closed. Therefore, the veStarter requires the environ-
ment con�g �le to read and process the information about the environment variables. At
a later time the �rst two steps will be integrated in the virtual command toolkit. It will
analyze if an environment �le is in XML format and needs to be transformed or not.

26

4.3.1 Evaluation

As already mentioned, currently this virtualisation approach concentrates only on �le
structures and environment variables.

Currently, some required environment properties which are not available on the operat-
ing system cannot be virtualised. For instance, running a speci�c service in the virtual
environment could require an installation. The emulation of not provided devices re-
quires the installation of services as well. Package management solutions are required for
such complex installations. In addition, network interfaces and data streams cannot be
emulated too.

Furthermore, other virtualisation tools provide resource quoting. The chroot mechanism
in itself does not restrict the use of resources, like I/O bandwidth, disk space, or CPU
time.

In the future, the chroot mechanism can be extended, for instance, to enable network
isolation and disk quoting. On the other hand, such extensions may lead to portability
problems of the virtualisation approach itself, and may decrease the performance because
of running controlling processes during runtime.

In conclusion, the goal of this dissertation project is the portability of a virtualisation
approach which itself ensures the portability of computational software.

The described approach ful�lls this portability requirement. Especially the environment
description concept can be seen as one stage of this approach, which is independent from
operating systems and reusable by other approaches. The entire approach is not self-
contained. Furthermore, the performance of this approach is not in�uenced by runtime
environment software because there is none in use.

Classi�cation

Finally, this virtualisation approach can be seen as an encapsulation realized by changing
the root directory of a process and thereby cutting the system level scope of this process.

According to the term de�nitions in Section 3.3.3, the approach can be classi�ed as an
application virtualisation, because it does not emulate an guest operating system.

The virtualisation of a �le structure and a shell environment can not be seen as an op-
erating system environment. The approach concentrates on the runability, operability
and executability of applications. Similar to the description of application virtualisation
applications and libraries have not be installed. That avoids con�icts to already installed
applications and libraries.

27

4.4 Related Research

Some related projects are described more in detail to get an overview of existing ap-
proaches developed to ensure portability of code. The rejection reasons, reusable aspects
and the relation of these projects to this dissertation project are outlined. The following
section involves the GNU Build System [46], the Oscar Project [47], the Xen Project [27],
and the Netbuild Project [48].

4.4.1 GNU Build System

The GNU build system [49], also known as the Autotools, is a suite of open source tools
produced by the GNU project. These tools are designed to assist in making various
source code packages portable to many Unix-like systems.

The GNU Autotools can be seen as a collection of automated approaches to detect re-
quired system properties for compiling and installing of applications. For instance[50], it
analyses speci�c compiler characteristics (CC,CFlags), the behavior of important utilities
like awk (which can be gawk, mawk, nawk) or grep (ggrep) and it searches for required
library functions, which can di�er from system to system (BSD, POSIX or System V).
GNU Autotools try to avoid well-known faults associated with these problems. For
instance[51], some C functions like exit, malloc, and free having di�erent return val-
ues and behavior, and, for instance, strnlen which is broken on AIX 4.3.

The GNU Autotool suite comprises the three main components autoconf [52], automake
[53] and the libtool [54]. With the help of the GNU Autotool it is relatively easy for soft-
ware developers to manage C and C+ projects and to create portable source code, which
can be easily compiled by normal users on various Unix-like platforms. GNU Autotools
are bourne shell compatible to be run able on Unix-type platforms.

Autoconf [52] produces a con�guration shell script, named con�gure, which probes the
installer platform for portability related information which is required to customize make-
�les, con�guration header �les, and other application speci�c �les. Then it proceeds to
generate customized versions of these �les from generic templates.

Automake [53] produces make�le templates, "Make�le.in" to be used by Autoconf, from
a very high level speci�cation stored in a �le called "Make�le.am". Automake produces
make�les that conform to the GNU make�le standards, taking away the extraordinary
e�ort required to produce them by hand. Automake requires Autoconf in order to be
used properly.

Libtool [54] makes it possible to compile position indepedent code and build shared li-
braries in a portable manner. It does not require either Autoconf, or Automake and can

28

be used indepedently. Automake however supports libtool and interoperates with it in a
seamless manner.

The developer has only to write two �les called con�gure.in and make�le.ac [55]. The
con�gure.in which includes macros for analyzing system properties required for the build
process, and the make�le.ac �le which includes information about the source code itself.
The example below shows a typical con�gure.in �le. It includes macros for checking
the existence of the source code (AC_INIT), indicating that the source code is writ-
ten in C and C++ (AC_PROG_CC, AC_PROG_CXX), and for generating the installation
target (AC_PROG_INSTALL). As well it is determine that libtool and automake is used
(AC_PROG_LIBTOOL, AM_INIT_AUTOMAKE) and how the make �le, generated by automake,
will be named (AM_OUTPUT).

AC_INIT(hello.cc)

AM_INIT_AUTOMAKE(hello,0.1)

AC_PROG_CC

AC_PROG_CXX

AC_PROG_INSTALL

AC_PROG_LIBTOOL

AC_OUTPUT(Makefile)

The second �le the developer has to write is the make�le.ac. It contains information
about the source project. For instance, binary directory, source code and object �les can
be de�ned as illustrated below.

bin_PROGRAMS = hello

hello_SOURCES = hello.h hello.cc main.cc

After writing these �les the project is able to be build by entering the following com-
mands:

1. aclocal

2. autoconf

3. automake

4. ./configure

5. make

6. make install

As shown in Figure 4.7 the aclocal analyses the con�gure.ac, creates speci�c analyzing
macros, which will be used be autoconf and adds them in the project directory. Then

29

autoconf reads the con�gure.ac again and creates a con�guration shell script, called con-
�gure. Next, automake reads the make�le.ac to create the make�le.in which is a template
of the future make�le. After these steps the project is technically ready to be distributed
as a portable source which can be easily build on various platforms.

Figure 4.7: GNU Autotool Overview

Step 4 to 6 can be continued by a normal user, who has already downloaded the source
and wants to install it. The con�gure script is doing the crucial step. It analyzes the
system to see what kind of programs and libraries you have, so it knows how to build
the program best and generates the �nal make �le. At the end make can be executed to
compile the project and with make install it can be installed. For these last 3 steps the
GNU Autotools are not required to be installed on the system, only a bourne compatible
shell and basic Unix utilities like awk and sed are needed.

After this short description it can be summarized that GNU Autotools simpli�es the
development of portable programs by automatic generation of the con�gure shell script
and the make �les, and distributing them together with the source code of the program.

However, it shows as well that the detection approach of GNU Autotools is not con-
structed to deal with high performance computer platforms where compilation and exe-
cution environment are di�erent.

As mentioned in Section 3.3.1 modern high performance computing systems use cross-

30

compilation due to dedicated nodes. Abstractly, a program can be cross-compiled on a
service node, and then it will be executed on a computing node. While running on a
computing node the program can use the services o�ered by the service nodes.

GNU Autotools support cross-compiling but not on high performance computing sys-
tems. If GNU Autotool would be used on a supercomputer with such an order it would
fail. The detection approach of the GNU Autotools analyses only properties of the
compilation (service) node but not the execution environment on the compute node.
Cross-compiling, is possible with the GNU Autotools but the entire analyzing approach,
which is responsible for the portability cannot be used for the target compute node.

In theory, it seems to be a good idea to rewrite some parts of the GNU Autotools to
enable them to be executable on the execution environment of a compute node and to
consider these results for the compilation on a compiling (service) node.

A shell is required to execute them on a compute node. Modern high performance com-
puting systems run lightweight operating systems working without any kind of shell on
compute nodes. Thus, it is required to re-implement the entire GNU Autotool suite in C
to enable it for execution on such compute nodes. The associated amount of work needs
inadmissible time and will excess the limits of this project.

Especially in relation to this, it should be underlined again that the philosophy for the
crucial functionality of the Harness Workbench Project is based on including users and
system administrators. An automated process would require permanent maintenance
because of the growing diversity of systems leading to a vast number of exceptions, as
exempli�ed by the GNU Autotools. Otherwise the detection approach would fail if a new
unknown problem occurs. The maintenance of C-implemented GNU Autotools in such
a fast changing area is very ine�cient.

For these reasons, the GNU Autotools cannot be considered as an alternative solution to
the dissertation's virtualisation approach in face of modern high performance computing
systems. In practice, as follows from the experience of my institutional supervisor, only
a small percentage of scienti�c applications use GNU Autotools instead of proprietary
build environments as current high performance applications have been developed over
the last �ve to �fteen years.

4.4.2 Oscar

OSCAR [47] is a collection of the best known methods for building, programming, and
using clusters based upon PVM [56]/MPI. OSCAR stands for Open Source Cluster Ap-
plication Resources and is the primary project of the Open Cluster Group, from which
the Oak Ridge National Laboratory is a part of. It helps to simplify the complex tasks
of installing and con�guring clusters. OSCAR consists of a full integrated and easy to

31

install software bundle designed for high performance computing clusters. Everything
needed to install, build, maintain, and use a Linux cluster is included in the suite.

Oscar evolves a GUI-based packages manager, a resource manager for job submission and
controlling, the con�gurable job scheduler, the Cluster Command Control (C3) suit for
cluster-wide command executions and the MPI programming environment LAM. Fur-
thermore it evolves a system installation suite (SIS) which is used to install client nodes.
SIS provides a database from which OSCAR obtains its cluster con�guration informa-
tion. The main concept to understand the SIS as an image based install tool. An image
is basically a copy of all �les, that get installed on a client. This image is stored on the
server, and can be accessed for customizations or updates. It is even possible to chroot

into the image and to perform builds. Therefore SIS is interesting for this dissertation
project, because it uses as well the chroot mechanism.

Another interesting tool of OSCAR is the switcher package, provides a convenient command-
line interface to manipulate the inclusion of packages in a user's environment. Users are
neither required to manually edit their .dot �les, nor they are required to know, what the
inclusion of a given package in the environment entails. For example, if a user speci�es
that they want LAM/MPI [57] in their environment, switcher will automatically add the
appropriate entries to the speci�c environment variables like $PATH and $MANPATH.

Like this dissertation project OSCAR switcher manipulates shell environment variables
to adapt an appropriate environment.

4.4.3 XEN

Xen [27] is virtual machine monitor, also called hypervisor, which allows running several
guest operating systems on a host operating system at the same time on the same ma-
chine. Xen is available for di�erent hardware architectures like for PowerPC, x86-32 and
x86-64, and IA64. Xen started as a research project of the University of Cambridge and
is now available as open source software and as commercial enterprise version [58] [27].

As guest operating system, it supports several Unix-like systems, unmodi�ed versions of
Windows, and, with limitations, some other operating systems. Operating systems like
FreeBSD [60], NetBSD [61] and Plan 9 [62] may be also employed as guest systems.

In context of this dissertation, Xen provides a starting point as a system-level virtualisa-
tion solution for virtualised system environments (VSE)in high performance computing
environments [63].

The developed description concept of this dissertation project may be reused and ex-
tended to describe VSE. System-level virtualisation tools, like Xen, may use the descrip-
tion concept to modify operating system image �les before starting them as guest OS.
Hence, the description concept should be developed with regards to such tools.

32

Figure 4.8: Xen Architecture

4.4.4 Netbuild

NetBuild [48] is a suite of tools designed to aid users in making use of computational
software libraries that are stored on the network, without needing to have those libraries
preinstalled on each user's computer. Instead, NetBuild will determine which libraries
are not installed, identify suitable versions of those libraries that are accessible from the
network, download those libraries, and link them into the user's program. NetBuild is
developed by the ICL Team at the University of Tennessee and actually runs on most
UNIX platforms (including MacOS X) and also on Windows (using Cygwin).

In practical, netbuild can be used by its client program nb2 as follows: The nb2 program
is used to run the user's compiler, or make, or a compilation script, or any other program
that would be used to compile the user's program.
For instance, instead of typing: f77 program.f -llapack -lblas

the user would type: nb2 f77 program.f -llapack -lblas,

or instead of typing: make program

the user would type: nb2 make program.

nb2 then runs the supplied command in an altered environment, which has its PATH vari-
able modi�ed to have a directory prepend to it. That directory contains shims, which
have the same name as compilers and linkers that nb2 needs to intercept.

33

Whenever one of those compilers or linkers is invoked - either directly from nb2, by make,
or by some other compilation tool, the shim is run instead of the real compiler. The shim
then parses the compiler's arguments looking for names of libraries that need to be linked
in. If those libraries are not installed on the system, the shim then downloads them, veri-
�es their signatures, and extracts them into an empty directory. Finally the real compiler
or linker is then run with a modi�ed argument list that causes the newly-downloaded
libraries to be linked in along with the user's program and any native libraries that are
used.

Figure 4.9: Netbuild Architecture

This short description shows that netbuild can be used to avoid library installations on
the compiling platform, but using them for build processes at the same time. This library
usage feature �ts to one of mentioned project requirements.

In comparison to the chosen approach for using libraries accomplished by this dissertation
project, it is more complex and involves external library servers deciding which library
suits best for what platform. The virtualisation approach of this dissertation achieves
this feature with user-space-based virtualised environments. This is an easier way, which
supports not only libraries but arbitrary applications and �les.

Netbuild is still in development and a data model needs to be de�ned for each new
processor type for the identi�cation of the best library version for a platform. Such a

34

library version decision approach requires that the library server holds one version of a
library for each combination of operating system and processor. If this approach works
perfect there is still the question if it is really needed for supercomputers, where site
administrators are available, knowing speci�cs to take decisions about library versions.
Netbuild seems to be convenient to support the development of general purposes but it
is not strongly needed for speci�c purposes in the high performance computing area.

35

5 Implementation Strategy

5.1 File System and Structure Virtualisation

Description Speci�cation

Developing a description concept for virtual �le structures requires an analysis of what
is needed in practice and what combinations could be possible. Based on those results,
the concept can be enhanced to ful�ll all-embracing demands. This section outlines, how
�le structures can be described, and discusses practical approaches of �le integration.

Abstract Elements for a File Structure Description

At �rst, the concept should be able to describe a static view of a required �le structure.
Therefore, the concept includes de�nitions of terms or elements, which can represent �le
structure elements.

Basic elements of a �le structure are �les and directories. A directory is a container,
which includes a number of �les and subdirectories. A directory has attributes like per-
missions, ownerships, a name and a location. The concept should o�er a data structure,
which includes all these attributes.

A �le is not a container. It can be seen as a leaf in the �le structure tree. Technically,
in Unix-type �le systems a directory is not more than a �le. This detail can be ignored,
because the logical view is important. For this reason, a �le element has the same at-
tributes like a directory. A �le has as permissions, ownerships, a name, and a location.
With these two elements, the tree structure of a �le system can be described. The XML
dialect of the concept implements directory elements, which can include any number of
�le and subdirectory elements.

From this abstract view, subdirectory elements are the same like directory elements, hav-
ing the same attributes and can also include any �le and subdirectory elements.

The described elements above can be used to form a static tree structure. This tree
structure describes the �le structure of a virtualised environment. This section outlines,
how to describe where the required �les are originally located and how they can be in-
tegrated in the virtual �le structure. According to the speci�cations in Section 3.2.1, it
should be possible to merge both, new �les and local �les, already used by the operating
system. This saves disk space and allows arbitrary combinations.

36

Therefore, the application, which creates the virtual �le structure requires information
from the description concept where the �les are located and how they should be inte-
grated.

File Integration

File integration is the process, which includes a �le in a virtual environment, in a way
that the �le data is accessable for applications running in a virtual environment. As
described in the following, this does not necessarily mean that integrated �les will be
stored in the �le structure of the virtual environment.

Depending on the use of each �le in the virtualised environment, di�erent methods for
�le integration are convenient. This dissertation project is focused on three integration
methods. The copy, link and Unionfs method.

5.1.1 Copy Method

The copy method represents the easiest way to integrate a �le in the virtual �le structure.
A �le is copied from its original location to the described location in the virtual �le
structure. The copy method is useful, e.g., if an original �le should be protected by
operations inside the virtual environment. In theory, most use cases can be satis�ed
with this method but it needs too much resources. Running and compiling of a complex
application in a virtual environment can require copying of big parts of the operating
system �le structure. For instance, the library, con�guration and binary directory (/lib,
/etc/ and /bin) include thousands of �les. In practice, a user needs more than one of
such big virtualised environments. The required disk space can exceed the system or a
user's disk space quota. In addition, the creation of such virtual �le structure via copy
method can take unacceptable time.

5.1.2 Link Method

The link method is the ideal extension to the copy method to solve these problems. The
link method creates only a symbolic link in the virtual �le structure instead of a �le.
Links can be used to reuse existing �les in the virtual �le structure. It saves disk space
and the creation of thousands of links instead of copying �les take less time. Especially, a
symbolic link to an entire directory is very e�cient because only one symbolic link needs
to be created to integrate all its included �les and subdirectories.

This integration method has the disadvantage that the properties of an integrated �le
cannot be changed for the usage in the virtual environment. It is not possible to change
write or read permissions for the link of a �le. Furthermore, the original �le is not pro-
tected by operations from inside the virtual environment. A �le is not in�uenced if it
is integrated via link and an application running inside the virtual environment deletes
this. This operation deletes only the link of the �le in the virtual �le structure. This
is in contrast to a situation, when an application deletes or changes the data of such a

37

Figure 5.1: File Integration via Copy Method

linked �le. Then the original �le is irrecoverable changed.

The link method can be used instead of the copy method to integrate �les which are
required in the virtual environment without changes. Typically the user and therewith
the application of the virtual environment has no write rights to such �les.

Due to the fact, that the basic virtualisation approach is based on the use of the chroot
mechanism, �les located outside the new root directory are not visible and not accessable
for applications running inside the virtual environment. For instance, the integration of
the �le test.conf in /home/peter/ to the virtual �le structure location /etc fails. The
link is located in /home/peter/env1/etc/ and is named test.conf like the original �le
and links to /home/peter/test.conf. For an application which was "chrooted" into
/home/peter/env1 this link is dead. /home/peter is outside the system level-scope of
this application, see Figure 5.2.

A solution is needed to provide symbolic links, which link to a �le outside the scope of a
"chrooted" application. Therefore, the entire �le structure of the operating system can
be mounted into a given directory, which is part of the virtualised �le structure.

This directory is named .osroot and includes the entire �le structure and can be mounted
as follows.

sudo mount --bind / home/peter/env1/.osroot

38

Figure 5.2: Failed Attempt of the Link Method

Even an application which is "chrooted" into /home/peter/env1 can see the �le struc-
ture which is included in .osroot. So, in order to integrate the �le test.conf, a sym-
bolic link has to be created, which is located in /home/peter/env1/etc and is named
test.conf. This symbolic link links to /.osroot/etc/test.conf. This link does not link
to /home/peter/env1/.osroot/test.conf, because this path is not visible for the "ch-
rooted" application, see Figure 5.3.

In conclusion, such a symbolic link links only to the correct �le if it is used by programs
"chrooted" in the speci�c virtual �le structure. For other applications this symbolic link
seems to link to a not existing �le.

5.1.3 Unionfs

The third approach deals with Unionfs [7]. It is a very promising stackable uni�cation �le
system. Unionfs allows the speci�cation of series of directories, which are presented to
users as one virtual directory. In this context, such a virtual directory is called a union,
which comprises of the speci�ed directories, named branches. Unionfs creates a union by
unifying the content of di�erent branches.

The content of a union are the merged �les and subdirectories of its branches. For a user
a union looks like a normal directory. Even branches from di�erent �le systems can be
merged to one union. This is commonly referred to as namespace uni�cation.

39

Figure 5.3: File Integration via Link Method and Mounting

Figure 5.4: Unionfs Layers Over Multiple Directories [64]

40

Unionfs is based on the stackable �le system templates (FiST) [65], which provides sup-
port for layering over a single directory. A normal operating system includes the kernel's
virtual �le system (VFS) [66] and a �le system. As shown in Figure 5.4, the kernel's
virtual �le system is responsible for dispatching �le-system-related system calls to the
appropriate �le system.

Unionfs, as a stackable �le system, works between VFS and the �le system. To the VFS,
Unionfs looks like a standard �le system, but instead of storing or retrieving data, a
stackable �le system passes calls down to lower-level �le systems, which are responsible
for data storage and retrieval. In this Figure 5.4, NFS is used as the lower-level �le system.

To the lower-level �le systems, Unionfs looks like the kernel's VFS. Unionfs can be used
to layer over any �le system (e.g. Ext2, Ext3, Reiserfs, SQUASHFS, isofs, and tmpfs)
because it adheres to the conventions both of �le systems for processing VFS calls and
of the VFS for making VFS calls.

Features

A union can be created as easy as mounting devices or directories. As shown in the
following command line, a union can be created and mounted via the mount command
and appropriate options.

sudo mount -t unionfs -o dirs=/home/peter/mylib:/lib unionfs /home/peter/env1/lib

The branches are separated with ":" in the command line. According to Figure 5.5, the
libraries and �les of these two branches /home/peter/mylib and /lib are merged to a
union, which is located in /home/peter/env1/lib. The example demonstrates how a
system library directory and a user's directory can be merged to an new library directory
which can be integrated in a virtulized environment.

To avoid �le or subdirectory name con�icts, Unionfs uses a simple priority system, which
gives each branch a unique priority. Each branch has a priority according to the order in
the command line. If a �le exists in multiple branches, the user recognizes only the �le
of the higher-priority branch. Hence, the branch /home/peter/mylib in Figure 5.5 has a
higher priority than /lib. In this example the individual libraries override the standard
libraries.

The case described above creates a new union in a new location. The original content of
the two branches is still accessable and visible by its paths.
Furthermore, Unionfs provides the creation of a union with the name of an existing di-
rectory. The following example shows the creation of a union, which is located in /lib.

sudo mount -t unionfs -o dirs=/home/peter/mylib:/lib unionfs /lib

41

Figure 5.5: Merging Directories with Unionfs

The original content of /lib is not accessable until the union is unmounted again, see
Figure 5.6.

Figure 5.6: Overlying Union with Copy-On-Write Function

A union can be easily unmounted with the umount command as shown in the following:

sudo umount /lib

Furthermore, Unionfs provides the determination of di�erent permissions for each branch.
A branch can have the permission readonly (ro) or read-write (rw). As long there are no
permissions speci�ed each branch is read and writable per default. The permission for
each branch can be determine in the following way:

sudo mount -t unionfs -o dirs=/home/matti/mylib=rw:/lib=ro unionfs /lib

42

A branch, which is writable for a user via its original path, can be integrated in a union
as readonly. Thus, Unionfs provides the limitation of write rights without changing the
original �le permissions.

At last as shown below, with the unionctl command an existing union can be manip-
ulated. Branches can be added and removed, their order can be changed and the read
and write permissions can be manipulated.

unionctl /home/peter/env1/lib -add /usr/lib

The most useful feature of Unionfs for this project is its copy-on-write function. Unionfs
intercepts all accesses to merged �les in a union. Unionfs controls if a process tries to
write in a �le, which should be protected from manipulations. It copies the speci�c �le
in another higher-priority branch of the union if a process tries to write in a �le.

This copied �le is then writable and replaces the write-protected original �le in the union,
because it is located in a higher-priority branch. This background process is not recog-
nized by the writing processes. Thus, Unionfs requires still a higher-priority branch in
a union to provide the copy-on-write function. It uses the copy-on-write semantics to
simulate that all branches are writable, independent from the original �le rights. In con-
junction with this deleting a protected �le triggers Unionfs to create a whiteout �le in a
higher-priority branch instead of deleting the original one.

The name of this whiteout �le consists of a pre�x .wh. and the name of the �le, which
should be deleted. Whiteout �les are used by Unionfs like a �ag for each speci�c �le. A �le
is not contained in a union if such a whiteout �le exists for the speci�c �le, see Figure 5.6.

Unionfs can provide the manipulation of writeable �les without changing the original one
by integrating them in a union as readonly. In addition, it makes readonly branches, like
cdrom-devices, virtually writable. This feature allows Live-CD developers to give their
users a writable system based on read-only media. In the example above, libraries in
the /lib branch are not writable for a normal user but on demand the copy-on-write
function copies the speci�c library into /home/peter/mylib.

Limitations of Unionfs

• mmap

The functionality of Unionfs is based on controlling the activities between the VFS
and the underlying �le system. Unionfs can intercept all activities except activities
of programs using the mmap [67] system calls. The mmap system call cannot be
intercepted, because it allows programs to map portions of �les into a process's
address space. Is a �le opend with mmapp, a process can modify it by writing

43

to the correct location in memory. This leads to the drawback that Unionfs does
not receive noti�cation of readpage or writepage calls, so it cannot perform the
copy-on-write function, when a program tries to write in a protected �le [64].

• Recursive Uni�cation

Another limitation of Unionfs is that it does not provide merging of unions to a
new union. It is not possible to specify a directory, which is already a union as a
branch of another union. This leads to in�exibility and limits the use of Unionfs
for the creation of virtual �le structures.

• Modi�cation of Lower-Level Branches

The current design of Unionfs and other stackable �le systems on Linux results in
double caching of data and meta-data. This is an unfortunate side-e�ect of the way
the Linux VFS is implemented. Therefore, Unionfs maintains a list of lower VFS
objects for each upper object. For instance, a Unionfs inode contains an array of
pointers to all the corresponding inodes on the underlying branches. Unionfs has to
copy certain information, like �le size and access permissions, from the underlying
inode for a �le to the Unionfs inode. Since Unionfs expects the underlying inode
to have certain properties about the �les it is possible for inconsistencies to appear
if a process modi�es the lower inode directly without going through Unionfs [64].

• Performance

The low performance of Unionfs is the biggest problem for the requirements of this
dissertation project. Performance is not a mentioned requirement in Section 3.2.1
but it is obviously an important issue for computational applications running on
high performance computing systems.

• File System Behaviour

The priority system of Unionfs leads to a noticeable di�erent behavior. If a multiple
�le is deleted in the union its second copy from a branch with a lower priority is
displayed in the union. This can be irritating for users if a �le was deleted and there
is still a �le with the same name in the union. This behavior is not so seriously
considered but it underlines that Unionfs cannot completely emulate a real �le
system.

• Scalability

Currently, Unionfs is able to manage and merge 1,024 branches. Independent from
the question if this number of branches will be exceeded, when an entire virtual
�le structure needs to be emulated, the performance of Unionfs is very slow. The
overhead of using Unionfs becomes high with just 200 branches, even for simple
operations. The problem is, that Unionfs needs to iterate through all the branches.
For each branch it needs to determine, whether or not it is a duplicate, whiteout,
and so on. Currently, such stacking information is stored in a simple linear array,
which has a search complexity of O(n).

44

In addition, some of the Unionfs functions are not stable on the tested system.
The limitation of access rights leads to an empty �le if a user tries to change its
permissions. The mount command as described in the manual is not able to mount
branches as readonly. This only can be achieved by modifying an union with the
unionctl command.

Recapitulating, Unionfs is a new project and still in progress. The mentioned disad-
vantages will be improved or solved in the future. Since Unionfs is used for diskless
systems and Live-CDs like Knoppix [68], it becomes more popular and thereby will
experience stronger e�orts. It can be estimated that a convenient solution for some
of the problems will be implemented in the future. Therefore, Unionfs is considered
for the �le integration as a useful alternative or extension to the aforementioned
copy and link methods.

Especially the scalability and the performance can be improved. The mentioned
search complexity of linear array structures can be replaced by logarithmic search
algorithms. Currently, a partial implementation, which supports mmap system calls
is released. Especially the mmap problem is lapsed for the use on many of the modern
supercomputers, because their compute node kernels do not supported this system
call [69].

File Integration with Unionfs

This section outlines, how Unionfs can be used as an approach to integrate �les in a
virtual �le structure. It describes, what properties are required and how Unionfs can
extend the above mentioned methods.

• File Usage Combinations

In the following, thinkable combinations for �le usage in conjunction with virtual
environments are described. The combinations, which can be realized with the
copy and link method are described �rst. This a�ords an easier analyze of Unionfs
as a �le integration method.

Figure 5.7 illustrates the �le system scopes of two programs. The left part shows
the scope a program X, which runs on an operating system environment. Pro-
gram Y, on the right, runs in a virtual environment. Both programs have access
to file.z, which is originally located in the �le structure of the operating system,
and is also integrated in the �le structure of a virtual environment.

Di�erent �le integration methods can be used for file.z depending on the re-
quirements of the use case. In the following, two use cases are described. The �rst
requires information interchange, the second not.

45

Figure 5.7: Two File System Scopes, Original(left) and Chrooted(right)

In this context, information interchange means, that program X outside the virtual
environment writes data in file.z, and program Y inside the virtual environment
is able to receive this new data. In this case a two way interchange is possible and
program Y can also write in file.z and program X reads this data.

No information interchange means, that both programs cannot notice the other's
manipulations in file.z, but are able to manipulate the �le for their own and
other programs running in the same environment.

The �rst situation can only realized with the link method. The veCreator applica-
tion creates a link in the �le's location in the virtual �le structure. Both programs
have the same access to the same �le.

The second situation can be solved with the copy method. The veCreator appli-
cation copies the �le during the creation of the virtual �le structure so that both
programs work with di�erent �les.

Figure 5.7 illustrates that both programs are instances of the same binary �le
/bin/prog. It is required that a program's binary �le is located in the virtual
�le structure in which it should be started with the chroot command. file.z is
integrated via symbolic link to allow information interchange.

However, these situations can be split in more detailed combinations.

Table 5.1 illustrates combinations, which considers di�erent �le permissions be-

46

OS Transfer ENV Solution

1 rw static ro Copy
2 rw static rw Copy; UnionfsCow
3 ro static rw Copy; UnionfsCow
4 ro static ro Copy
5 rw dynamic rw Link
6 ro dynamic ro impossible
7 ro dynamic rw impossible
8 rw dynamic ro UnionfsRo

Table 5.1: Combinations

tween the environments. This table is focused to a user's point of view for one
speci�c �le.

The �rst column shows a user's read and write permissions for a �le on the oper-
ating system's �le system. This user is the one who starts applications in its own
virtual environment. The third column shows the (virtual) read and write permis-
sions of the same user for the same integrated �le in the user's virtual environments.

The second column contains the intended information interchange via the speci�c
�le between programs in the operating system environment and programs running
in virtual environment or between two programs running in two di�erent virtual
environments. The arrows illustrate the possible directions of the interchange.

The �rst four combinations match to situation 2 and can be solved with the copy
method. For instance, the �rst combination represents a situation in which the
user has read and write rights (rw in �rst column) for the �le outside the virtual
environment. A program X, started by this user outside the virtual environment,
has full access to this �le. Inside the virtual environment program Y, which is
started as well from this user, should have no write rights for this �le, only read
rights. Furthermore, information interchange between this both programs should
not be possible. Short, for program Y this �le has not changed and looks as it was,
when the virtual environment was created.

As mentioned, this situation can be solved with the copy method. The veCreator
application copies the �le during the creation of the virtual �le structure, and then
it revokes the write permissions of the user for this �le. The other three combina-
tions can be realized in the same way, only the required �le permissions are di�erent.

Similar to situation 2, there are four combinations for situation 1 but only the
combination in row 5 can be realized with the link method. Combination 6 cannot

47

be realized because the write permission is not granted in both environments. The
�le can be integrated via link method, but with no information interchange. Com-
bination 7 is as well not realizable. It is not possible to distinguish di�erent �le
permissions depending on the access via link or directly. The copy method would
enable information interchange. The only way to grant more access rights to a pro-
gram in a virtual environment than the normal user has, is starting the program
in the virtual environment in the name of a more privileged user, for instance with
sudo. But such possibilities are not considered as a solution, because they involve
security relevant issues which are discussed in Section 6.6.

The last combination is similar to the combination 7 only the �le permissions are
opposite. As well the link method cannot be used because of the di�erent �le per-
missions.

Combination 4 can also be realized with the link method, because the write per-
mission is not granted in both environments. The �le cannot be manipulated and
information interchange is not possible. In this case a link is su�cient, but this
table shows only the read and write permissions of user programs. Super user pro-
grams and system daemons can be able to manipulate the data of the �le. The
�le could be replaced because of system installations and con�gurations. A link
cannot protect a �le from such activities. Depending on what is required, this can
be an advantage or disadvantage.

The above outlined table shows the integration possibilities of the copy and link
method. Three of eight combinations cannot be realized with these methods. In
the following it is analyzed, how Unionfs can be used to extend these two methods.

Unionfs provides two interesting functions, which can be helpful: the copy-on-
write function and the limitation of write permissions. Required directories can be
merged in a union, which itself is located in the virtual �le structure. Depending on
the situation each directory can be integrated as readonly or as read and writeable.

The ability of Unionfs to limit write permissions without manipulations on the
original �le system suits perfect to combination 8. Unionfs can be used to limit
the write permission of a �le, in a way, that only the program inside the virtual
environment is able to read it. Thus, this is a one way communication into the
virtual environment.

Combination 7 results as well to a one way communication but outside the virtual
environment. This combination could be realized with Unionfs, but the union
which limits the write permission has to be outside the virtual environment. This
cannot be implemented, because it could in�uence the entire operating system.

48

As mentioned, Unionfs is slower than a normal �le system. Therefore such an
implementation could slowdown the operating system or important services. Third
party programs, which need to write into this �le cannot work properly because
Unionfs blocks their write activities. Unionfs cannot be con�gurated to distinguish
di�erent permission for di�erent users.

• Implementation of Unionfs

With Unionfs, it is not possible to select single �les to integrate them with the
speci�c permissions. It is only possible to select and integrate entire directories,
which includes as well their subdirectories. In Figure 5.8 there are two directories
/dir1 and /dir2, each containing three �les, but only one �le from each, should
be merged in a new directory /dir3 which then is integrated in a virtual �le struc-
ture /home/peter/env1. Referring to combination 8, these �les are readable and
writable for the user on the �le system, and are needed as readonly �les in the
virtual environment. Information interchange is needed too. Therefore, this case
cannot be solved with the copy or link method.

Figure 5.8: Two Directories and their Required Merge

An attempt to use Unionfs functionality for single �les is to create an intermedi-
ate directory /temp, which contains two symbolic links to the both required �les
/dir1/app2.conf and /dir2/myApp2. Then this intermediate directory is merged
as readonly in a union, see Figure 5.9.

The union consists only of the branch /temp to avoid the copy-on-write function.
With the command line shown below the union /dir3 is created and mounted in
the virtual �le structure.

49

Figure 5.9: Failed Attempt

sudo mount -t unionfs -o dirs=/temp=ro unionfs /home/peter/env1/dir3

The goal of this construction is obviously but it fails. Unionfs controls only �les
which are contained in the union. The union contains only the two symbolic links
but not the original �les they linking to. Hence, running programs in the virtual
environment can access the original �les via the symbolic links in the union. These
programs cannot delete the two symbolic links, but they can manipulate the data
of the both �les.

A solution for this problem is illustrated in Figure 5.10. The order of the above
try is turned upside down. Each directory is merged as readonly in a union. These
unions are integrated in the virtual �le structure but in an intermediate location
/home/peter/env1/.unions. The required directory /home/peter/env1/dir3is
created like a normal directory in the virtual �le structure. At next, two symbolic
links are created in this new directory. These links link to the required �les in the
two intermediate unions. This construction ful�lls the requirements. The virtual
�le structure contains the required directory which includes only two symbolic links
instead of the original �les and Unionfs is able to control the �le permissions be-
cause the �les are part of the unions.

sudo mount -t unionfs -o dirs=/dir1=ro unionfs /home/peter/env1/.unions/dir1

sudo mount -t unionfs -o dirs=/dir2=ro unionfs /home/peter/env1/.unions/dir2

50

mkdir /home/peter/env1/dir3

ln -s ./unions/dir1/app2.conf /home/peter/env1/dir3/app2.conf

ln -s ./unions/dir2/myApp /home/peter/env1/dir3/myApp

Figure 5.10: Unionfs Implementation Solution

Thus, Unionfs can be used selectively for single �les. The described approach suits
to the requirements but it leads to the creation of many unions, for each directory,
which contains a �le, which should be integrated. The following solution avoids big
amounts of unions for each virtual environment.

As mentioned each virtual �le structure mounts the entire �le structure of the
operating system in an intermediate directory called .osroot. Like the .osroot

directory, a union named .unions is integrated in the virtual �le structure. This
union contains the entire �le system again as readonly. Therefore, every �le of the
�le system can be integrated as readonly �le via Unionfs.

This solution demonstrates that Unionfs can be used as a helpful addition to the
copy and link methods. Unionfs is the only integration method which can im-

51

plement combination 8 but it can also be used as a good alternative to the copy
method for combination 2 and 3. In these combinations the copy-on-write function
can be used if a �le will be manipulated.

In addition to this readonly .union, a second union .unionCow is required which
provides the copy-on-write function for the entire �le structure. A union with
copy-on-write function consists of two branches. The �rst branch is an empty in-
termediate directory, .branchWrite. It has the highest priority in this union and
is read and write able. The second branch is the root directory, named .osrootRo

. When a �le of this union is manipulated for the �rst time, it is copied �rst from
the .unionRo branch in the .branchWrite and replaces the original �le in the union.

Figure 5.11: File Integration via Copy-On-Write Union

Figure 5.11 shows the �le integration of app2.conf and myApp via Unionfs with
copy-on-write function. The root directory is three times mounted in the virtual
�le structure, in .osroot, in .unionRo and in .unionCow.

This construction makes it possible to integrate each �le of the entire �le system
with the appropriate permissions multiple times on di�erent locations by creat-
ing a symbolic link to .osroot, to the readonly .unionRo or to the copy-on-write
.unionCow and as well by copying a �le.

The Unionfs copy-on-write method o�ers the advantage that a �le will be copied
�rst, when it really needs to be manipulated. Furthermore, the creation of a virtual

52

�le structure takes less time with the Unionfs method. The creation of a Union and
the symbolic links for each �le needs less time than copying all the required �les.
On the other hand I/O activities of programs in the virtual environment during
runtime are processed with a lower performance if Unionfs is used.

However, the use of the Unionfs method instead of the copy method for combi-
nation 2 and 3 o�ers another possibility. The copy method can be used if a user
or administration knows exactly, which �les and directories are required for a pro-
gram. The Unionfs method can be pre�ered if it is not exactly known, which �les
should be modi�able.

Furthermore, Unionfs can be used to analyze what �les are manipulated by a
program. For this purpose the entire virtual �le structure is integrated via the
symbolic links to the readable and writable union in the virtual �le structure.
Then the program is executed in this virtual environment and processes a test to
induce I/O operations. After this test the user can see all the manipulated �les in
the readable and writable branch of the union.

In conclusion, the copy method is required to block information interchange and
to enrich the "sandbox" characteristic of a virtual environment. The link method
makes a virtual environment more �exible and saves disk space. New system instal-
lations and updates are directly adopted in the virtual environment. Unionfs can
be used to limit the write permissions to realize a one way information interchange
and can be used instead of the copy method if it is not clear which integrated �les
will be manipulated by the programs running inside the virtual environment.

The use of the copy and link method is very portable and the operating system does
not need to be recon�gured. In contrast to Unionfs, which needs to be installed as
a kernel patch, but the development of an out-of-the-kernel module is planned.

� Technical Addition

The described Unionfs method cannot be implemented without adaptations.
The mentioned unions have to be split, because Unionfs is not able to create a
union, which consists other unions. A union which contains the root directory
cannot be part of a union because the union itself is located somewhere in
the root directory. A union cannot contain a union even not itself. Therefore,
every union is split into a small number of unions, one for every main directory
of the root directory, shown in Figure 5.12.

Furthermore, each of the copy-on-write unions require also its own interme-
diate extra branch for the copy-on-write function. According to Figure 5.12,
the entire structure is located under the directory .harness.

53

Figure 5.12: Split Unions

54

5.2 Environment Variables

As mentioned, beside �le structures this dissertation project is also focused on the virtual-
isation of environment variables or rather shell environment variables [70]. Environment
variables are used by programs and the shell itself to get information about the environ-
ment and user speci�c settings. A lot of programs need to know, what kind of terminal is
used. For instance, some Unix tools need to know the favorite editor. The start param-
eters for such a standard editor can be read from environment variables even the user's
preferred text color can be �nd if speci�ed.

In contrast to "normal" shell variables, environment variables are bequeath by every pro-
cess, which is started from a shell. Nearly all programs on Unix-type operating system
are started from shells. Therefore, environment variables are important for environment
virtualisation.

Environment variables are easy implemented. The data type is always string. The data
structure is as easy as possible. Complex data structures are not known. For a shell a
variable has a name and a string value. The interpretation of these variables depends on
the programs using them. For instance, the prede�ned PATH variable contains a string,
which contains a list of search paths, each separated with a ":".

For the programs this string is an array or list of strings and it has to know, what char-
acter is used as the separator. For the shell it is only a simple string. This is common
to all widespread Unix/Linux shells.

It is a convention that environment variable name consists only of capital letters, but
there is no special restriction about variable names. They can be created with any
arbitrary characters. Environment variable names are case-sensitive. The mentioned
prede�ned variable PATH is not overwritten by a new variable named path.

For these reasons, the environment description concept o�ers no possibility to describe
data types or data structures for environment variables. The description concept sup-
ports the determination of variable name and value.

Furthermore the concept provides the description of manipulations of existing environ-
ment variables. This is useful, if an environment description inherits another one. For
instance, adding a new path in the mentioned environment variable PATH can require
the determination of the position on which the new path should be added. This could
be at the beginning, at the end or somewhere between. For this, the determination of
the separator character is required as well. The manipulation includes the possibility to
eliminate existing environment variables, which is not equivalent to a variable with an
empty value.

55

5.3 Performance Tests

Tests are required to analyze the performance of the virtualisation approach, and to es-
timate its usability for scienti�c high performance computing. The performed tests are
used to measure the creation time of virtual �le structures and the runtime performance
of programs running in virtual environments. For the comparison of the results, all tests
are performed on the same hardware with same installed software. The test platform is
a dedicated desktop system, which is typically used for software development.

• Hardware

� CPU: Dual Intel Pentium D CPU with 3.40GHz

� Harddisk: Western Digital wd2500JS with 250 GByte, 8 Mbyte Cache, SATA
II, and 7200 U/min (wd2500JS), formatted with Ext3

� RAM: 4 GByte

� SWAP: inexistent and not required

• Software

� Operating system: Kubuntu6.06 LTS (2.6.15)

� C compiler: GNU gcc version 4.0.3-1ubuntu5

� File system: Ext3 and Unionfs 1.3

5.3.1 File Structure Creation

The veCreator shell script creates virtual �le structures. The time the veCreator takes
depends on the number of �les, which should be integrated, and the used �le integration
methods. The test involves the integration of 32,935 �les out of the directories /bin /lib

and /sbin. Typically, more than one �le integration method is used to integrate this
amount of �les.

The creation time can vary depending on the distribution of the used �le integration
methods. The following tests are performed with extreme distributions to measure the
speed of each �le integration method in extreme cases.

Therefore, the �rst tests integrates all �les via the copy method, the second one uses the
link method. The last test uses Unionfs with copy-on-write function.

Obviously the copy method is the slowest method. Figure 5.13 shows that it takes 65
seconds to copy all the �les, while the other two methods take only 5 to 6 seconds.
Link and Unionfs integration take the same time, because in these cases it is required to
create links for integrated �les, only the link source di�ers.
The creation time answers the question, how virtual environments can be used in prac-
tice. There are two possibilities. The �rst one creates the �le structure with every start of

56

Figure 5.13: Performance of veCreator and veStarter

a program in a virtual environment. Each time, the veStarter executes �rst the veCreator.

The second one has session character. The virtual �le structure is created once, at the
beginning of the session. Starting applications with the veStarter do not involve the
veCreator.

The results show, that the second use is more e�ective for bigger environments. The
�rst one could take to much time, if large �les are integrated via copy method. On the
other hand, it is an extreme case to copy every �le and not using the link method. For
the most cases, it is more realistic to assume, that most �les are integrated via link or
Unionfs.

5.3.2 veStarter Performance

Starting an application in the virtual environment requires some preparations. Before an
application is started and "chrooted", the veStarter program manipulates environment
variables, and has to mount the root directory and the unions.

The test involves the manipulation of 10 to 20 environment variables. The number of
mounted directories do not vary. The current implementation of the veStarter takes al-
ways 1.8 seconds, indepent from the number of environment variables, see Figure 5.13.

5.3.3 Runtime Performance

Runtime performance tests are required to measure the performance lack of a virtual
environment, and to compare the three �le integration methods.

57

Obviously, a lower runtime performance of a virtual environment, which emulates an
original environment can only be caused by I/O activities. More CPU-intensive pro-
grams cause a less loss of runtime performance.

An I/O intensive program "chrooted" in a virtual �le structure, which includes only
copied �les, has the same performance than running without being "chrooted". A virtual
�le structure, which contains only symbolic links has nearly the same performance. A
small benchmark script, which opens, in a loop, �les or links causes that symbolic links
are slower, but less than 1 %, see Figure 5.14.

Figure 5.14: File and Link-based Environments With and Without Chroot

Each benchmark was performed 30 times for �les and links inside and outside a virtual
environment. Surprisingly, the performance inside the virtual environment is fast (6 to
7 %). Both, the copy and link method can be used without notable performance loss.
Therefore, all three benchmarks are focused on the performance of Unionfs to compare
it with Ext3.

Three benchmarks were used. The �rst two benchmarks, Iozone [71] and Postmark [72],
are special I/O benchmarks. The third benchmark is a compilation of kernel source code,
which is more CPU-intensive.

Iozone Benchmark

Iozone is a powerful I/O benchmark that generates and measures a variety of �le oper-
ations. The Iozone can be used to generate the following �le operations: read, write,
re-read, re-write, random read and random write, random mix, backwards read, recond
re-write, strided read, Fwrite and Frewrite, Fread and Freread.

The benchmark is con�gured to generate all this �le operations for �le sizes of 64 Kbyte
to 4 Gbyte and transfers for each �le record sizes of 4 Kbyte to 16 Mbyte.

Figure 5.15 shows the read performance diagrams for Ext3 and Figure 5.16 of Unionfs.
The diagrams show the read Kbytes per second, depending from record size and �le size.
Not measured combinations are display with zero values.

58

Figure 5.15: Read Performance of Ext3

Figure 5.16: Read Performance of Unionfs

Figure 5.17: Relative Read Performance of Unionfs to Ext3

59

Figure 5.17 shows the percental di�erence diagram for Unionfs. Every value over zero
shows that Unionfs is faster than Ext3 for the respective combination. As assumed,
Unionfs is mostly slower than the Ext3 especially for smaller �les. Due to di�erent,
caching approaches Unionfs is faster in some combinations. The average percent of all
measured values of this diagram results that Unionfs is 12.17 % slower than Ext3. Figure
5.18 shows the average percent of all four test. Surprisingly, Unionfs is 1.83 % faster for
write operations and that in series. The concrete reason for is is not known, but it could
be caused by bu�er caching.

Figure 5.18: Relative Performance Di�erences of Unionfs to Ext3

Figure 5.19 shows the percental di�erence diagrams for the �le operatings re-read, write
and rewrite.

Figure 5.19: Relative Read Performance of Unionfs to Ext3

60

Postmark Benchmark

Another I/O benchmark is postmark. Postmark v1.5 simulates the operation of elec-
tronic mail servers. It performs a series of �le system operations, like appends, �le reads,
creations, and deletions. This benchmark uses little CPU, but is I/O intensive. The
benchmark was con�gured to create 20,000 �les, between a size of 512-10,240 Kbytes,
and perform 200,000 transactions. 200 subdirectories were used to prevent linear di-
rectory look ups from dominating the results. All of the branches were read-write, to
distribute the load evenly across branches.

The test results were published [64] by the Stony Brook University. Figure 5.20 shows the
performance results for Unionfs working with unions comprising of 1 to 8 branches. This
is di�erent to all other benchmarks and demonstrated that the performance of Unionfs
decreases with the number of branches included in a branch. With an overhead of 64
to 71.7 % Unionfs is much slower than in the other benchmarks, but this cannot be
compared because the benchmark was performed on another platform (e.g. using Ext2
instead of Ext3).

Figure 5.20: Postmark Performance Results with 20,000 Files and 200,000 Transactions
[64]

However, these results demonstrate that Unionfs has the best performance with unions
consisting of 1 or 2 branches. The �le integration method of this dissertation project
uses Unionfs with unions comprising 1 (readonly) or 2 (copy-on-write) branches. The
developed Unionfs �le integration method o�ers the highest runtime performance, which
is possible with Unionfs.

61

Kernel Source Compilation

Compiling is a convenient benchmark because it is more CPU than I/O-intensive, and
represents the workload characteristic of a software developer better than Postmark and
Iozone. Therefore, the results of this benchmark can be seen as a better estimation for
the all day usability of the Unionfs �le integration method.

The benchmark was performed with the shell script:

cd /usr/src/linux-source-2.6.15

cp /home/user/.config .config

make oldconfig

sudo make -j 2

The benchmark was tested on Ext3, and with Unionfs overlying on Ext3. The test results
are very stable and there is no result, which di�ers more than a second from the average.
Figure 5.21 shows that Unionfs is only 0.55 % (6 sec) slower than the Ext3. This result
shows that the Unionfs approach is de�nitely useable for non I/O-intensive programs.

Figure 5.21: Kernel Compiliation with Unionfs and Ext3

62

6 Detailed Software Design

This chapter describes the detailed XML implementation of the concept for virtualised
�le structures and �le integration as well for environment variables. It follows a de-
scription of an equivalent syntax for con�g �les, which is able to represent the same
information. Furthermore, it is described, how the shell script applications veCreator
and veStarter read and process environment description �les, and what security issues
and implementation challenges are involved.

6.1 XML Concept for Virtualised File Structures and File

Integration

There are two criteria for the concept: extensibility, and usability. Extensibility means
the core structure of the concept has to be constructed to allow inclusions of additional
elements at a later point. Usability deals with the question, how convenient the concept
can be used in practice. Therefore the concept is balanced between extensibility and
usability.

According to Section 5.1, XML elements are required, whose structures contain all the
properties of �les and directories. Therefore, the XML elements �le, directory and branch
are described in the following. The determination of the �le integration method follows
afterwards.

6.1.1 File Element

A �le element describes a single �le. Depending on the use, a �le element requires dif-
ferent attributes. The XML implementation of this element is shown in the following
example and contains minimum the both attributes name and permission.

<file name="/etc/test.conf" permission="755">

</file>

The permission attribute contains three digits to describe the directory permission in a
Unix-like way. This assumes, that only Unix-type permissions are used and required.
New The content of the name attribute depends on the use of the �le element.

63

However, the way how attribute values are stored in the above example needs to be
changed for the following reasons.

An attribute is a variable, which contains meta data about an element. The use of at-
tributes leads to disadvantages in XML. Attributes cannot contain multiple values and
they are not easily to expand for future changes, because an attribute cannot describe a
structure only simple data.

Furthermore, attributes cannot be easily validated against Document Type De�nition
(DTD). DTD is used to de�ne legal elements to check if an XML document conforms
to or breaks the de�ned document rules. At last, it is di�cult to manipulate attributes
by program code. Therefore, child elements are used instead of attributes as illustrated
below. However, these meta data is named attributes to underline their meta data
character, but in XML it is implemented as child element.

<file>

<name>/etc/test.conf</name>

<permission> 755 </permission>

</file>

A �le element can be a standalone �le element, or a child element of a directory or branch
element.

A standalone �le element can be used to select a single �le from a source to integrate it
in a directory of a virtual �le structure. The standalone �le element has the additionally
attribute source.

<file>

<source>/home/paul/test.conf</source>

<name>etc/test.conf</name>

<permission> 755 </permission>

</file>

The name attribute de�nes the target location and contains path and name of the �le in
the virtual environment. As shown in Figure 6.1, this path is related to the root direc-
tory of the virtual environment and can be named the virtual absolute path. The source
attribute contains the source path including the original name of the source �le. This
source path is the absolute path according to the root directory of the operating system.
Missing directories will be created implicitly if the target directory does not exist in the
virtual �le structure.

File name in the name attribute can di�er from the original name of the �le in the source
attribute. Therefore, a �le can appear with a di�erent name in the virtual �le structure.
A �le is integrated with the name of the source �le, if the name attribute is missing.

64

Figure 6.1: Source and Target of a "Standalone" File Element

Finally, it is required to determine, which �le integration method should be used for
a �le. The integration attribute can set to copy for the copy method, to link for the
link method, to unionfsCow for the integration via a union with copy-on-write function,
and unionfsRo for the integration via a readonly union. These attribute values are very
speci�c because Unionfs would not stay the only proper stackable �le system.

However, the use of the permission attribute depends on the used �le integration method.
Only the copy method allows to change the permission of the integrated �le. It can be
skipped, if one of the other �le integration methods is used.

The use of the �le element as part of a directory and branch element is described in the
following sections.

6.1.2 Directory Element

A directory element describes a directory, which has to be created in the �le structure
of the virtual environment. Like a �le element, a directory contains the attributes name
and permission, as shown in the following command lines.

A directory element does not describe a source of �les, which can be integrated in the �le
structure of a virtual environment. Therefore, the name attribute contains the virtual
absolute path of the target location in the virtual �le structure. The permission attribute
contains three digits and is used the same way like the �le's permission attribute.

<directory>

<name>etc/myDir</name>

<permission> 755 </permission>

</directory>

It is possible to describe an entire virtual �le structure only with the aforementioned
standalone �le elements, but this would be a burden, because every single �le needs to
be described, and the description �le would not be easy to overlook. Therefore, a di-
rectory element is a container, which can include any child elements, like �le elements,

65

branch elements and other subdirectory elements.

File elements can be placed into a directory element to put several single �les with dif-
ferent sources together in one directory. The target location of these �les is determined
in the name attribute of the directory element, in which they are contained. In this case,
the name attribute of the �le element contains only the �le name without the path. As
mentioned, the name attribute is only required, if the �le should be integrated with a
di�erent name.

Below a directory element is shown, which contains two �le elements. The �rst �le will
be copied, and the second one will be integrated via link with a di�erent name.

<directory>

<name>lib/myDir</name>

<permission> 755 </permission>

<file>

<source>lib/test.conf</source>

<permission> 755 </permission>

<integration>copy </integration>

</file>

<file>

<source>lib/test2.conf</source>

<name>newName.conf</name>

<integration>link </integration>

</file>

</directory>

It is possible to de�ne default settings in a directory element valid for its child elements.
This makes the description text shorter and clearer. The directory attribute umask can
be used to determine the default �le permission. This umask attribute is valid for �le
elements with a missing permission attribute. It is possible to distinguish default per-
missions for �les and subdirectories. Similar to the umask, the dirUmask attribute can
be used to determine the default permission for the subdirectories of a directory.

Furthermore, directory element provides an own integration attribute to determine the
default �le integration method.

<directory>

<name>lib/myDir</name>

<permission> 755 </permission>

<umask>755</umask>

<integration>copy </integration>

<file>

<source>lib/test.conf</source>

</file>

<file>

66

<source>lib/test2.conf</source>

<name>newName.conf</name>

<integration>copy </integration>

</file>

</directory>

6.1.3 Subdirectory Element

A directory element can contain subdirectory elements. A subdirectory element is a di-
rectory element, but it is called subdirectory, if it is included in a directory or another
subdirectory element. As well it is provided to determine all the default values for the
included �les and subdirectories. These subdirectory defaults overwrite the parent di-
rectory defaults. A subdirectory element can also include �le, subdirectory and branch
elements.

The only di�erence is, that the name attribute of a subdirectory element is interpreted
as a relative path in relation to its parent (sub)directory element. Normally, the sub-
directory's name attribute contains only its name, but relative paths are possible. This
makes it easier to move entire directory structures by editing only the name attribute of
the highest directory element of the respective directory structure.

<directory>

<name>lib</name>

<permission> 755 </permission>

<umask>755</umask>

<integration>copy </integration>

<file>

<source>lib/test.conf</source>

</file>

<subdir>

<name>app1/source</name>

<file>

<source>lib/test2.conf</source>

<name>newName.conf</name>

<integration>copy </integration>

</file>

<subdir>

<name>version</name>

</subdir>

</subdir>

</directory>

Figure 6.2 illustrates the result of this code above.

6.1.4 Branch Element

If it is required to include many �les from the same source into a directory, it is bother-
some to retype the whole source path in the source attributes for each �le element. To

67

Figure 6.2: Subdirectories in Virtual File Structure

avoid this, the concept supports with the use of branch elements an easy way to merge
one, two or more di�erent directories into one directory in the virtual �le structure.

The source attribute of the branch element contains a path to the source directory. This
source path is the absolute path according to the root directory of the operating system.
With the attributes getAll of a branch element, it can be determine, what �les should
be integrated out of the branch source.

<directory>

<name>project</name>

<integration> link </integration>

<branch>

<source>dir1/</source>

<integration> copy </integration>

<getAll>files</getAll>

</branch>

</directory>

The result of the code above is shown in Figure 6.3.

The getAll attribute can be set to files, if it is required to integrate all �les from the
source directory of the branch element, as shown in Figure 6.3. This does not include the
subdirectories and their �les. The getAll attribute has to be set to recursive to integrate
recursively all �les and subdirectories of a branch source. The veCreator application cre-
ates all the subdirectories in the new directory and integrates its �les, see Figure 6.4.

68

Figure 6.3: File Integration with getAll Attribute

<directory>

<name>project</name>

<integration> link </integration>

<branch>

<integration> copy </integration>

<source>dir1/</source>

<getAll>recursive</getAll>

</branch>

</directory>

The result of the code above is shown in Figure 6.4.

A branch element can contain an integration attribute to support as well the determi-
nation of the �le integration method. As shown in the following example, the �les of
the �rst branch are integrated with the �le integration method, which is de�ned for its
branch. The �les of the second branch are integrated according to the defaults of the
directory element, because it does not contain an integration attribute.

Like in directory elements, it is possible to de�ne default �le and subdirectory permis-
sion. A branch element can contain an umask and a dirUmask attribute. Attributes of
a branch element are default values for included �le elements. Default values can be
overwritten by adding the respective attribute in the �le element.

In a second step, the amount of �les de�ned by the getAll attribute can adjust with �le
elements. A branch element can contain any �le elements. Each �le element in a branch

69

Figure 6.4: Recursive File Integration with getAll Attribute

70

can rede�ne the properties of a speci�c �le, which is included in the getAll-amount.

This third kind of �le element has no source attribute, it is not needed. The source
attribute determines, for which �le out of the de�ned set the �le element is valid for.
The source attribute contains only a name, but no path. For instance, it is possible to
rede�ne the integration method for an important �le to copy, when all other �les of the
branch are integrated via link method.

It is also possible to delete one or more �les from the de�ned set of �les. This can be
realized by including a �le element for the respective �le and setting its integration at-
tributes to block. Such a �le will be blocked and not integrated.

<directory>

<name>project</name>

<permission> 751 </permission>

<!--------------------branch section------------------------>

<branch>

<source> dir1 </source>

<integration>link</integration>

<getAll> files </getAll>

<file>

<source> secret.conf </source>

<permission> 700 </permission>

<integration> copy </integration>

</file>

</branch>

<branch>

<source> dir2 </source>

<integration> link </integration>

</branch>

<!--------------------file section-------------------->

<file>

<source>lib/test.conf</source>

<permission> 755 </permission>

<integration> copy </integration>

</file>

<file>

<source>lib/test2.conf</source>

<name>newName.conf</name>

<integration> link </integration>

</file>

</directory>

<file>

<source>/home/paul/test.conf</source>

<name>etc/test.conf</name>

<permission> 755 </permission>

</file>

Merging more than one branch in a directory can cause �le name con�icts between �les
with the same name of di�erent branches. Similar to Unionfs, this can be avoided with

71

Figure 6.5: Branch Priority System

a simple priority system. Each branch gets a priority. The priority of each branch is
determined implicitly via its position in its directory element. The �rst branch gets the
lowest priority. In case of a name con�ict, the �le from the last positioned branch in the
directory element will be integrated. According to the above code see Figure 6.5

6.1.5 Usability Aspects

The description concept allows �exible rede�nitions of already described directories or
�les. A directory /etc can be described by a directory element, and can be manipulated
by another directory element. Furthermore, there is no restriction to place and describe
subdirectories like lib only with subdirectory elements. It is possible to describe this
subdirectory as well with a directory element. Only the name attribute has to contain
usr/lib instead of lib.

Directory elements, all kinds of �le elements, and even branch elements can be used to
modify or delete existing instances, for example by setting the integration attribute to
delete.

In addition, it should be underlined, that a directory can be integrated recursively as well
with a �le element. This is the only way to integrate an entire directory via a symbolic
link.

<directory>

<name>usr</name>

<file>

<name>lib</name>

<integration>link</integration>

</file>

</directory>

A Uniform Resource Locator (URL) can be used to determine, for instance, a �le's source
if it is located ouside the local �le structure.

<file>

<source>ftp://paul:<Passwort>@server/home/paul/test.conf</source>

<name>etc/test.conf</name>

<permission> 755 </permission>

</file>

72

6.1.6 Inheritance

According to the concept speci�cations in Section 3.2.2, the concept provides environment
descriptions to inherit from one another. Therefore, the mentioned env element can
contain any include attribute. Such an include attribute contains the path to another
environment description �le. The content of this �le will be bequeath. The environment
desciption of last positioned include attribute is bequeath at last.

<env>

<name>~/env2</name>

<include>/harness/basic.conf</include>

<include>/harness/mpi.conf</include>

</env>

Figure 6.6: Inheritance of Environment Descriptions

Inheritance improves the usability and gives system administrators the in�uence to the
user's virtual environments.
The inheritance can be de�ned more detailed for every element to ensure secury issues.
Environment, �le, directory and branch elements can contain an inheritance attribute
which can be used to determine if an element can be modi�ed by the environment which
inherits them. The inheritance attribute can be set to static or modify. static allows no
changes of the respective element. New �les cannot be added to a static directory. The
permissions and ownership of the directory cannot be changed as well. modify allow to
change all properies even deleting. The default setting is modify.

<env>

<name>~/env2</name>

<inheritance></inherit>

73

</env>

<directory>

<name>etc</name>

<inheritance>static</inherit>

</directory>

6.1.7 Creation Order of the File Structure Elements

The creation process creates the elements in the following order: directory, branch, �le
elements in branches, �le elements in directories, and at last standalone �le elements.

No matter, if standalone �le elements are positioned at �rst or mixed between directory
elements, they are processed at last. The creation order of elements included in the same
parent element, is based on the document position of these elements.

According to this, the program starts with the creation of the �rst positioned directory
element. Then it integrates all the �les of the �rst positioned branch element included
in this directory element, if there is one. After that, if existing, the �le elements in-
cluded in this branch element are integrated, as well in the order of their positions to
each other. Then, in position order all the other branches are processed in the same way.
The �les of the last positioned branch element can overwrite the �le integrated before.
This is an easy way to follow the branch priorities without checking for �le name con�icts.

At next, all �le elements, included in the directory element, are processed in document
position order. At last, each included subdirectory element of this directory element is
processed recursively in the same way like a directory element.

After processing the �rst directory element and its subdirectory elements recursively, the
second positioned directory element is processed and so on. The �rst positioned stan-
dalone �le element will be created after processing all directory elements.

6.1.8 Environment Element

The environment element env can be used to determine the absolute location of the vir-
tual root directory of the virtual �le structure. More precisely, the name attribute of the
environment element contains the absolute path to the virtual root directory. The entire
environment location can be moved to another location by changing this path.

The env element can be also used to determine default values, like umask, dirUmask, in-
tegration method. Furthermore, the env element includes con�guration attributes. The
aforementioned directory .harness which contains, for instance, the .osroot directory can
be modi�ed if required.

74

<environment>

<env>~/env1</env>

<umask> 755 </umask>

<dirUmask> 755 </dirUmask>

<integration> link </integration>

<mountPoint> .harness <mountPoint>

</environment>

The environment element o�ers |integratAlt|attributes to ensure that an environ-
ment description is still processable on operating system using no Unionfs. If the
integration method of a �le is determine with unionfsRo or unionfsCow it cannot
processed. It is required to de�ne an alternative, for instance copy. Therefore, the
|integrateAlt|attribute can be used follows.

<environment>

<env>~/env1</env>

<integratAlt>unionfsCow copy</integratAlt>

<integratAlt>copy unionfsRo</integratAlt>

</environment>

It is possible to de�ne several alternatives. If Unionfs is not availalbe each �le or directory
which should be integrated via unionfsCow will be copied.
For a more detailed determination for each �le is also possible. As shown below the
integration attribute can contain a second value, even in directory and branch elements.

<directory>

<name>bin</name>

<integration>unionfsCow link</integration>

<file>

<name>su</name>

<integration>unionfsCow copy</integration>

</file>

</directory>

6.2 XML Concept for Environment Variables

An environment variable can be de�ned with a var element. A var element can con-
tain the following attributes and child elements name, value, action, and insertPosition.
Name contains the name and value, the value of the environment variable. Below the
de�nition of the PATH variable is shown.

<var>

<name>PATH</name>

<value>/home/user/apps</value>

</var>

75

This example leads to a de�nition of an environment variable and can overwrite already
existing variable of the same name. The action attribute can be used to determine,
whether a var element should be interpreted as a manipulation or a de�nition of a vari-
able. The action attribute can be set to unset, new or modify.

Setting the action attribute to new leads to the declaration and initialization of the
variable with the value of the var element and ensures that already existing variables
with the same name are overwritten. The default value of the action attribute is modify.

If the action attribute is set to modify, the value of the var element will be added to
the value of an existing variable with the same name. In this case, the insertPosition
attribute can be used to determine, at which position the value attribute should be
inserted. For instance, this feature is useful to change the order of search paths. Setting
the insertPosition attribute to prepend adds the value at the �rst position, and set-
ting it to append adds the value at the end. The position can also be determined more
detailed with position numbers. Number 1 is equal to prepend. The insertPosition at-
tribute is optional. A value will be insert per default at the end if the attribute is missing.

<var>

<name>PATH</name>

<value>/home/user/apps</value>

<action>modify</action>

<insertPosition>append</insertPosition>

</var>

The string of the value element needs to be separated into �elds to identify the given
insert position, except the positions prepend and append. The separator attribute can be
used to determine the separation character. The default separation character is a colon.

The manipulation of existing variable values requires some knowledge about the current
content. In some cases the exact insert position is not known or variable, depending
on the current content of the value element. The insertPattern attribute contains a
search pattern, and can be used to de�ne the insert position, depending on the position
of a matched �eld in the string.

As well, it is possible to de�ne the insert position relative to the matched position of
the insertPattern attribute. The insert position of the insertPosition attribute is
related to the matched position of the insertPattern attribute if it is used. The follwing
example shows, how to add a new value two positions before the matched pattern. The
minus and plus characters can be used to determine, whether the position is before or
after the matched position.

<var>

<name>PATH</name>

76

<value>/home/user/apps</value>

<action>modify</action>

<insertPattern>/bin</insertPattern>

<insertPosition>-2</insertPosition>

<separator>:</separator>

</var>

The insertPosition attribute could be irritating, because it seems to be the insert posi-
tion of the entire environment variable, or rather the order of the variable creation. The
correct structure of the var element is illustrated next. The insertPosition attribute
and as well the insertPattern and separator attributes are included in the value ele-
ment, because they are related to the value and not to the var element.

<var>

<name>PATH</name>

<value>/home/user/apps

<insertPattern>/bin</insertPattern>

<insertPosition>-2</insertPosition>

<separator>:</separator>

</value>

<action>modify</action>

</var>

The order, in which variables are created is determined by the position of the var element
in the environment description �le. First positioned var element is created at �rst.
A var element will be declared and initialized as a new variable, if the action attribute
is set to modify and no variable with the same name exists.

If the action attribute is set to unset, the variable will be eliminated, if it exists. A
variable with an empty value is not unset, it still exists.

<var>

<name>PATH</name>

<action>unset</action>

</var>

In addition, it is possible to de�ne the value of a new environment variable with the value
of an existing one. The example below describes the MYPATH variable, which describes the
working directory of a user application. MYPATH consists of the prede�ned environment
variable USERPATH, which contains a user's home directory, and appends path to the
working directory. The $ character identi�es a word as a variable. The appended text
needs to be encapsulated with single quotes to be separated from the name of the variable.

<var>

<name>MYPATH</name>

77

<value>$USERPATH/myapps</value>

<action>new</action>

</var>

At the moment these manipulations are powerful enough to satisfy the most needs to
create the environment variables of a virtual environment. If it is required, the description
possibilities for such manipulations can be extended and processed, for instance with Unix
tools like sed and awk.

6.2.1 Con�g File Syntax

The two prototype applications veCreator and veStarter are implemented as shell scripts.
To enable them reading an environment description from an XML �le, it is required to
program an XML parser in shell script code. This is a bothersome task, and can be
avoided with the shell command source [73].

The source command is used to execute another shell script B from a shell script A.
Such an executed shell script B can contain code of variable de�nitions. The bene�t of
the source command is, that shell script B is executed by the current shell, and not as
normal by a child process of the current shell. Therefore, the variables exist still after
the execution of shell script B, and can be used by shell script A. Thus, a shell con�g �le
is a shell script �le, which contains only variable de�nitions.

Using the source command is a good way to avoid writing an XML parser. A shell-
script-conformable syntax is required, which is able to represent all information from the
described XML elements.

There are three problems to realizes this:

1. in XML, attributes and child elements are assigned to a parent element, because
they are encapsulated. The document position of an attribute is used to assign
it. By using the source command, all information about the attribute and element
positions is lost.

2. a variable cannot be used, if the variable name is not known to the shell script (A).
The source command does not result a list of the new variables or something else,
from which variable name or even its order can be derived.

3. in XML code the names of attributes and elements are not unique. For instance,
each directory element has the same name: "directory". This is in opposite to the
con�g �le syntax. Each name of a variable has to be unique, otherwise the value
of equal named variables would be overwritten by each other.

78

Therefore, the meta information, which assign attribute values to their parent elements
has to be attached to or in the variable names. The attached meta information should
ensure unique variable names. The rule, which describes the attachment of the meta
information can be used to derived the variable names from a given start information,
otherwise the shell script is not able to use them.

In the following example shows XML code and the equivalent con�g code. The variable
DIRS contains a list of words or rather paths separated by spaces. The name of the
DIRS variable is the given start information the shell script has to know. The shell script
can derived the variable names of the following variables from the content of the DIRS

variable. The �rst path of the DIRS list is the pre�x of the name of the name attribute
from this directory element.

�������XML Code���������

<directory>

<name>/etc/myDir</name>

<file>

<source>/etc/test.conf</source>

<permission> 755 </permission>

<integration>copy</integration>

</file>

<file>

<source>/home/paul/test2.conf</source>

<name>newName.conf</name>

<integration>link</integration>

</file>

</directory>

<directory>

<name>/usr/bin</name>

<file>

<source>/home/paul/myCalc </source>

<integration>link</integration>

</file>

</directory>

�������Con�g Code���������

DIRS="myLib etc"

myLib_NAME="/etc/myDir"

myDir_FILES="test.conf test2.conf"

test.conf_SOURCE="/etc/test.conf"

test.conf_PERMISSION="755"

test.conf_INTEGRATION="copy"

test2.conf_SOURCE="/home/paul/test2.conf"

test2.conf_NAME="newName.conf"

test2.conf_INTEGRATION="link"

79

etc_NAME="/usr/bin"

etc_FILES="myCalc"

test.conf_SOURCE="/home/paul/myCalc"

test.conf_NAME="calc"

test.conf_INTEGRATION="link"

All �le elements of the �rst directory are listed in the *_FILES variable. Such a su�x
exists for every attribute and child elements, and are required to be known by the pro-
cessing shell script application. This name rule is similar and, for instance, is used by
the GNU Autotools, but it is not su�cient for this purpose. The variable names are not
unique. The �le variable test.conf exists two times.

This could be changed by adding the entire path in the DIRS or *_FILES variable, see
the example above, but this would lead to messy long strings. The special characters,
which can be included in a path are the second problem of this name rule. For instance,
it is not possible to declare a variable, which has a dot in its name (test.conf). At �rst
it seems to be possible to avoid this with escaping or character replacing rules, but this
leads to a bad usability. The con�g code would be hardly to read and to manipulate per
hand.

This name rule has to be modi�ed as well in face to usability reasons. It is planned, that
these con�g �les will be used like XML �les. System administrators can create and use
XML description �les, parse them to con�g �les, and use them for Harness. If there is
no XML parser available, modi�cations can be done direct in the con�g �le. Therefore,
the usablilty should provide the creation of an entire environment description directly in
con�g �le syntax.

For instance, the DIRS variable in the above example should not contain each entire path
or �le name. As shown in the example below, the DIRS variable contains the number
of all directories. The variable name of these directories comprises DIR, its number ac-
cording to the position in the XML document and separated by underscores the name
of the speci�c attribute. The shell script has to know the pre�xes and su�xes for each
element, e.g. DIR for directory, _NAME for its name attribute, FILE for �les, and BRANCH

for branch elements.

For instance, the shell script application reads in the DIR1_FILES variable how much �les
are contained in the directory. According to this number, it derives the variable names
of the �les. A variable name like DIR1_FILE5 cannot be derived, if the number of �les in
DIR1_FILES is smaller 5. The application has to know all possible attributes of a �le and
has to check their existence. Not determined attributes will be initialized with default
values.

DIRS="2"

DIR1_NAME="/etc/myDir"

DIR1_FILES="2"

80

DIR1_FILE1_SOURCE="/etc/test.conf"

DIR1_FILE1_PERMISSION="755"

DIR1_FILE1_INTEGRATION="copy"

DIR1_FILE2_SOURCE="/home/paul/test2.conf "

DIR1_FILE2_INTEGRATION="link"

DIR2_NAME="/usr/bin"

DIR2_FILES="2"

DIR2_FILE1_SOURCE="/home/paul/myCalc"

DIR2_FILE1_NAME="calc"

DIR2_FILE1_INTEGRATION="link"

The principle of this rule is appending the names of attributes and child elements at the
end of its parent element's name, except subdirectory elements. In XML it is possible
to encapsulate subdirectories elements into subdirectory elements in endless levels. This
principle cannot be continued for subdirectory elements, because the maximal length
of a variable name would be exceeded. Therefore, the variable names for subdirectory
elements are created like directory elements. Only the relative path is replaced by the
absolute path.
�������XML Code���������

<directory>

<name>/home</name>

<directory>

<name>paul/name>

<directory>

<name>apps</name>

<directory>

<name>bin</name>

</directory>

</directory>

</directory>

</directory>

�������Con�g Code v1�������

DIRS="1"

DIR1_NAME="/home"

DIR1_SUBDIRS="1"

DIR1_SUBDIR1_NAME="paul"

DIR1_SUBDIR1_ SUBDIRS="1"

DIR1_SUBDIR1_ SUBDIR1_NAME="apps"

DIR1_SUBDIR1_ SUBDIR1_SUBDIRS="1"

DIR1_SUBDIR1_ SUBDIR1_SUBDIR1_NAME="bin"

�������Con�g Code v2�������

DIRS="4"

DIR1_NAME="/home"

DIR2_NAME="/home/paul"

DIR2_NAME="/home/paul/apps"

DIR2_NAME="/home/paul/apps/bin"

81

In conclusion, the above described con�g �le code is easy to read and manipulate, and can
represent all information included in the XML code. The creation rules for the variable
names are simple to be implemented with transformation languages like XSLT.

6.3 Implementation challenges

The development of the two shell script applications veCreator and veStarter is asso-
ciated with writing portable shell code, especially, in the face of older Unix systems.
Therefore, a shell is required which is mostly available on all systems, and o�ers a uni�ed
and powerful set of commands.

There are four traditional and widespread shells for Unix-type operating systems, the
korn shell (ksh), bourne shell (sh), bourne again shell (bash), and the C shell (csh), and
some newer developments like the perl shell.

The bourne shell is the only one, which is available on all systems apart from shell-less
operating systems. Bourne shell code is portable to most systems, and is supported by
the bash, which is the de facto standard shell on many Linux-type operating systems.
The disadvantage of this shell is a smaller set of commands, which leads to an uncomfort-
able way of programming. Many of the familiar commands, which are o�ered by newer
shells, are not available in the bourne shell.

For instance, it is not possible to declare associative arrays. Local functions are provided,
but using them with parameters leads to an overwriting of the shell script parameters.
Therefore, all shell script parameters have to be saved in an extra string before using
a function. After �nishing the function, all saved parameters have to be reset with the
set -- command. Tilde and brace extensions and also local variables in functions are
not available. And �nally, it is not possible to declare variables with the declare or
typeset command.

globalArgs=$@

function this is a test

set -- $globalArgs

For other commands, a di�erent syntax is required. The test command cannot be used
in bracket form and has no operators, like "<", ">", "<=", or ">=".

6.4 veCreator

The veCreator reads the environment description and creates all �le structure elements
according to a given environment description. The veCreator application expects one

82

parameter from the user, the �le of the environment description.

veCreator /home/marie/myEnv.conf

The path, where the virtual environment should be located, the environment location
path, is determined in the environment description. The veCreator is able to process
this path as the second parameter. Currently, this is needed for the veCreator program
to start another instance of it, which processes bequeathed environment descriptions.
The veCreator cannot execute a local function to do this, because local variables are
not available. The second parameter overwrites the environment location path of this
bequeathed environment descriptions.

First, some relative paths for mounting the �le structure and Uniofs are initialized, as
well some global default values, like the umask. Later, these settings will be read from
con�guration �les and are not part of the program code. Then the program reads the
environment description via the source command. At next, it checks, if the description
should inherit other environment descriptions, if so, another instance of the veCreator is
started, but as mentioned with two parameters.

After that, the program creates some temporary directories. In these directories the
unions and the original �le structure will be mounted. For performance reasons the
current implementation of this prototype needs to mount some directories. This requires
careful unmounting at the end of the application �ow.
At next, the program starts to process and create all directories and �les in the described
order (Section 6.1.7). At last, the temporarily mounted directories will be deleted after
unmounting them successfully.

6.5 veStarter

The veStarter is used to start applications in a virtual environment. The application ex-
pects two parameters. The �rst parameter is a path to the description �le of the virtual
environment. The second parameter is the application, which should be started.

At �rst, similar to the veCreator application, the veStarter initializes some relative paths
for mounting the root directory and the unions, and sets some default values. These
settings will be read from con�guration �les, and are not part of the program code. Af-
ter that, the veStarter reads the environment description via the source command and
checks, if the description should inherit other environment descriptions. For this case,
the veStarter cannot start another veStarter instance, because this would be started as
a child process with its own environment variables.

The child process cannot in�uence the environment variables of the parent process.

83

Therefore, the veStarter executes a local function checkIncludes(), which reads and cre-
ates recursively all bequeathed environment descriptions and its described environment
variables. The �rst checkIncludes() function A reads a list of bequeathed environment
descriptions. For this example it is assumed, that the list contains three environment
descriptions. Then the checkIncludes() function A, running in a loop, starts a second
checkIncludes() function B with the �rst description �le of the list as a parameter.

The checkIncludes() function B reads its given environment description and checks
itself, if its environment description inherits also another one. Provided that is not the
case, the described environment variables are created and the function ends.

Then, the �rst checkIncludes() function A runs the second cycle of the loop and starts
another checkIncludes() function to process the second environment description in-
cluded in the list. But this list is empty, because it was overwritten with an empty
list. checkIncludes() function B read via source command its environment description,
which includes an empty list of bequeathed environment descriptions.

It is not possible to store the list in a local variable, because the bourne shell does not
supportevd local variables in local functions. Therefore, the checkIncludes() function
has to read its environment description before it runs every cycle of the loop to reinitialize
the variable. But the loop counter variable was also overwritten, and cannot read from
the environment description.

Therefore, it is required to use a string variable as an array to enable each local checkIncludes()
function appends its current loop counter at the end of the string, before starting another
instance.

However, the checkIncludes() function A leaves this loop and creates also environment
variables according to its given description.

After completing the variable manipulations, the root directory and the unions are
mounted in the virtual �le structure. Then veStarter executes the given application
and chrooted it in the virtual �le structure. When the given application ends, the veS-
tarter shell script continues with unmounting the unions and the root directory. At last,
the veStarter ends and the shell environment is eliminated.

6.6 Security Aspects

The developed virtualisation approach creates a virtual environment, which can be used
to port programs and support su�cient performance. But such a virtual environment
needs to ful�ll security policy, if it should be used on high performance computing sys-
tems. Security means as well the virtual environment should have a sandbox charac-

84

teristic. Programs running in it should not be able to get super user rights and cannot
corrupt �les out of their environment. Some important security aspects are discussed in
the following to outline some possible solutions.

6.6.1 Password Security and Security Environment Descriptions

As described in Section 4.2.2, the veStarter application has super user rights and starts a
given application A with the chroot command (chroot /home/paul/env myApp). This
causes, that application A runs as well with super user rights and is able to destroy the
entire system.

This can be avoided by using the su command. su is used to assume the login shell of
another user without logging out. It is commonly used to change to super user permis-
sions for administrative work without logging o� and again on. In this case it is used in
the opposite, to change from a super user to a normal user.

When su is started, it asks for the target user's password and grants the user access to
that account. A super user, who wants to access a normal user's account is not asked
for a password. However, chroot starts the su command instead of application A. As
shown below, the su command is started with a given user. The given user is the one,
who started the veStarter application before.

chroot /home/paul/env su paul

After that, user paul is logged in the shell, and is able to start its programs, but the
veStarter was started to start application A. Therefore, application A is attached to the
above command line.

chroot /home/paul/env su paul myApp

Hence, the veStarter can be started as shown below, if a user wants to use a shell in the
virtual environment.

sudo veStarter env.conf sh

This command line is part of the current implementation of the veStarter application.

This security procedure requires a virtual �le structure, which includes all �les required
by the su program. For instance, the su program in /bin and the password �le shadow
in etc are required otherwise the veStarter fails. However, this security procedure can
be eluded. A virtual �le structure can contain a dummy su program, which is named su,
but is written by the user to start a shell. The same can be done with dummy system

85

libraries used by super user programs.

Another security vulnerability is related to the location, where a virtual �le structure is
created. Image a virtual �le structure with its shadow �le is created on a mounted USB
stick. The user can port this USB stick to another system and can read the encoded
password. The password can be decoded via brute force or could be replace by another
encoded password, which is known.

The user could hack the system with a decoded super user password, or he could remount
the USB stick on the original system to start a shell in the virtual environment with the
veStarter. In this "chrooted" shell the su command can be used to change to the root
account. su asks for the super user's password and the user enters the replaced password,
which will be accepted by the su program, because it uses the corrupted shadow �le. su
cannot use the original shadow �le, because it is "chrooted" and did not recognize this.

This USB stick scenario may not be valid for supercomputers, where the �le system is
located on extra �le servers, but the Harness Workbench is developed for a wide range of
computing systems maintained with less security policies, and therefore it cannot o�er
these security vulnerabilities.

Therefore, a dummy shadow �le is required, which contains another encoded super user
password. All other user data are removed apart from the user who owns the virtual
environment. Such a dummy shadow �le needs to be copied by the veStarter program
on every run to overwrite a user-corrupted shadow �le. The dummy super user password
needs to be random generated on every run of the veStarter.

As mentioned the user can read and decode this dummy password, and can use it to get
super user rights in the virtual environment. Alternatively, to avoid generating a new
password, the super user can be removed as well from the dummy shadow �le, because
it is not required for starting a program with normal user rights.

The virtualisation approach requires con�guration possibilities for system administra-
tors to force the veStarter program to execute a security environment description, which
overwrites user-corrupted dummy �le and programs in de�ned locations.

6.6.2 Sandbox Characteristic

As mentioned for software tests and security reasons, a virtual environment should protect
the original operating system, the user's home directory and other virtual environments
against the programs running inside them.

The current implementation enables a program inside the virtual environment to delete
all �les of its user. The program has the user rights, and can access all �les from the

86

osroot directory, which contains the entire �le system and the user's home directory.

It would be a very conditional solution to mount each main directory of the root direc-
tory except the home directory. The integration of �les from the user's home directory
could only be realized via the copy method, or mounting single directories. A two way
communication via a �le, which is mixed with sensitive �les in a directory is not possible
without changing the original �le structure.

A more convenient solution is the use of a second user account (paul and paul2), which
is used to start applications in a virtual environment with its rights. The program has
the rights of paul2, and has no private access to the paul's home directory, like every
other user.

The disadvantage of this approach is it requires changes of the permission, or changes
of the ownership of a �le, if it should be writeable in the virtual environment. A �le
permission con�ict appears, if a �le should be writable at the same time from inside and
outside the virtual environment. Write rights for both users can be granted with a user
group, of which both users are members. Then the veCreator has to change the group of
the respective �le. For more security the veCreator can create a new user group, which
consists only of paul and paul2.

Each user needs an own second user account, otherwise a program from inside a virtual
environment could access virtual environments of other users, see Figure 6.7.

Figure 6.7: Separation via Additional Users

87

However, this approach is not able to isolate programs of a virtual environment from
other virtual environments of the same user. Therefore, a user needs di�erent additional
user accounts, one for each virtual environment.

The creation and deletion of additional users is a critical aspect of this approach. It
can interference the security policies of large-scaled computing system. The creation of
virtual users instead of real system users is a more convenient way to create additional
user for each virtual environment. The veStarter application can create a virtual user
directly in the virtual environment.

As shown in below, a "chrooted" shell is started in the virtual environment instead the
su program. Then a new user is created with adduser. At next, the permissions and
ownerships of all required �les are changed. After that the su command is executed for
this new user and after it the application.

chroot /home/paul/env sh

adduser virtualPaul ... [password] ... [uid] ...

...change required file permissions and ownerships to virtualPaul

su virtualPaul

./myApp

... rollback the file permissions and ownerships of all file from virtualPaul to paul ...

The new user does not exist on the operating system, but is able to create �les and
run its own programs. The password and user name are generated with appropriate ap-
proaches, or can be de�ned in the environment description. Furthermore, it is required
to determine a non assigned userID, otherwise the virtual user could access the �les of
another existing user. If required, the userID determination needs to be synchronized
with the operating system.

This approach supports a better sandbox characteristic and can be used without inter-
ferences for the operating system.

88

Figure 6.8: Separation via Virtual Users

89

7 Conclusion

7.1 Results

This dissertation project is a �rst step to develop a virtualisation approach for the Har-
ness Workbench. The virtualisation approach helps to make software portable, and is
itself portable on operating systems supporting the chroot mechanism. The approach is
able to create and use virtualised environments according to environment descriptions.
The creation in user space is possible, and helps to simplify the system administration
of high performance computing systems.

The developed environment description concept is XML-based and provides the de�-
nition of environment variables, and �le structures, and their �le integration methods.
Additionally description elements are evolved to specify image �les and required software
packages.

This description concept is platform-independent and can be integrated into other vir-
tualisation projects, for instance Xen. The concept is constructed to be extensible for
future requirements and is easy and �exible in use. System administrators can de�ne
inheritable environment descriptions to in�uence and simplify the description process for
normal users.

The two prototype shell script application, veCreator and veStarter, were implemented
as bourne compatible shell scripts, and are portable to all Unix-type operating systems
o�ering the chroot mechanism and a bourne or bash shell.

Three �le integration methods were developed and implemented. The combined use of
the copy, link, and Unionfs method facilitates a seamless �le integration, which �ts to all
use cases. Arbitrary �le structures can be �exibly created, because �les integrated via
di�erent integration methods can be merged with no constrains.

At last, di�erent performance benchmarks were performed to proof and compare the
usability of the �le integration methods and to demonstrate the usability of the entire
virtualisation approach. The veCreator application takes acceptable time to create a
normal sized virtual �le structure. The veStarter needs negligible time to manipulate
the environment variables, and to prepare the virtual �le structure. Furthermore, the
runtime performance inside a virtual environment is slower but less than 1 %. Only,
I/O-intensive workloads can cause a bigger performance lack but only if Unionfs is used.

90

However, it is necessary to implement the shell script applications veCreator and veS-
tarter in C-code. C-code programs are much faster and can be portable too. Writing
C-code is surprisingly easier than writing bourne-compatible shell code. Especially the
nonexistence of local variables in functions and arrays leads to bothersome situations,
and makes it impossible to checking functions for link-based directory integrations and
more sophisticated inheritance declarations.

It will bene�t application development and deployment by increasing the portability of
software, especially for scienti�c computation on modern high performance computing
systems.

As a �nal result of this dissertation project is achieved, the important system design
tasks have been �nished. An overall system design solution of the key problems of this
dissertation has been created. A powerful description concept is developed and possible
extensions and validation structures are outlined, and can be extended to describe virtu-
alised system environments(VSE). The shell-script-restricted applications cannot realize
all environment de�nitions, but enable a user to run programs in appropriate and self-
described virtualised environment. Furthermore, detailed solutions are described and
discussed to avoid security vulnerabilities without decreasing the functionality.

7.2 Future Work

In any event, according to the results of this dissertation project the described system
design need to be implemented in C. A C library is also required to port the virtualisation
approach to shell-less compute nodes.

The entire inheritance process needs to be changed from the currently used overwrite
mechanism. The integration of directories via link should be carefully implemented to
accelerate the �le structure creation.

Furthermore, the sandbox characteristic of the approach and the security in general
should be increased. Therefore, the described solutions can be implemented and tested.
Especially, an appropriate method is required to avoid userID and groupID con�icts be-
tween virtual and real users.

In addition, the description concept can be sophisticated to allow a detailed descrip-
tion of network issues, like network identity, communication streams and required server
addresses. Moreover, the concept should provide the con�guration and installation of
services. Package management is another issue, which should be provided by a com-
plete virtualisation approach. Last but not least, all these need to be implemented in a
portable way, without the requirement to manipulate the target system, for instance by
installing new kernel modules.

91

Bibliography

[1] G. A. Geist, Harness - the power of network,
http://www.csm.ornl.gov/harness, [Online; accessed 11-March-2007]

[2] TOP500.Org, TOP500 Statistics, http://www.top500.org/stats, [On-
line; accessed 11-March-2007]

[3] Wikimedia Foundation, Inc., Wikipedia.Cygwin, the free encyclo-
pedia, http://en.wikipedia.org/wiki/Cygwin, [Online; accessed 11-
March-2007]

[4] Wikimedia Foundation, Inc., XML - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/XML, [Online; accessed 11-March-2007]

[5] Wikimedia Foundation, Inc., Expat (XML) - Wikipedia, the free en-
cyclopedia, http://en.wikipedia.org/wiki/Expat_%28XML%29, [On-
line; accessed 11-March-2007]

[6] Refsnes Data, XSLT Tutorial, http://www.w3schools.com/xsl/default.asp,
[Online; accessed 11-March-2007]

[7] Andrew Morton, A Stackable Uni�cation File System,
http://www.am-utils.org/project-unionfs.html, [Online; accessed
11-March-2007]

[8] Wikimedia Foundation, Inc., Beowulf (com-
puting) - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Beowulf_(computing), [Online; ac-
cessed 11-March-2007]

[9] Christian Engelmann and Hong Ong and Stephen L. Scott, Middelware
in Modern High Performance Computing System Arcitectures, Lecture
Notes in Computer Science: Proceedings of International Conference
on Computational Science (ICCS), Beijing, China 2007

[10] José Moreira and Michael Brutman and José Castaños and Thomas
Engelsiepen and Mark Giampapa and Tom Gooding and Roger Haskin
and Todd Inglett and Derek Lieber and Pat McCarthy and Mike
Mundy and Je� Parker and Brian Wallenfelt, Blue Gene system
software � Designing a highly-scalable operating system: the Blue

92

Gene/L story, ACM Press, New York, NY, USA, SC '06: Proceed-
ings of the 2006 ACM/IEEE conference on Supercomputing, Tampa,
Florid, 2006

[11] Wikimedia Foundation, Inc., BRuntime-Wikipedia, the free encyclo-
pedia, http://en.wikipedia.org/wiki/Runtime, [Online; accessed 11-
March-2007]

[12] Wikimedia Foundation, Inc., Message Pass-
ing Interface - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Message_Passing_Interface, [Online;
accessed 11-March-2007]

[13] Wikimedia Foundation, Inc., Emulator - Wikipedia, the free encyclo-
pedia, http://en.wikipedia.org/wiki/Emulator, [Online; accessed 11-
March-2007]

[14] Wikimedia Foundation, Inc., Simulation - Wikipedia, the free ency-
clopedia, http://en.wikipedia.org/wiki/Simulation, [Online; accessed
11-March-2007]

[15] Wikimedia Foundation, Inc., Virtualization - Wikipedia, the free en-
cyclopedia, http://en.wikipedia.org/wiki/Virtualization, [Online; ac-
cessed 11-March-2007]

[16] Wikimedia Foundation, Inc., Microsoft Vir-
tual PC - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Microsoft_Virtual_PC, [Online;
accessed 11-March-2007]

[17] Fabrice Bellard, QEMU Open Source Processor Emulator,
http://www.qemu.org/, [Online; accessed 11-March-2007]

[18] Wikimedia Foundation, Inc., Native Virtual-
ization - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Native_virtualization, [Online; ac-
cessed 11-March-2007]

[19] Wikimedia Foundation, Inc., Full Virtualization - Wikipedia, the free
encyclopedia, http://en.wikipedia.org/wiki/Full_virtualization, [On-
line; accessed 11-March-2007]

[20] Wikimedia Foundation, Inc., Virtual Iron - Wikipedia, the free en-
cyclopedia, http://en.wikipedia.org/wiki/Virtual_Iron, [Online; ac-
cessed 11-March-2007]

[21] Wikimedia Foundation, Inc., VMware - Wikipedia, the free encyclo-
pedia, http://en.wikipedia.org/wiki/VMware, [Online; accessed 11-
March-2007]

93

[22] GNU Free Documentation, FAQ-MOL, http://mac-on-
linux.sourceforge.net/wiki/index.php/FAQ, [Online; accessed 11-
March-2007]

[23] Wikimedia Foundation, Inc., Win4Lin - Wikipedia, the free encyclo-
pedia, http://en.wikipedia.org/wiki/Win4Lin, [Online; accessed 11-
March-2007]

[24] Wikimedia Foundation, Inc., Virtual machine - Wikipedia, the free en-
cyclopedia, http://en.wikipedia.org/wiki/Virtual_machine, [Online;
accessed 11-March-2007]

[25] Wikimedia Foundation, Inc., Partial virtual-
ization - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Partial_virtualization, [Online; ac-
cessed 11-March-2007]

[26] Wikimedia Foundation, Inc., Paravirtualization - Wikipedia, the free
encyclopedia, http://en.wikipedia.org/wiki/Paravirtualization, [On-
line; accessed 11-March-2007]

[27] XenSource, Inc., XenFaq, http://wiki.xensource.com/xenwiki/XenFaq,
[Online; accessed 11-March-2007]

[28] Wikimedia Foundation, Inc., Parallels Work-
station - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Parallels_Workstation, [Online; ac-
cessed 11-March-2007]

[29] Enomaly Inc., Enomalism: XEN Virtualized Server Management
Console, http://www.enomalism.com/features/, [Online; accessed 11-
March-2007]

[30] Wikimedia Foundation, Inc., Operating system-
level virtualization-Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Operating_system-level_virtualization,
[Online; accessed 11-March-2007]

[31] GNU Free Documentation, Overview-Linux VServer, http://linux-
vserver.org/Overview#The_Linux-VServer_approach, [Online; ac-
cessed 11-March-2007]

[32] Wikimedia Foundation, Inc., Virtuozzo - Wikipedia, the free encyclo-
pedia, http://en.wikipedia.org/wiki/Virtuozzo, [Online; accessed 11-
March-2007]

[33] Wikimedia Foundation, Inc., Application Vir-
tualization - Wikipedia, the free encyclopedia,

94

http://en.wikipedia.org/wiki/Application_Virtualization, [Online;
accessed 11-March-2007]

[34] Wikimedia Foundation, Inc., FreeBSD jail - Wikipedia, the free en-
cyclopedia, http://en.wikipedia.org/wiki/FreeBSD_Jail, [Online; ac-
cessed 11-March-2007]

[35] Wikimedia Foundation, Inc., Java Virtual Ma-
chine - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Java_Virtual_Machine, [Online;
accessed 11-March-2007]

[36] Thinstall, Thinstall 3.0 Virtualization Suite,
http://www.thinstall.com/products/virtualization_suite.php, [On-
line; accessed 11-March-2007]

[37] Wikimedia Foundation, Inc., Altiris - Wikipedia, the free encyclope-
dia, http://en.wikipedia.org/wiki/Altiris, [Online; accessed 11-March-
2007]

[38] Trigence Corp., Trigence AE: Product Details,
http://www.trigence.com/products/productdetails.html, [Online;
accessed 11-March-2007]

[39] Wikimedia Foundation, Inc., Unix shell - Wikipedia, the free ency-
clopedia, http://en.wikipedia.org/wiki/Unix_shell, [Online; accessed
11-March-2007]

[40] National Center for Computational Sciences, Jaguar,
http://info.nccs.gov/resources/jaguar, [Online; accessed 11-March-
2007]

[41] Sarah Anderson Cray, Inc., Cray XT3 Programming Introduction,
www.psc.edu/training/XT3_Aug05/lectures/Intro.ppt, [Online; ac-
cessed 11-March-2007]

[42] Simon Sheppard, Inc., chroot MAN page,
http://www.ss64.com/bash/chroot.html, [Online; accessed 11-
March-2007]

[43] Wikimedia Foundation, Inc., Institute of Electrical and
Electronics Engineers - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/IEEE, [Online; accessed 11-March-
2007]

[44] Wikimedia Foundation, Inc., POSIX - Wikipedia, the free ency-
clopedia, http://en.wikipedia.org/wiki/POSIX, [Online; accessed 11-
March-2007]

95

[45] The IEEE and The Open Group, The Open Group Base
Speci�cations Issue 6 IEEE Std 1003.1, 2004 Edition,
http://www.opengroup.org/onlinepubs/009695399/, [Online; ac-
cessed 11-March-2007]

[46] Wikimedia Foundation, Inc., GNU build system - Wikipedia, the
free encyclopedia, http://en.wikipedia.org/wiki/GNU_build_system,
[Online; accessed 11-March-2007]

[47] Open Cluster Group, OSCAR Open Source Cluster Application
Group, http://oscar.openclustergroup.org/, [Online; accessed 11-
March-2007]

[48] Innovative Computing Laboratory (ICL), NetBuild,
http://icl.cs.utk.edu/netbuild/, [Online; accessed 12-March-2007]

[49] Wikimedia Foundation, Inc., IGNU build system - Wikipedia, the
free encyclopedia, http://en.wikipedia.org/wiki/GNU_build_system,
[Online; accessed 11-March-2007]

[50] Free Software Foundation, Inc., Inc., Existing Tests,
http://www.gnu.org/software/autoconf/manual/html_node/Existing-
Tests.html, [Online; accessed 11-March-2007]

[51] Free Software Foundation, Inc., Portability
of C Functions, http://www.gnu.org/savannah-
checkouts/gnu/autoconf/manual/autoconf-
2.61/html_node/Function-Portability.html, [Online; accessed 11-
March-2007]

[52] Free Software Foundation, Inc., Autoconf,
http://www.gnu.org/software/autoconf/, [Online; accessed 11-
March-2007]

[53] Free Software Foundation, Inc., GNU Automake - The GNU
Project, http://www.gnu.org/software/automake/, [Online; accessed
11-March-2007]

[54] Free Software Foundation, Inc., GNU Libtool - The GNU Portable Li-
brary Tool, http://www.gnu.org/software/libtool/, [Online; accessed
11-March-2007]

[55] Murray Cumming, Using Automake and Autoconf with C++,
http://www.openismus.com/documents/linux/automake/automake.shtml
#automakeandautoconf/, [Online; accessed 11-March-2007]

[56] Oak Ridge National Laboratory, CSM, PVM - Parallel Virtual Ma-
chine, http://www.csm.ornl.gov/pvm/pvm_home.html, [Online; ac-
cessed 11-March-2007]

96

[57] Wikimedia Foundation, Inc., LAM/MPI - Wikipedia, the free ency-
clopedia, http://en.wikipedia.org/wiki/LAM/MPI, [Online; accessed
11-March-2007]

[58] Paul Barham and Boris Dragovic and Keir Fraser and Steven
Hand and Tim Harris and Alex Ho and Rolf Neugebauer and
Ian Pratt and Andrew War�eld, Xen and the Art of Virtualiza-
tion, University of Cambridge Computer Laboratory, Cambridge,
UK, 2003, http://www.cl.cam.ac.uk/research/srg/netos/papers/2003-
xensosp.pdf, [Online; accessed 11-March-2007]

[59] Wikimedia Foundation, Inc., Institute of Electrical and
Electronics Engineers - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/IEEE, [Online; accessed 11-March-
2007]

[60] The FreeBSD Project, About FreeBSD,
http://www.freebsd.org/about.html, [Online; accessed 11-March-
2007]

[61] The NetBSD Foundation, Inc. , NetBSD Documentation,
http://www.netbsd.org/Documentation/, [Online; accessed 11-
March-2007]

[62] Wikimedia Foundation, Inc., Plan 9 from
Bell Labs - Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Plan_9_from_Bell_Labs, [Online;
accessed 11-March-2007]

[63] Stephen L. Scott and Hong Ong and Geo�roy Vallé and Thomas
Naughton, Con�gurable Virtualized System Environments for High
Performance Computing, Proceedings of 1st Workshop on System-level
Virtualization for High Performance Computing (HPCVirt), Lisbon,
Portugal 2007

[64] David Quigley and Josef Sipek and Charles P. Wright and Erez Zadok,
Unionfs: User - and Community-Oriented Development of a Uni-
�cation File System, Stony Brook University, Ottawa Linux Sym-
posium (OLS 2006), 2006, http://www.fsl.cs.sunysb.edu/docs/sipek-
ols2006/index.html, [Online; accessed 12-March-2007]

[65] FiST: Stackable File System Language and Templates,
http://www.�lesystems.org/, [Online; accessed 12-March-2007]

[66] Neil Brown, The Linux Virtual File - system Layer,
http://www.cse.unsw.edu.au/ñeilb/oss/linux-commentary/vfs.html,
[Online; accessed 12-March-2007]

97

[67] The IEEE and The Open Group, mmap - map pages of memory,
http://www.opengroup.org/onlinepubs/009695399/functions/mmap.html,
[Online; accessed 12-March-2007]

[68] Wikimedia Foundation, Inc., Knoppix - Wikipedia, the free encyclo-
pedia, http://en.wikipedia.org/wiki/KNOPPIX, [Online; accessed 12-
March-2007]

[69] Suzanne M. Kelly and Ron Brightwell and John Van Dyke,
Catamount Software Architecture with Dual Core Extensions,
http://www.cs.sandia.gov/ smkelly/SAND2006-2561C-CUG2006-
CatamountDualCore.pdf, [Online; accessed 12-March-2007]

[70] Jerry Peek and Tim O'Reilly and Mike Loukides, UNIX POWERFUL
TOOLS, http://www.unix.org.ua/orelly/unix/upt/ch06_05.htm,
[Online; accessed 12-March-2007]

[71] Capps, IOzone Filesystem Benchmark, http://www.iozone.org/, [On-
line; accessed 12-March-2007]

[72] Jörg Hoh, Inc., Postmark - Benchmark,
http://www.devone.org/linux/postmark.html, [Online; accessed
12-March-2007]

[73] SS64.com, . (source or dot operator),
http://www.ss64.com/bash/period.html, [Online; accessed 12-
March-2007

98

A Appendix

99

B program code

B.1 veCreater.sh

#!/bin/sh

#usage veCreator DESCRIPTION_FILE APPLICATION

#defaults

stdUmask="755"

stdDirUmask="755"

stdVia="link"

#ve-relative paths

harnessDir="/.harness"

osMountPoint=$harnessDir"/osroot"

osMountPointCow=$harnessDir"/unionfsCow"

osMountPointRo=$harnessDir"/unionfsRo"

writeDirSuffix="_write"

#set processID

if test -n "$3";then

processID=$3

else processID=0

fi

#read description file

. $1

#absolute paths to VE location

if test -n "$2" ;then

fakeDir=$2

else fakeDir=$ENV

fi

root="$fakeDir$osMountPoint" # absolute path to the mounted root

rootCow="$fakeDir$osMountPointCow" # absolute path to the mounted root

rootRo="$fakeDir$osMountPointRo" # absolute path to the mounted root

prepareVE()

{

#create fakedir and

100

mkdir -p $fakeDir

#mounting the real root directory in the virtual root directory

mkdir -p $root

sudo mount --bind / "$root"

mkdir -p "$fakeDir$osMountPointCow"

mkdir -p "$fakeDir$osMountPointRo"

#temporary mounting of the osMountPoint in rooot

sudo mkdir -p "$osMountPoint"

sudo mount --bind / "$osMountPoint"

}

#copy all files required for sudo and su

makeSecurity()

{

mkdir -p "$fakeDir/etc"

rm "$fakeDir/etc/sudoers"

cp /etc/sudoers "$fakeDir/etc/sudoers"

cp -fr /var/run "$fakeDir/var/run"

#mkdir -p "$fakeDir/var/run"

mkdir -p "$fakeDir/usr/bin"

rm "$fakeDir/usr/bin/sudo"

cp /usr/bin/sudo "$fakeDir/usr/bin/sudo"

#create su

mkdir -p "$fakeDir/bin"

rm "$fakeDir/bin/su"

cp /bin/su "$fakeDir/bin/su"

rm "$fakeDir/etc/pam.d"

cp /etc/pam.d "$fakeDir/etc/pam.d"

#create passwd

rm "$fakeDir/etc/shadow"

cp /etc/shadow "$fakeDir/etc/shadow"

rm "$fakeDir/etc/passwd"

cp /etc/passwd "$fakeDir/etc/passwd"

}

#tries to ensure unmounting

myExit()

{ sudoCount=0

echo "exit"

while test $? -eq "0" ;do

sudoCount=`expr $sudoCount + 1`

sudo umount "$root"

done

if test $sudoCount -eq 0 -a `ls -al "$root" | wc -l` -gt 2;then

echo "WARNING: directory $root is not empty or still mounted!!"

101

fi

sudoCount=0

echo " "

while test $? -eq "0" ;do

echo "sudo2"

sudoCount=`expr $sudoCount + 1`

sudo umount "$osMountPoint"

done

fc=`ls -al "$osMountPoint" | wc -l`

if test $sudoCount -gt 0 -a $fc -le 2;then

echo "rmdir "$osMountPoint""

else

echo "WARNING: temporary directory $osMointPoint is not empty!! Please unmounted it before deleting!!"

fi

unionfsCOW

sudoCount=0

echo " "

while test $? -eq "0" ;do

sudoCount=`expr $sudoCount + 1`

sudo umount "$rootCow"

done

if test $sudoCount -eq 0 -a `ls -al "$rootCow" | wc -l` -gt 2;then

echo "WARNING: directory $rootCow is not empty or still mounted!!"

fi

sudoCount=0

echo " "

while test $? -eq "0" ;do

sudoCount=`expr $sudoCount + 1`

sudo umount "$osMountPointCow"

done

fc=`ls -al "$osMountPointCow" | wc -l`

if test $sudoCount -gt 0 -a $fc -le 2;then

echo "rmdir "$osMountPointCow""

else

echo "WARNING: temporary directory $osMointPointCow is not empty!! Please unmounted it before deleting!!"

fi

##unionfsRo

sudoCount=0

echo " "

while test $? -eq "0" ;do

sudoCount=`expr $sudoCount + 1`

sudo umount "$rootRo"

done

if test $sudoCount -eq 0 -a `ls -al "$rootRo" | wc -l` -gt 2;then

102

echo "WARNING: directory $rootRo is not empty or still mounted!!"

fi

sudoCount=0

echo " "

while test $? -eq "0" ;do

sudoCount=`expr $sudoCount + 1`

sudo umount "$osMountPointRo"

done

fc=`ls -al "$osMountPointRo" | wc -l`

if test $sudoCount -gt 0 -a $fc -le 2;then

echo "rmdir "$osMountPointRo""

else

echo "WARNING: temporary directory $osMointPointRo is not empty!! Please unmounted it before deleting!!"

fi

}

#creates all directories required for unionfs

prepareunionfs()

{

echo "unionfsprepare:$1 $2 "

sudo mkdir -p "$osMountPointCow"

sudo mkdir -p "$osMountPointRo"

temp=`pwd`

cd /

x=`ls -al | wc -l`

lstext=`ls -abm`

while test $x -ge 1 ;do

name=`echo $lstext | awk 'BEGIN{FS=", "}{print $'$x'}' | sed 's/\([^ \]\)/\\\\\1/g'`

if test -n "$name";then

if eval test -d "/$name" -a "$name" != ".." -a "$name" != "." -a "/$name" != "$harnessDir"

-a "/$name" != "/home"; then

eval mkdir -p "$fakeDir/$osMountPointCow/$name"

eval mkdir -p "$fakeDir/$osMountPointCow/$name$writeDirSuffix"

eval mkdir -p "$fakeDir/$osMountPointRo/$name"

#eval sudo mkdir -p "$osMountPointCow/$name"

#eval sudo mkdir -p "$osMountPointCow/$name$writeDirSuffix"

#eval sudo mkdir -p "$osMountPointRo/$name"

#eval echo "$fakeDir/$osMountPointCow/$name"

103

#else echo nein:$name:$harnessDir

fi

fi

x=`expr $x - 1`

#

done

sudo mount --bind / "$osMountPointCow"

sudo mount --bind / "$osMountPointRo"

cd "$temp"

}

#usage: createFile varname stdUmask stdVia target source

#creates files defined in branch elements

#suffix:CBF

#this variable suffix ensures unique variable names--> nothing is local

createBranchFile()

{

echo "create file $1 $2 $3 $4 $5"

targetCBF="$4"

#targetCBF=`echo $targetCBF | sed -e 's/^-/.\/-/g' -e 's/\(.\)/\\\\\1/g'`

sourceCBF="$5"

#sourceCBF=`echo $sourceCBF | sed -e 's/^-/.\/-/g' -e 's/\(.\)/\\\\\1/g'`

eval fileCBF='$'"$1"

fileCBF=`echo "$fileCBF"| awk 'BEGIN{ FS=":"} {print $3}' | sed -e

's/^-/.\/-/g' -e 's/\(.\)/\\\\\1/g'`

eval echo "fileCBF:"$fileCBF"'M'"

eval fileNNameCBF='$'$1'_NNAME'

fileNNameCBF=`echo "$fileNNameCBF" | sed -e 's/^-/.\/-/g' -e 's/\(.\)/\\\\\1/g'`

echo $fileNNameCBF

eval fileViaCBF='$'$1'_VIA'

#echo $fileViaCBF

eval filePermCBF='$'$1'_PERMISSION'

eval fileOwnCBF='$'$1'_OWNER'

eval fileGrpCBF='$'$1'_GROUP'

#echo $filePermCBF

if test -z $filePermCBF; then

filePermCBF=$2

fi

if test -z $fileViaCBF; then

fileViaCBF=$3

fi

if test -z "$fileNNameCBF"; then

fileNNameCBF=$fileCBF

#eval echo "fileNNameCBF:$fileNNameCBF"

fi

if test -z "$fileCBF" ; then

echo "$1 is wrong"

104

myExit

fi

if test -z $fileName; then

fileName=`basename $fileSource`

fi

#create the file

case $fileViaCBF in

"delete")

eval rm -f "$fakeDir$targetCBF/$fileNNameCBF"

;;

"link") eval cp -sf "$osMountPoint$sourceCBF/$fileCBF" "$fakeDir$targetCBF/$fileNNameCBF"

#./symlink $targetCBF'/'$fileNNameCBF $fileCBF $fakeDir $osMountPoint

;;

"copy")

eval cp -f "$sourceCBF/$fileCBF" "$fakeDir$targetCBF/$fileNNameCBF"

if test ! $? -eq "0" ;then

eval rm -f "$fakeDir$targetCBF/$fileNNameCBF"

eval cp -f "$sourceCBF/$fileCBF $fakeDir$targetCBF/$fileNNameCBF"

fi

eval chmod "$filePermCBF" "$fakeDir$targetCBF/$fileNNameCBF"

eval chown "$fileOwnCBF" "$fakeDir$targetCBF/$fileNNameCBF"

eval chgrp "$fileGrpCBF" "$fakeDir$targetCBF/$fileNNameCBF"

;;

"unionfsCow")

eval cp -sf "$osMountPointCow$sourceCBF/$fileCBF" "$fakeDir$targetCBF/$fileNNameCBF"

;;

"unionfsRo")

eval cp -sf "$osMountPointRo$sourceCBF/$fileCBF" "$fakeDir$targetCBF/$fileNNameCBF"

;;

esac

}

#usage: createDirFile varname stdUmask stdVia target

#creates files defined in directory elements

#suffix:CDF

createDirFile()

{

targetCDF="$4"

echo "createDirfile $1 $2 $3 $4 $5"

eval fileNNameCDF='$'$1'_NNAME'

fileNNameCDF=`echo "$fileNNameCDF" | sed -e 's/^-/.\/-/g' -e 's/\(.\)/\\\\\1/g'`

echo "fileCDF:$fileNNameCDF"

eval fileSourceCDF='$'$1

fileSourceCDF=`echo "$fileSourceCDF" | awk 'BEGIN{ FS=":"}

{print $3}'| sed -e 's/^-/.\/-/g' -e 's/\(.\)/\\\\\1/g'`

echo $fileSourceCDF

105

eval fileViaCDF='$'$1'_VIA'

echo $fileViaCDF

eval filePermCDF='$'$1'_PERMISSION'

echo $filePermCDF

eval fileOwnCDF='$'$1'_OWNER'

eval fileGrpCDF='$'$1'_GROUP'

if test -z $filePermCDF; then

filePermCDF=$2

fi

if test -z $fileViaCDF; then

fileViaCDF=$3

fi

if test -z "$fileSourceCDF"; then

echo "$1 is wrong"

myExit "missing source"

fi

if test -z "$fileNNameCDF"; then

fileNNameCDF=`basename "$fileSourceCDF"`

fi

#create the file

case $fileViaCDF in

"delete") eval rm -f "$fakeDir$targetCDF/$fileNNameCDF"

;;

"link") eval cp -sf "$osMountPoint$fileSourceCDF" "$fakeDir$targetCDF/$fileNNameCDF"

;;

"copy") eval cp -f "$fileSourceCDF" "$fakeDir$targetCDF/$fileNNameCDF"

if test ! $? -eq "0" ;then

eval rm -f "$fakeDir$targetCDF/$fileNNameCDF"

eval cp -f "$fileSourceCDF" "$fakeDir$targetCDF/$fileNNameCDF"

fi

eval chmod "$filePermCDF" "$fakeDir$targetCDF/$fileNNameCDF"

eval chown "$fileOwnCDF" "$fakeDir$targetCDF/$fileNNameCDF"

eval chgrp "$fileGrpCDF" "$fakeDir$targetCDF/$fileNNameCDF"

;;

"unionfsCow")

eval cp -sf "$osMountPointCow$fileSourceCDF" "$fakeDir$targetCDF/$fileNNameCDF"

;;

"unionfsRo")

eval cp -sf "$osMountPointRo$fileSourceCDF" "$fakeDir$targetCDF/$fileNNameCDF"

;;

esac

}

#usage: createStandAloneFile varname stdUmask stdVia

#suffix:CSAF

106

createStandAloneFile()

{

echo "createStandAlonefile $1 $2 $3"

eval fileTargetCSAF='$'$1'_TARGET'

fileTargetCSAF=`echo "$fileTargetCSAF" | sed -e 's/^-/.\/-/g' -e 's/\(.\)/\\\\\1/g'`

echo "fileCSAF:$fileTargetCSAF"

eval fileSourceCSAF='$'$1

fileSourceCSAF=`echo "$fileSourceCSAF" | awk 'BEGIN{ FS=":"} {print $3}'|sed

-e 's/^-/.\/-/g' -e 's/\(.\)/\\\\\1/g'`

echo $fileSourceCSAF

eval fileViaCSAF='$'$1'_VIA'

echo $fileViaCSAF

eval filePermCSAF='$'$1'_PERMISSION'

echo $filePermCSAF

eval fileOwnCSAF='$'$1'_OWNER'

eval fileGrpCSAF='$'$1'_GROUP'

if test -z $filePermCSAF; then

filePermCSAF=$2

fi

if test -z $fileViaCSAF; then

fileViaCSAF=$3

fi

if test -z "$fileSourceCSAF"; then

echo "$1 is empty"

myExit

fi

if test -z "$fileTargetCSAF"; then

fileTargetCSAF="$fileSourceCSAF"

fi

case $fileViaCSAF in

"delete") eval rm -f "$fakeDir$fileTargetCSAF"

;;

"link") mkdir -p "`eval dirname "$fakeDir$fileTargetCSAF"`"

eval cp -sf "$osMountPoint$fileSourceCSAF" "$fakeDir$fileTargetCSAF"

;;

"copy") mkdir -p "`eval dirname "$fakeDir$fileTargetCSAF"`"

eval cp -f "$fileSourceCSAF" "$fakeDir$fileTargetCSAF"

if test ! $? -eq "0" ;then

eval rm -f "$fakeDir$fileTargetCSAF"

eval cp -f "$fileSourceCSAF" "$fakeDir$fileTargetCSAF"

fi

eval chmod "$filePermCSAF" "$fakeDir$fileTargetCSAF"

eval chown "$fileOwnCSAF" "$fakeDir$fileTargetCSAF"

eval chgrp "$fileGrpCSAF" "$fakeDir$fileTargetCSAF"

;;

107

"unionfsCow")

mkdir -p "`eval dirname "$fakeDir$fileTargetCSAF"`"

eval cp -sf "$osMountPointCow$fileSourceCSAF" "$fakeDir$fileTargetCSAF"

;;

"unionfsRo")

mkdir -p "`eval dirname "$fakeDir$fileTargetCSAF"`"

eval cp -sf "$osMountPointRo$fileSourceCSAF" "$fakeDir$fileTargetCSAF"

;;

esac

}

#link all files of a directory

#usage linkDir $fakeDir $osMountPoint $sourceSource $dirTarget

not in use

linkDir()

{

echo "linkdir:"$1 $2 $3 $4

#cd $1$4

count=`ls -al $3| wc -l`

x=1

while test "$x" -le $count ;do

name=`ls -a $3 | awk ' NR=='$x' {print $0}'`

if test ! -d "$3"'/'"$name" ; then

ln -f -s $2$3'/'"$name" $1$4'/'"$name"

#else echo "directory:$name"

fi

x=`expr $x + 1`

done

}

usage: integrateBranch curDir branchnumber

processes a given branch element

integrateBranch()

{

curBranch=$1'_BRANCH'$2

echo "integrate $curBranch"

eval branchTarget='$'"$1"

branchTarget=`echo "$branchTarget" | sed -e 's/^-/.\/-/g' -e 's/\(.\)/\\\\\1/g'`

eval branchSource='$'$curBranch

branchSource=`echo "$branchSource" | awk 'BEGIN{ FS=":"} {print $3}' | sed -e 's/^-/.\/-/g'

-e 's/\(.\)/\\\\\1/g'`

echo "branchsource:$branchSource"

eval branchVia='$'$curBranch'_VIA'

eval branchUmask='$'$curBranch'_UMASK'

eval branchDirUmask='$'$curBranch'_DIRUMASK'

108

eval branchGetAll='$'$curBranch'_GETALL'

#eval branchGetAllR='$'$curBranch'_GETALLRECURSIVE'

if test -z "$branchUmask"; then

branchUmask=$umask

fi

if test -z "$branchDirUmask"; then

branchDirUmask=$dirUmask

fi

if test -z "$branchVia"; then

branchVia=$dirVia

fi

if test -z "$branchSource"; then

echo "Error: $curBranch has no source!"

exit

fi

#process getAll="files"

if test -n "$branchGetAll" -a "$branchGetAll" = "files";then

echo "1"

case $branchVia in

"link") eval cp -fs "$osMountPoint$branchSource/"* "$fakeDir$branchTarget"

eval cp -fs "$osMountPoint$branchSource/".* "$fakeDir$branchTarget"

;;

"copy") echo "jetzt copy"

#files=`ls -ab | sed 's/^*$//g'| sed 's/^-/.\/-/g'`

/ " ' * ; - & ? () [] ~ ! $ { } > < # @

#files=`ls -ab | sed 's/\([]/"'"';"'*-&?()[~!${}<>#@]\)[^]/\\\\\1/g'`

temp=`pwd`

eval cd "$branchSource"

#files=`eval ls -a | sed -e 's/^-/.\/-/g'

-e's/\(.\)/\\\\\1/g'`

files=`ls -abm | sed -e 's/[,][]-/, .\/-/g' -e 's/\([^ \]\)/\\\\\1/g'

-e 's/\\\, / . /g'`

#files=`ls -abm | sed -e 's/[,]$/, /g' -e 's/^[-]/ -/g' -e 's/[]-/ .\/-/g'

-e 's/\([^ \]\)/\\\\\1/g' -e 's/\\\, / . /g'`

emptyspace=" "

files=`ls -abm | sed -e 's/[,]$/, /g' -e 's/^[-]/ -/g'

-e 's/[]-/ .\/-/g' -e 's/\([^ \]\)/\\\\\1/g' -e 's/\\\, / $emptyspace /g'`

#echo "files:$files"

#eval echo $files

#pwd

eval cd "$fakeDir$branchTarget"

#pwd

eval rm $files 2>/dev/null

eval cp -Lf "$branchSource/"* "$fakeDir$branchTarget" 2>/dev/null

109

eval cp -f "$branchSource/".* "$fakeDir$branchTarget" 2>/dev/null

cd "$temp"

;;

"unionfsCow")

eval cp -sf "$osMountPointCow$branchSource/"* "$fakeDir$branchTarget"

eval cp -sf "$osMountPointCow$branchSource/".* "$fakeDir$branchTarget"

;;

"unionfsRo")

eval cp -sf "$osMountPointRo$branchSource/"* "$fakeDir$branchTarget"

eval cp -sf "$osMountPointRo$branchSource/".* "$fakeDir$branchTarget"

;;

esac

fi

#process getAll="recursive"

if test -n "$branchGetAll" -a "$branchGetAll" = "recursive";then

echo "3"

case $branchVia in

"link") eval cp -fsr "$osMountPoint$branchSource/". "$fakeDir$branchTarget" 2>/dev/null

#cp -fsr "$osMountPoint$branchSource/".* "$fakeDir$branchTarget"

;;

"copy")

./recSynDelete "$branchSource" "$fakeDir$branchTarget"

eval cp -frL "$branchSource/". "$fakeDir$branchTarget" # 2>/dev/null

eval cp -fr "$branchSource/". "$fakeDir$branchTarget" #2>/dev/null

;;

"unionfsCow")

eval cp -fsr "$osMountPointCow$branchSource/". "$fakeDir$branchTarget" 2>/dev/null

;;

"unionfsRo")

eval cp -fsr "$osMountPointRo$branchSource/". "$fakeDir$branchTarget" 2>/dev/null

;;

esac

fi

#end: getAll

#create all single files of the branch

eval fileCountIB='$'$curBranch'_FILES'

echo $fileCountIB

if test -n "$fileCountIB"; then

fileIBX=1

while test `expr $fileIBX` -le `expr $fileCountIB` ;do

echo "bin drin"

curFileIB=$curBranch'_FILE'$fileIBX

curFileIB=`echo "$curFileIB" | awk 'BEGIN{ FS=":"} {print $3}'|

sed -e 's/^-/.\/-/g' -e 's/\(.\)/\\\\\1/g'`

echo "curFileIB:$curFileIB"

#creates the file

110

createBranchFile "$curFileIB" "$branchUmask" "$branchVia" "$branchTarget" "$branchSource"

fileIBX=`expr $fileIBX + 1`

done

fi

}

##void main() start point of functional part

#check for include instructions

includeX=0

eval includeFile='$include'$includeX

while test -n "$includeFile" ; do

childID=`expr $processID + 1`

$0 $includeFile $fakeDir $childID

includeX=`expr $includeX + 1`

eval includeFile='$include'$includeX

echo "drin fakedir:$fakeDir file:$includeFile X:$includeX"

done

if test $includeX -eq 0 ; then

prepareVE

prepareunionfs

fi

dirCount=$DIRS

dirX=1

#create the directory

while test $dirX -le $dirCount ;do

echo "bin in schleife"

curDir='DIR'$dirX

eval dirName='$'$curDir #'_DIRNAME'

dirName=`echo "$dirName" | sed -e 's/^-/.\/-/g' -e 's/\(.\)/\\\\\1/g'`

eval umask='$'$curDir'_UMASK'

echo $umask

eval dirUmask='$'$curDir'_DIRUMASK'

echo $dirUmask

eval dirVia='$'$curDir'_VIA'

echo $dirVia

eval dirOwn='$'$curDir'_PERMISSION'

eval dirOwn='$'$curDir'_OWNER'

eval dirGrp='$'$curDir'_GROUP'

if test -z "$dirName"; then

#echo "$dirName $dirX $dirCount"

111

dirX=`expr $dirX + 1`

continue

fi

if test -z "$umask"; then

umask=$stdUmask

fi

if test -z "$dirUmask"; then

dirUmask=$stdDirUmask

fi

if test -z "$dirVia"; then

dirVia=$stdVia

fi

if test -z "$dirPermission"; then

$dirPermission=$stdDirUmask

fi

eval mkdir -p "$fakeDir$dirName"

chmod "$dirPerm" "$fakeDir$dirName"

chown "$dirOwn" "$fakeDir$dirName"

chgrp "$dirGrp" "$fakeDir$dirName"

#integrate branch

eval branchCount='$'$curDir'_BRANCHES'

if test -n "$branchCount"; then

branchX=1

while test `expr $branchX` -le `expr $branchCount` ;do

echo "bin drin"

#integrate creates the file

integrateBranch $curDir $branchX

branchX=`expr $branchX + 1`

done

fi

#create all single listed files in the directory

eval fileCount='$'$curDir'_FILES'

if test -n "$fileCount"; then

fileX=1

while test `expr $fileX` -le `expr $fileCount` ;do

curFile=$curDir'_FILE'$fileX

echo "curFile:$curFile"

#creates the file

createDirFile "$curFile" "$umask" "$dirVia" "$dirName"

fileX=`expr $fileX + 1`

done

fi

112

#create all subdirectories

eval subDirCount='$'$curDir'_SUBDIRS'

echo "subdir creation"

if test -n "$subDirCount"; then

subX=1

echo "in subdircreation"

while test `expr $subX` -le `expr $subDirCount` ;do

curSubDir=$curDir'_SUBDIR'$subX

echo "curSubDir:$curSubDir"

#creates the file pathToDescriptionFile currentDir parentDirPath stdUmask stdDirUmask stdVia

./createSubDir $1 $curSubDir $dirName $umask $dirUmask $dirVia

subX=`expr $subX + 1`

done

fi

dirX=`expr $dirX + 1`

done

#create standalone files

fileCount=$FILES

echo "standalone beginn:$fileCount"

if test -n "$fileCount"; then

fileX=1

while test `expr $fileX` -le `expr $fileCount` ;do

curFile='FILE'$fileX

echo "curFile:$curFile"

#creates the file

createStandAloneFile "$curFile" "$umask" "$dirVia"

fileX=`expr $fileX + 1`

done

fi

if test $processID -eq 0 ;then

#makeSecurity

myExit normal

fi

113

B.2 veStarter.sh

#!/bin/sh

#usage veStarter DESCRIPTION_FILE APPLICATION

#determine standard values for....

the fild separator; DEFAULT is ":"

stdSep=":"

the insert position for new values in an existing variable; DEFAULT is "append"

stdPos="append"

the action; you can choose between "new","modify", and "unset" ; DEFAULT is "modify"

stdAction="modify"

#currently not defined in the DESCRIPTION_FILE

stdHarnessDir="/.harness"

harnessDir=$stdHarnessDir

stdOsMountPoint=$harnessDir"/osfs"

stdOsMountPointCow=$harnessDir"/unionfsCow"

stdOsMountPointRo=$harnessDir"/unionfsRo"

stdWriteDirSuffix="_write"

#check user name for secure use of the su command

if test -n "$SUDO_USER";then

veuser=$SUDO_USER

else veuser=$LOGNAME

fi

if test -z "$veuser" ;then

echo "Abort: Could not find a User!"

exit

fi

osMountPoint=$stdOsMountPoint

osMountPointCow=$stdOsMountPointCow

osMountPointRo=$stdOsMountPointRo

writeDirSuffix=$stdWriteDirSuffix

#read description file

. $1

#absolute paths

#if test -n "$3" ;then

fakeDir=$3

#else fakeDir=$ENV

#fi

fakeDir=$ENV

start here

createVars()

{

114

#check user name

if test -n "$SUDO_USER";then

veuser=$SUDO_USER

else veuser=$LOGNAME

fi

if test -z "$veuser" ;then

echo "Abort: Could not find a User!"

exit

fi

varCount="$VARS"

if test -z $varCount ;then

varCount=0;

fi

varX=1

while test $varX -le "$varCount" ;do

#read description file

. $1

echo "bin in Varschleife"

curVar='VAR'$varX

#create the variables

eval varName='$'$curVar

echo $varName

eval varValue='$'$curVar'_VALUE'

#eval varValue=$varValue

echo "varhallo:$LOGNAME"

echo $varValue

eval varAction='$'$curVar'_ACTION'

echo $varAction

eval varPos='$'$curVar'_INSERTPOS'

echo $varPos

eval varSep='$'$curVar'_SEPARATOR'

echo $varSep

eval varPattern='$'$curVar'_INSERTPATTERN'

echo $varPattern

if test -z $varSep; then

varSep=$stdSep;

fi

if test -z $varPos; then

varPos=$stdPos;

fi

if test -z $varAction; then

varAction=$stdAction;

fi

if test -z "$varName"; then

echo "VAR$varX has no name!"

else

eval varTemp='$'$varName

115

echo "test:$varTemp"

case $varAction in

"new") export "$varName=$varValue"

echo "export:"$varName="'"'$varValue'"'"

;;

"modify")

#NF: number of field elements in the variable

NF=`echo $varTemp | awk 'BEGIN{FS="'$varSep'"} {print NF}'`

append=0

if test "$varPos" = "append" ; then

varPos=`expr $NF + 1`

append=1

fi

prepend=0

if test "$varPos" = "prepend" ; then

varPos=1

prepend=1

echo "1"

fi

if test -n "$varPattern";then #search pattern in $varTemp

echo "2"

x=1

part=""

while test $x -le $NF ;do

field=`echo $varTemp | awk 'BEGIN{FS="'$varSep'"}{print $'$x'}'`

if test "$field" = $varPattern ; then

echo "pattern"

prepend

if test $varPos -eq 1; then

if test $prepend = 1 ; then

varPos=$x

else

varPos=`expr $x + 1`

fi

echo "5"

else #append

echo "append $x $varPos"

if test "$varPos" -eq `expr $NF + 1` -a $append = 1; then

varPos=`expr $x + 1`

else

if test "$varPos" -ge 0;then

varPos=`expr $x + $varPos`

echo "6:$varPos"

fi

if test "$varPos" -lt 0;then

varPos=`expr $x + $varPos + 1`

echo "3"

116

fi

fi

fi

#varPos=`expr $x +$varPos`

#break while loop

x=`expr $NF + 1`

fi

x=`expr $x + 1`

done

fi

#include at the end

echo "4 und $varPos und $NF"

if test "$varPos" -gt $NF ; then

export "$varName=$varTemp$varSep$varValue"

else # inlcude at beginning

if test "$varPos" -le 1 ; then

export "$varName=$varValue$varSep$varTemp"

else

x=1

part=""

while test $x -le $NF ;do

field=`echo $varTemp | awk 'BEGIN{FS="'$varSep'"}{print $'$x'}'`

if test $x -eq $varPos ; then

part=$part$varSep$varValue

fi

if test $x -eq 1;then

part=$field

else

part=$part$varSep$field

fi

x=`expr $x + 1`

done

export "$varName=$part"

fi

fi

;;

"unset") unset "$varName"

;;

esac

echo "zz:$varTemp"

fi

117

varX=`expr $varX + 1`

done

}

#check for include instructions this function needs an array to store includeX

#the function works only properly if one environment is bequeathed

checkIncludes()

{ echo 4 $1

includes=0

#read config file

. $1

includeCount=$includes

includeX=1

while test $includeX -le $includeCount ; do

eval includeFile='$include'$includeX

checkIncludes $includeFile

includeX=`expr $includeX + 1`

#read config file again

. $1

done

createVars $1

}

checkIncludes $1

#mount dirs

temp=`pwd`

cd /

y=`ls -al | wc -l`

lstext=`ls -abm`

x=$y

while test $x -ge 1 ;do

name=`echo $lstext | awk 'BEGIN{FS=", "}{print $'$x'}' | sed 's/\([^ \]\)/\\\\\1/g'`

if test -n "$name";then

#echo NAme:$name

118

if eval test -d "/$name" -a "$name" != "." -a "$name" != ".."

-a "/$name" != "$harnessDir" -a "/$name" != "/home" ; then

eval sudo mount -t unionfs -o dirs=/$name unionfs "$fakeDir/$osMountPointCow/$name"

#eval sudo unionctl "$fakeDir/$osMountPointCow/$name" --add --mode

rw "$fakeDir/$osMountPointCow/$name$writeDirSuffix"

#eval sudo unionctl "$fakeDir/$osMountPointCow/$name" --mode /$name ro

eval sudo mount -t unionfs -o dirs=/$name unionfs "$fakeDir/$osMountPointRo/$name"

#eval sudo unionctl "$fakeDir/$osMountPointCow/$name" --mode /$name ro

fi

fi

x=`expr $x - 1`

done

mount --bind / "$fakeDir/$osMountPoint"

chroot $fakeDir su "$veuser" $2

echo "shutdown environment"

x=$y

while test $x -ge 1 ;do

name=`echo $lstext | awk 'BEGIN{FS=", "}{print $'$x'}' | sed 's/\([^ \]\)/\\\\\1/g'`

if test -n "$name";then

if eval test -d "/$name" -a "$name" != "." -a "$name" != ".."

-a "/$name" != "$harnessDir" -a "/$name" != "/home" ; then

echo umount:"$fakeDir/$osMountPointCow/$name"

eval sudo umount -t unionfs "$fakeDir/$osMountPointCow/$name"

eval sudo umount -t unionfs "$fakeDir/$osMountPointRo/$name"

fi

fi

x=`expr $x - 1`

done

sudo umount "$fakeDir/$osMountPoint"

119

B.3 recSynDelete.sh

#!/bin/sh

#delete all files and links

#recSynDelete: source target

source=$1

target=$2

echo "synDele:$1 $2 "

temp=`pwd`

eval cd "$source"

#files=`ls -abm | sed -e 's/[,][]-/, .\/-/g' -e 's/\([^ \]\)/\\\\\1/g' -e files=`ls -abm | sed

-e 's/[,]$/, /g' -e 's/^[-]/ -/g' -e 's/[]-/ .\/-/g' -e 's/\([^ \]\)/\\\\\1/g'

-e 's/\\\, / . /g'` 's/\\\, / . /g'`

#files=`ls -abm | sed -e 's/[,]$/, /g' -e 's/^[-]/ -/g' -e 's/[]-/ .\/-/g' -e 's/\([^ \]\)/\\\\\1/g'

-e 's/\\\, / . /g'`

emptyspace=" "

files=`ls -abm | sed -e 's/[,]$/, /g' -e 's/^[-]/ -/g' -e 's/[]-/ .\/-/g' -e 's/\([^ \]\)/\\\\\1/g'

-e 's/\\\, / $emptyspace /g'`

#echo "files:"$files

eval cd "$target"

eval rm $files 2>/dev/null

eval cd "$source"

x=`ls -al | wc -l`

lstext=`ls -abm`

#echo "lstext:$lstext"

cd "$temp"

while test $x -ge 1 ;do

#name=`echo $lstext | awk 'BEGIN{FS=", "}{print $'$x'}' | sed -e 's/^[.]$//g' -e 's/^[.][.]$//g'

-e 's/^-/.\/-/g' -e 's/\([^ \]\)/\\\\\1/g'`

name=`echo $lstext | awk 'BEGIN{FS=", "}{print $'$x'}' | sed 's/\([^ \]\)/\\\\\1/g'`

#echo "name:$name"

if test -n "$name";then

#pwd

if eval test "$name" != ".." -a "$name" != "." -a -d "$target/$name"; then

#echo "yes:$name"

./recSynDelete "$source/$name" "$target/$name"

#else echo "no:$name"

fi

fi

x=`expr $x - 1`

#

done

#

#echo "synDel end"

120

B.4 XML Schema

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.csm.ornl.gov"

xmlns="http://www.csm.ornl.gov"

elementFormDefault="qualified">

<!-- simple type definitions -->

<xs:simpleType type="sysString">

<xs:restriction base="xs:string">

<xs:minLength value="1"/>

<xs:restriction>

</xs:simpleType>

<xs:complexType mixed="true" name="userType" type="sysString">

<xs:sequence>

<xs:element name="id" type="xs:integer" minOccurs="0"/>

<xs:element name="firstname" type=:xs:string minOccurs="0"/>

<xs:element name="group" type="groupType" minOccurs="1" minOccurs="unbounded"</>

</xs:sequence>

</xs:complexType>

<xs:complexType mixed="true" name="groupType" type="sysString">

<xs:sequence>

<xs:element name="id" type="xs:integer" minOccurs="0"/>

<xs:element name="user" type="userType" minOccurs="0" minOccurs="unbounded"</>

</xs:sequence>

</xs:complexType>

<xs:complexType name="permissionType1">

<xs:restriction base="xs:string">

<xs:pattern value="(([r-][w-][x-]){3})|([0-7]{3})"/>

</xs:restriction>

</xs:complexType

<xs:complexType name="permissionType2">

<xs:sequence>

<xs:element name="owner" type="sysString"/>

<xs:element name="group" type="sysString"/>

<xs:restriction base="xs:string">

<xs:pattern value="(([r-][w-][x-]){3})|([0-7]{3})"/>

</xs:restriction>

</xs:sequence>

</xs:complexType

<xs:complexType name="permissionType3">

<xs:sequence>

<xs:element name="name" type="sysString" default="others">

<xs:element name="type" default="user"/>

121

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="user" />

<xs:enumeration value="group" />

</xs:restriction base="xs:string">

</xs:simpleType>

</xs:element>

<xs:element name="permission">

<xs:restriction base="xs:string">

<xs:pattern value="([r-][w-][x-])|[0-7]"/>

</xs:restriction>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="permissionType">

<xs:choice>

<xs:element name="permission" type="permissionType1" />

<xs:element name="permission" type="permissionType2" />

<xs:element name="permission" type="permissionType3" maxOccurs="unbounded"/>

</xs:choice>

</xs:complexType>

<xs:complexType name="fileSourceType">

<xs:choice>

<xs:element name="uri" type="sysString"/>

<xs:any />

<!--xs:element name="ftpSource" type="ftpConnectionType/-->

<!--xs:element name="partitionSource" type="paritionSourceType/-->

<!--xs:element name="dev/hda2" type="deviceType/-->

</xs:choice>

</xs:complexType>

<xs:complexType name="listSourceType">

<xs:element name="source" type="fileSourceType" />

<xs:element name="umask" type="permissionType"/>

<xs:element name="directory_umask" type="permissionType"/>

<xs:element name="getAllFiles" type="xs:boolean"/>

<xs:element name="getAllRecursive" type="xs:boolean"/>

<xs:element name="via" default="link"/>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="copy" />

<xs:enumeration value="link" />

<xs:enumeration value="create" />

<xs:enumeration value="mount" />

</xs:restriction base="xs:string">

</xs:simpleType>

</xs:element>

<xs:element name="file" type="fileType3" minOccurs="0" maxOccurs="unbounded" />

122

</xs:complexType>

<xs:complexType name="file" type="fileType1">

<xs:sequence>

<xs:element name="source" type="fileSourceType" />

<xs:element name="via" default="link"/>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="copy" />

<xs:enumeration value="link" />

<xs:enumeration value="create" />

</xs:restriction base="xs:string">

</xs:simpleType>

</xs:element>

<xs:element name="target" type="sysString" />

<xs:element name="permission" type="permissionType" />

<xs:element name="type" default="regular">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="regular" />

<xs:enumeration value="symLink" />

<xs:enumeration value="hardLink" />

<xs:enumeration value="device" />

</xs:restriction base="xs:string">

</xs:simpleType>

</xs:element>

<xs:sequence>

<xs:complexType

<xs:complexType name="file" type="fileType2">

<xs:sequence>

<xs:element name="source" type="fileSourceType" />

<xs:element name="via" default="link"/>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="copy" />

<xs:enumeration value="link" />

<xs:enumeration value="create" />

</xs:restriction base="xs:string">

</xs:simpleType>

</xs:element>

<xs:element name="permission" type="permissionType" />

<xs:element name="type" default="regular">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="regular" />

<xs:enumeration value="symLink" />

<xs:enumeration value="hardLink" />

<xs:enumeration value="device" />

</xs:restriction base="xs:string">

</xs:simpleType>

123

</xs:element>

<xs:sequence>

<xs:complexType

<xs:complexType name="file" type="fileType3">

<xs:sequence>

<xs:element name="via" minOccurs="0"/>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="copy" />

<xs:enumeration value="link" />

<xs:enumeration value="create" />

</xs:restriction base="xs:string">

</xs:simpleType>

</xs:element>

<xs:element name="permission" type="permissionType" minOccurs="0" />

<xs:element name="type" default="regular" minOccurs="0">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="regular" />

<xs:enumeration value="symLink" />

<xs:enumeration value="hardLink" />

<xs:enumeration value="device" />

</xs:restriction base="xs:string">

</xs:simpleType>

</xs:element>

<!-- minSize maxSize setID stickybit namedPipe -->

<xs:sequence>

<xs:complexType

<xs:element name="directory" type="directoryType">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="sysString" />

<xs:element name="target" type="xs:string" default=""/>

<xs:element name="permission" type="permissionType"/>

<!-- xs:element name="umask" default="likeTargetLocation" minOccurs="0"/-->

<!-- xs:element name="subdir_umask" default="likeTargetLocation" minOccurs="0"/-->

<xs:element name="file" type="fileType2" minOccurs="0" maxOccurs="unbounded/">

<xs:element name="includeList" type="listSourceType" minOccurs="0" maxOccurs="unbounded/">

<xs:element name="subdirectory"type="directoryType" minOccurs="0" maxOccurs="unbounded" />

<!-- minSize maxSize setID stickybit -->

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

<!-- environment variables -->

124

<xs:element name="var">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="sysString" />

<xs:element name="value" type="xs:string" default=""/>

<xs:element name="action" type="xs:string" default="modify"/>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="unset" />

<xs:enumeration value="new" />

<xs:enumeration value="modify" />

</xs:restriction base="xs:string">

</xs:simpleType>

</xs:element>

<xs:element name="insertPosition" type="xs:string" default="end"/>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:pattern value="([1-9]*)"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

125

C User Manual

Abstract

This manual gives a short description, how to use and create virtualised environments
with two programs veCreator and veStarter. Both were developed to realize a virtuali-
sation approach for the Harness Workbench.

Introduction

This virtualisation approach helps running applications on di�erent computing platforms.
There are four things to deal with:

• the application, which should be started in the virtualised environment,

• the veCreator program, which creates the virtual �le structure,

• the veStarter program, which starts the application, and

• an environment description, which describes the properties of the environment,
which should be emulated.

How To con�gure the System

For starting the veStarter or veCreator program, it is required that the operating system
provide the chroot command. The execution of this command requires super user rights
on many operating systems. Therefore it is required to have super user rights to start
the both programs.

Normal user can be enabled to start the program by using the sudo command. Therefore,
sudo needs to be con�gured. The following instructions require super user rights:

1. Open the sudo con�guration �le sudoers, this is mainly located in /etc/sudoers.

2. Attach one pair of the following lines at the end of the �le to enable all or a speci�c
user to start veStarter and veCreator. Then save and close the �le.

ALL localhost = NOPASSWD:veCreator

ALL localhost = NOPASSWD:veStarter

126

Or

peter localhost = NOPASSWD:veCreator

peter localhost = NOPASSWD:veStarter

3. At last, it is required to change the permissions and ownerships of both executables.

chown root veCreator

chgrp root veCreator

chmod 744 veCreator

chown root veStarter

chgrp root veStarter

chmod 744 veStarter

For security reasons it is strongly recommended to omit a general execution rights for
the chroot command.

How to use it

Using both programs requires neither starting a make �le nor some installation instruc-
tions. There are two simple steps to process in order to run an application in new virtual
environment.

1. start the veCreator

2. start the veStarter

After these steps, the application runs in the virtual environment. The application can
be cancelled or stop as normal. It is not required to stop or delete the virtual environ-
ment, when the application is �nished.

After step one, the application can be started arbitrary times in the virtual environment.
It is also possible to start other application in the virtual environment, but this di�ers
from application to application. It is better to start applications in their appropriated
virtual environments.

veCreator

The veCreator reads the environment description and creates all �le structure elements
according to a given environment description. The veCreator application expects one
parameter from the user, the �le of the environment description.

The veCreator can be executed as follows:

sudo ./veCreator FILE

127

veStarter

The veStarter is used to start applications in a created virtual environment. The appli-
cation expects two parameters. The �rst parameter is a path to the description �le of the
virtual environment. The second parameter is the application which should be started.

sudo ./veCreator FILE APPLICATION

Trouble Shooting

Please make sure that your sudo con�gurations in /etc/sudoers is correct, if you got
an error message related to missing executing permission.

For other starting problems please ensure that you are using the compatible shell. Both
programs can be started form the bourne shell (sh) or bourne again shell (bash). If the
programs do not run properly, please ensure that the used shell is really a bourne or bash
shell. In some Unix/Linux distributions sh is only an symbolic link an other shell like
ksh or csh. For this case please install a bourne or bash shell on your system.

For more help, and detailed information please contact bjoern.koenning@gmx.de.

128

