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Introduction 1/2

. Work carried out on XSIM, an HPC simulator at
ORNL

. Useful 1 investigating performance and scalability
of applications when run on HPCs

. Several existing simulators include JCAS, BigSim
and MuP1
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Aims/Objectives:

— Implement network model
— Implement path-finding for differ
— Account for message size and band
— Enable user specific customisation

— Implement fault tolerance and injectio
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Network class:

— Stores information about the top
and parsing user arguments

— Analyses MPI message source and d
calculates the latency due to time take
network

— Analyses MPI message size and calcul
due to bandwidth




Design 2/2

— Latency is calculated mathematically. Topology
designs for: star, ring, mesh, torus, twisted torus, tree

— Discriminates cores which are on the same/ different
processors, by passing appropriate arguments.
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— Initial function extracts parameters from argument and
validates
— Primary function called every MPI Receive

. Identifies network/processor rank
. Switch statement 1dentifies network type

. Appropriate function called to calculate latency

. Primary function factors in correct bandwidth

. Result returned and added to message time
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— Type-specific function requires appropriate arguments
and source/dest rank

— Star: 2 * network latency multiplier

— Ring: Absolute difference between source/dest but may vary
depending upon loop-around

— Tree: Source ranks recursively divided by degree to find common
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— Mesh: Breaks down ranks into Euclidean co-ordinates, to determine
the network location

— Latency of route is calculated by summing absolute differences of
the individual co-ordinates of source and destination
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— Torus: Same as mesh except dimensions have possibility of
wrapping around

— Twisted Torus: Tests every single dimension both ways and takes
the 'best' option, then repeats until destination found
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— General Performance Overview
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Average Latency with Varying Bandwidth

— Variable Tuning Test App: Random, NP = 4, VP = 128
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— Hybrid Topologies

Average Latency with Twisted Torus-? Nested Topologies
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Limitations and Critique

— Twisted torus algorithm is not 100% accurate or bug-
free 1n all situations, problems with implementation

— No accounting for traffic, congestion and any
subsequent re-routing of messages

— Fault injection and fault tolerance not implemented or
tested

— No variation of parameters, whole network uses a
standard defined by user



Future Work

— Implementation of overlay networks and translation
onto virtual network (broadcast)

— Possible conversion to data structure method to track
exact path of messages and allow for upgrade for
purposes of fault injection, congestion ID and message
re-routing

— More in-depth testing of hybrid topologies

— Optimistic PDES implementation, extended MPI
support, performance metric gathering
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