
Presenting a thesis on... 

Simulation of Large Scale Architectures on High 
Performance Computers 

Ian Jones 

Oak Ridge National Laboratory, 2010 



Introduction 1/2 

●  Work carried out on XSIM, an HPC simulator at 
ORNL 

●  Useful in investigating performance and scalability 
of applications when run on HPCs 

●  Several existing simulators include JCAS, BigSim 
and MuPi 



Introduction 2/2 

Aims/Objectives: 
–  Implement network model 
–  Implement path-finding for different topologies 
–  Account for message size and bandwidth 
–  Enable user specific customisation 
–  Implement fault tolerance and injection 



Design 1/2 

Network class: 
–  Stores information about the topology by accepting 

and parsing user arguments 
–  Analyses MPI message source and destination and 

calculates the latency due to time taken to traverse 
network 

–  Analyses MPI message size and calculates the latency 
due to bandwidth 



Design 2/2 

–  Latency is calculated mathematically. Topology 
designs for: star, ring, mesh, torus, twisted torus, tree 

–  Discriminates cores which are on the same/ different 
processors, by passing appropriate arguments. 



Implementation 1/4 

–  Initial function extracts parameters from argument and 
validates 

–  Primary function called every MPI_Receive 
●  Identifies network/processor rank 
●  Switch statement identifies network type 
●  Appropriate function called to calculate latency 
●  Primary function factors in correct bandwidth 
●  Result returned and added to message time 



Implementation 2/4 

–  Type-specific function requires appropriate arguments 
and source/dest rank 

–  Star: 2 * network latency multiplier 
–  Ring: Absolute difference between source/dest but may vary 

depending upon loop-around 
–  Tree: Source ranks recursively divided by degree to find common 

ancestor 



Implementation 3/4 

–  Mesh: Breaks down ranks into Euclidean co-ordinates, to determine 
the network location 

–  Latency of route is calculated by summing absolute differences of 
the individual co-ordinates of source and destination 



Implementation 4/4 
–  Torus: Same as mesh except dimensions have possibility of 

wrapping around 
–  Twisted Torus: Tests every single dimension both ways and takes 

the 'best' option, then repeats until destination found 



Testing 1/3 

–  General Performance Overview 



Testing 2/3 

–  Variable Tuning 



Testing 3/3 

–  Hybrid Topologies 



Limitations and Critique 

–  Twisted torus algorithm is not 100% accurate or bug-
free in all situations, problems with implementation 

–  No accounting for traffic, congestion and any 
subsequent re-routing of messages 

–  Fault injection and fault tolerance not implemented or 
tested 

–  No variation of parameters, whole network uses a 
standard defined by user 



Future Work 
–  Implementation of overlay networks and translation 

onto virtual network (broadcast) 
–  Possible conversion to data structure method to track 

exact path of messages and allow for upgrade for 
purposes of fault injection, congestion ID and message 
re-routing 

–  More in-depth testing of hybrid topologies 
–  Optimistic PDES implementation, extended MPI 

support, performance metric gathering 



Thankyou 

Questions? 


