&%

Presenting a thesis on... [

Simulation of Large Scale
Performance Co

Ian Jones




Introduction 1/2

. Work carried out on XSIM, an HPC simulator at
ORNL

. Useful 1 investigating performance and scalability
of applications when run on HPCs

. Several existing simulators include JCAS, BigSim
and MuP1



Introduction 2/2 o

Aims/Objectives:

— Implement network model
— Implement path-finding for differ
— Account for message size and band
— Enable user specific customisation

— Implement fault tolerance and injectio




Design 1/2 i

Network class:

— Stores information about the top
and parsing user arguments

— Analyses MPI message source and d
calculates the latency due to time take
network

— Analyses MPI message size and calcul
due to bandwidth




Design 2/2

— Latency is calculated mathematically. Topology
designs for: star, ring, mesh, torus, twisted torus, tree

— Discriminates cores which are on the same/ different
processors, by passing appropriate arguments.



Implementation 1/4

— Initial function extracts parameters from argument and
validates
— Primary function called every MPI Receive

. Identifies network/processor rank
. Switch statement 1dentifies network type

. Appropriate function called to calculate latency

. Primary function factors in correct bandwidth

. Result returned and added to message time



Implementation 2/4

— Type-specific function requires appropriate arguments
and source/dest rank

— Star: 2 * network latency multiplier

— Ring: Absolute difference between source/dest but may vary
depending upon loop-around

— Tree: Source ranks recursively divided by degree to find common

/ Router
@

Router
(Common Ancestor)

Destination Source

Source inati Destination




Implementation 3/4

— Mesh: Breaks down ranks into Euclidean co-ordinates, to determine
the network location

— Latency of route is calculated by summing absolute differences of
the individual co-ordinates of source and destination




Implementation 4/4

— Torus: Same as mesh except dimensions have possibility of
wrapping around

— Twisted Torus: Tests every single dimension both ways and takes
the 'best' option, then repeats until destination found




Testing 1/3

— General Performance Overview

Average Topology Latency as VP Varies
Simulator Runtime at varying NP Test App: Random, NP = 4

Test App: Random

»=Star

 \esh

v Torus

=0 Tw isted Torus.
& Binary Tree

&P =128

Average Message Latency

Average Topology Latency as VP Varies
16 (4*4) 128 (8*16) 512 (16*32) 1024 (32*32) 2048 (32°64)
Test App: Ring, NP = 4 P
Average Topology Latency as VP Varies
Test App: Random, NP = 4

Simulator Runtime at varying VP
Test App: Random

< Star

= Ring

& Mesh

¥ Torus

= Twisted Torus
Binary Tree

VP =128

Average Message Latency

Average Message Latency

16 (474) 128 (8*16) 512(16732) 1024 (32'32) 2048 (3264) 16 (474) 128 (8716) 512 (16732) 1024 (32732) 2048 (32764)
VP




Testing 2/3

Average Latency with Varying Bandwidth

— Variable Tuning Test App: Random, NP = 4, VP = 128

¥ Mesh (8*16)

Average Message Latency

v v v

0.00005 0.00001 0.000005 0.000001 0.0000001
Bandwidth (Mbps)

Average Latency as Dimensions Vary
Test App: Random, NP =4

Average Latency as Toroidal Degree Varies (Twisted Torus)
Test App: Random, NP = 4, VP = 128

0 1 2 3 4

Toroidal Degree

O Mesh
B Torus
B Tw isted Torus

Average Message Latency

>
)
c
2
©
a
o
=3
©
»
»
2
=
o
=3
©
I
2
<

mmmmm

2%64 2°2°32 2°4*16 4°48 2%4%47a 2~ 4

Dimensions (VP = 128)




Testing 3/3

— Hybrid Topologies

Average Latency with Twisted Torus-? Nested Topologies
Test App: Random, NP =4, VP = 128, PLatency = 0.1

Average Latency with Nested Topologies
Test App: Random, NP = 4, VP = 128, PLatency = 0.1

V' Mesh-Mesh

‘B Torus-Torus

< Tw isted-Tw isted
=B Tree-B Tree

> )
e c
) 2
o ©
s 4

®
s o
b @©
b »
o »
a i}
= =

®
A o
ol o
o [
Q =
z Ed

0 & g

2(8%8). (1:2) 4(478), (2'2) 16 (42), (4*4) 32 (2*2), (4*8) 4(48).(272) 8 (474), (472) 16 (472), (44) 32 (22), (478)

Number of Cores per Processor Number of Cores per Processor




Limitations and Critique

— Twisted torus algorithm is not 100% accurate or bug-
free 1n all situations, problems with implementation

— No accounting for traffic, congestion and any
subsequent re-routing of messages

— Fault injection and fault tolerance not implemented or
tested

— No variation of parameters, whole network uses a
standard defined by user



Future Work

— Implementation of overlay networks and translation
onto virtual network (broadcast)

— Possible conversion to data structure method to track
exact path of messages and allow for upgrade for
purposes of fault injection, congestion ID and message
re-routing

— More in-depth testing of hybrid topologies

— Optimistic PDES implementation, extended MPI
support, performance metric gathering



Thankyou




