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Abstract 

 

Powerful supercomputers often need to be simulated for 

the purposes of testing the scalability of various 

applications. This thesis endeavours to further develop the 

existing simulator, XSIM, and implement the functionality 

to simulate real-world networks and the latency which 

might be encountered by messages travelling through that 

network. The upgraded simulator will then be tested at the 

Oak Ridge National Laboratory. The work completed 

herein should provide a solid foundation for further 

improvements to XSIM; it simulates a variety of basic 

network topologies, calculating the shortest path for any 

given message and generates a transmission time. 
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1. Introduction 

 

 

1.1 Overview 

 

Since the dawn of the modern computer, there have existed many problems which are 

considered exceptionally large when compared to the computational demand of the 

average application. Such “Grand Challenge” problems (for example, accurate climate 

prediction modelling, highly reliable weather forecasting, simulation of the human 

brain, etc.) require resources which are often far beyond that available in the average 

commercially available computer. Therefore, a need exists to have computers which 

can at least attempt to solve some of these problems in a reasonable amount of time. 

Hence this has become the driving force behind the development of what is known as 

the 'supercomputer'; machines developed specifically for applications requiring 

“exceptionally high-speed computations” [1], and today mostly for scientific 

applications [15]. 

 

 The growth in performance of such systems has been approximately 

exponential, in terms of the number of operations per second which can be performed, 

and this trend looks set to continue, at least for another decade. However, the means of 

achieving this growth have evolved over time; whereas in the past there was a focus on 

improvements in component engineering and integrating new hardware technologies 

into the design of the system, the modern approach is to increase the parallelism of 

such high performance computer (HPC) systems so there exist more nodes working 

concurrently on a problem. With the focus on parallelism, there are a few issues which 

now need to be considered in HPC design which were previously unnecessary. 

Probably the most important of these considerations is the inter-node (or inter-core) 

communication, which was either non-existent or unimportant in early supercomputers, 

since they contained relatively few cores. 

 Modern HPC systems can have millions of cores which are all connected 

together in a network. The communication overhead between cores can take a 
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significant percentage of execution time, and so it may become necessary to develop 

new algorithms for previously optimised programs, to optimise communication and 

thus execution. In the same manner that sequential programs often need to be largely 

rewritten to account for parallel systems, parallel programs may need to be 

restructured for massively parallel HPC architectures. Furthermore these optimisations 

may rely on the topology of the network and communication architecture of specific 

systems. 

 

 Often it is neither practical nor possible to use actual HPC systems when 

attempting to design, test and implement these algorithms. It may also be beneficial to 

study how the devised solutions cope not only with existing architectures, but with 

possible future HPC architectures. Within the last decade several attempts have been 

made to develop HPC simulators, which simulate the execution of millions or billions 

of processing cores running in parallel. Running programs on these simulators can then 

be done to gather experimental data on the programs' performance and scalability. This 

information can then be used to possibly either alter a program's algorithm or gain 

insight into new techniques to exploit massively parallel architectures. 

 

 The purpose of this project is to develop and upgrade an existing HPC 

simulator to account for network topologies and thus inter-node communication. The 

simulator in this project upon which development is taking place is 'XSIM', designed 

and implemented at Oak Ridge National Laboratory (ORNL) in 2009 by student Frank 

Lauer under the supervision of Dr. Christian Engelmann, ORNL researcher. The Oak 

Ridge National Laboratory in Tennessee, United States, contains what is currently the 

most powerful supercomputer in the world, named the Jaguar, as well as a number of 

other notable powerful HPCs and cluster configurations, making it an ideal place to 

work on projects which are related to the study of  large scale architectures. 
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1.2 A Brief History of Supercomputers 

 

It is difficult to determine which system could be said to be the world's first 

supercomputer, as the term is very loosely defined. One consensus is that this title 

belongs to the Electronic Numerical Integrator and Calculator (ENIAC) [14], often 

heralded as the world's first large-scale supercomputer [2]. ENIAC was developed in 

the mid 1940's as a military machine and its first task was to work on the Manhattan 

Project [5] during World War II. It could perform 1,000 floating point operations per 

second (FLOPS), or 1 KiloFLOPS (10^3 FLOPS) [6], which admittedly pales in 

comparison to modern standards [12]. FLOPS is a widely used standard for measuring 

and contrasting the performance of supercomputers. 

 

 In 1958, Seymour Cray (a long-time producer of HPC machines) developed the 

CDC 1604, the world's first completely transistor based system [8]. By the 1960's, the 

focus had shifted to utilising supercomputers for non-militaristic purposes, and they 

began to become used instead for scientific applications. In 1964, Cray then released 

the CDC 6600, which could produce up to 1 MegaFLOP (10^6 FLOPS) [11]. This was 

a significant landmark in terms of sheer processing power and remained the fastest 

HPC architecture in existence for 5 years, until surpassed by the CDC 7600 which 

could produce around 10 MegaFLOPS [4]. 
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Figure 1: A time-line of the development of supercomputers [17] 

 

 In 1976 Cray then produced the Cray-1 system, capable of 160 MegaFLOPS, 

and costing around $8,800,000. Then, in 1985, came the Cray-2 which could produce 

1.9 GigaFLOPS (10^9 FLOPS) [10]. This growth trend continued into the mid-nineties 

when supercomputers started to perform on the TeraFLOP scale (10^12 FLOPS) [13]. 

In 2008, the IBM HPC system nicknamed Roadrunner reached a then record 

performance of 1 PetaFLOPS (10^15 FLOPS), and the Cray Jaguar HPC system at 

Oak Ridge reached 1.75 PetaFLOPS in 2009, and currently at the time of writing is the 

fastest known supercomputer in the world. The Jaguar utilises a Cray XT5 system and 

approximately 2.24*10^5 processing cores. Assuming the current rate of growth in 

processing cores continues at the same rate, it would not be unreasonable to expect 

HPC machines with 10^8 cores by the end of the decade [8, 18]. 

 

 Since the early nineties, there has been a collaborative effort to maintain a list 

which ranks the 500 fastest machines in the world. This list is compiled twice a year, 
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and the peak performance of an HPC system is defined by running the Linpack 

benchmark. Introduced by Jack Dongarra, the Linpack benchmark solves a dense 

system of linear equations [7]. The peak performance achieved over different sizes of 

the problem, as well as the theoretical peak performance, are then included within the 

top 500 list. 
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1.3 Related Work 

 

There exist a number of HPC simulators developed in various scientific and academic 

institutions around the globe. They each have their own advantages and disadvantages 

as creating such a simulator is a very complex process. There are many considerations 

to make in the design and implementation stages depending on what purpose the 

simulator is going to be used for. Because supercomputers themselves often have large 

and complex architectures it is often not practical to simulate the entirety of its features, 

but rather only those which have an impact on the reasons for which the simulator is 

being created. 

 

 One such simulator of note is the Java Cellular Architecture Simulator (JCAS), 

developed by Dr. Christian Engelmann at Oak Ridge National Laboratory during 2002. 

Unsurprisingly given the acronym, JCAS is implemented in the Java programming 

language. It uses a TCP/IP protocol to simulate the communication between nodes, but 

these approaches have a few drawbacks, namely because both TCP/IP and Java are not 

supported on all systems, minimising portability. Nonetheless, JCAS is a robust 

simulator and one of its primary advantages is that it maintains a minimal operational 

overhead and has low resource requirements compared with other simulators, despite 

being written in Java. It can also simulate up to 10^6 simultaneous processes on just 10 

actual cores. The simulator which is the focus of this thesis, XSIM, was originally 

based upon JCAS [25]. 

 

 μπ is another HPC simulator, also designed and developed at ORNL, but 

created independently of JCAS by Dr. Kalyan Perumalla. It utilises the μsik Parallel 

Discrete Event Simulation (PDES) engine, and supports C, C++ and FORTRAN, as 

well as an extended range of implemented Message Passing Interface (MPI) 

commands. μπ can simulate up to 10^5 simultaneous processes and due to its methods 

of implementation is highly portable, able to run on a variety of common operating 

systems such as Windows, Linux and Mac, as well as cluster configurations and 

modern supercomputers such as the Cray XT5 architecture [20]. 
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 BigSim is also a HPC simulator which operates using Charm++, an object-

oriented portable parallel programming language built on C++ [9]. Charm++ is 

machine independent and was built specifically to target the issues of portability, 

latency tolerance, dynamic load balancing, reuse and modularity. It is based around the 

idea of processor virtualisation where the user specifies the interaction between 

multiple virtual processes, and then directly maps the virtual processes to their 

physical counterparts. BigSim also uses the Adaptive Message Passing Interface 

(AMPI), a modified version of MPI, written specifically to work in conjunction with 

Charm++ [22]. BigSim was developed at the University of Illinois, by a research group 

headed by Gengbin Zheng [21]. Each virtual process in BigSim is implemented as a 

thread embedded within a Charm++ object. 
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1.4 Related Technologies 

 

Before exploring the current state of the XSIM HPC simulator, it would be helpful to 

introduce at a few of the features which are central to its operation. One such feature is 

the use of the Message Passing Interface (MPI), which is a protocol that specifies the 

communication procedure between processes running in parallel. MPI consists of a 

number of routines which can then be called from various languages such as 

FORTRAN and C/C++. Some such routines are MPI_SEND and MPI_RECEIVE, 

which are used when a point-to-point message is passed from a sender process to a 

receiver process [16]. 

 

 Other routines include MPI_SCATTER and MPI_GATHER which are for 

collective communication between multiple nodes, where MPI_SCATTER is used by 

the sender process to send data to multiple receiver nodes, and MPI_GATHER is used 

by the receiver process to receive data from multiple sender nodes. MPI also allows for 

specification and manipulation of communication domains, such that nodes can be 

grouped into categories if there exist communication patterns between different subsets. 

XSIM only employs a relatively small subset of the MPI routine library; the complete 

protocol is large and extensive allowing for advanced communication, which is 

unnecessary at this stage in the simulator's development. 

 

 Some of the features of note which XSIM does utilise include both blocking 

and non-blocking communication. MPI_SEND and MPI_RECEIVE are examples of 

blocking communication. When this approach is used, a node which calls one of these 

commands cannot proceed with other instructions until they have successfully 

completed. MPI_ISEND and MPI_IRECEIVE are examples of non-blocking 

communication. As the term implies, these MPI calls allow the node upon which they 

are executing to proceed even though the send or receive may not have completed. The 

orders in which instructions complete is often vital to a program producing the correct 

result, and so it is necessary to  be mindful of data dependencies when using non-

blocking communication and so to handle these manually [26]. 
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 Another related topic is Parallel Discrete Event Simulation (PDES). PDES 

refers to the simulation of a discrete event or program on a parallel computer. A 

program can be considered to be 'discrete event' when it consists of a series of 

sequential time-steps, each with a specific configuration of data held in memory. At 

any given point in the execution sequence, there is a fixed image which represents the 

entire program and indicates its current state. When the program is rolled forward a 

single time-step and data is modified, the image changes to reflect this. An MPI call is 

an example of an event which would alter the system between one step and the next. In 

a parallel computer, each node or process maintains an active queue of events which it 

has been allocated, and as time progresses these events are carried out. 

 

 In order to maintain reproducible results, a PDES system must be deterministic. 

That is to say, events must be guaranteed to execute in the correct order if they have 

dependencies between one another. To overcome this problem, each event is given a 

virtual time-stamp which indicates when that event was issued. Ideally, dependent 

events can then be executed in the correct order. It should also be noted that the system 

monitors the event-queues of all nodes to determine the lowest current time-stamp 

within the system. This is known as the global virtual time. 

 

 There exist two main approaches to ensure the deterministic nature of a PDES 

system. The first is the conservative approach. This relies on making absolutely certain 

that the next event, which is chosen from the various input queues belonging to a given 

node, possesses the lowest virtual time-stamp that it is possible for that node to receive. 

This decision is made after examining all the local time-stamps available, along with 

the global virtual time (GVT). The conservative approach can lead to a deadlock 

situation, where a sub-network of inter-communicating nodes are waiting on one 

another for an event with a lower time-stamp than any of the others currently within 

their respective local queues. This issue can be resolved if a 'lookahead' strategy is 

used, which foresees such deadlock situations by allowing neighbouring nodes to 

communicate. 
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 The second is the optimistic approach. Some causality errors (when dependent 

events are executed out of sequence) may be permitted to occur because each node 

executes the event with the lowest virtual time-stamp that it can find locally, even if 

this is not guaranteed to be the lowest virtual time-stamp it will receive from an event 

which has not yet arrived. If a causality error does arise, the system can be corrected 

using 'roll-back' and 'time-warp' mechanisms which carefully reset the system to a 

prior state before the data was corrupted by the out of order execution. 

 

 Sometimes not all changes committed to the system since the error occurred 

need to be reversed. Some changes may have been outside the chain of dependent 

events and thus would have  happened regardless of the error. Using this information, 

only the changes which causally followed from the error need to be rolled back. The 

large downside of the optimistic approach is that there are added memory costs of 

storing data about previous system states in case a roll-back is necessary. Such costs 

though are usually deemed acceptable when contrasted with the time wasted in 

conservative approaches when nodes idle unnecessarily waiting for neighbours to 

complete tasks when they may in fact have tasks of their own which could be 

completed without affecting the deterministic outcome of the system [23]. 
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1.5 XSIM – An Overview 

 

The XSIM simulator, originally developed by Frank Lauer, utilises a C++ core based 

upon the Java core of the JCAS simulator, and has an MPI layer running over the top 

to allow communication between nodes, modified from the TCP/IP layer of JCAS. The 

simulator has been implemented using a conservative PDES approach, meaning that 

there is no requirement for roll-back as it is impossible for causality errors to occur. 

However, deadlock is an issue that has to be handled, and there is no current 

'lookahead' approach used to deal with this problem. Using the MPI_ANY_SOURCE 

instruction within a send or receive is also not recommended as it can lead to out of 

order execution. 

 

 XSIM utilises an algorithm to allocate each logical process a virtual MPI rank 

(a unique identifier for each virtual node). These ranks are then assigned a real MPI 

rank (a unique identifier for each real node), such that each real MPI rank has an equal 

number of virtual MPI ranks associated with it. This ensures that when running the 

simulator on a multi-core configuration, each core can be given a theoretically equal 

workload, and thus a simulation of 10,000 cores would quite happily run on a machine 

with 10 real cores, giving each real core 1,000 virtual cores to simulate. This same 

algorithm can then be used to determine the real MPI rank destination of messages for 

a given virtual MPI rank. 

 

 One issue in HPC simulator design is to ensure that inter-node communication 

is as realistic as possible. Variables belonging to one virtual node should not be 

readable by others without some form of communication, even if those virtual nodes 

reside on the same real node within the simulator. If this were the case, it would defeat 

the purpose of MPI communication between virtual nodes. To further this concept, the 

simulator contains no global variables. All data is locally created, stored and shared via 

communication, as would be the case in a real massively parallel modern HPC. 

 

 Furthermore, CPU contention can cause a few problems. Each virtual node 



- 17 - 

 

effectively emulates a single-threaded CPU, and thus only one logical process (or 

event, such as an MPI call) is allowed to be active at any given time. Any logical 

process that is not currently active is placed in a self-contained loop so that it has no 

concept of inactivity and believes itself to be always running. When the CPU switches 

from one logical process to another, it must save the variables and parameters of the 

outgoing process and load those belonging to the incoming process. 

 

 Each virtual node has been given two queues, an incoming queue and an 

outgoing queue. All outgoing queues are redirected to a special purpose CPU which 

has the task of overseeing inter-node communication, redirecting all received messages 

to the corresponding incoming queues of their destination nodes. Each message 

possesses two virtual time-stamps, one which indicates the time that the message left 

the source node, and the second which is an estimate for the time of receipt at the 

destination node. This information is used to determine in which order the messages 

should be processed, where higher priority is given to those messages which have 

lower time-stamps. 

 

 The root node keeps track of the global virtual time (GVT), indicating the 

lowest time-stamped event currently active in the simulator. The value of the GVT is 

useful for determining which currently queued events are safe for their respective 

nodes to execute. In optimistic systems the value of the GVT can also be used as an 

indication of where to roll-back to should a causality error arise. In order to maintain 

the correct GVT, it is necessary for each node to periodically communicate its local 

virtual time (LVT) to the root node. 

 

 The LVT of a node is determined by taking the lowest time-stamp of all events 

within its incoming and outgoing queues, in a similar fashion to the way that the GVT 

is determined by by taking the lowest LVT of all nodes. This gathering of all LVT data 

is done using a tree-like data structure. Neighbouring nodes communicate their LVT to 

a local root node, which then calculates the lowest LVT from those it receives 

(including itself), and passes this on to the local root at the next tier up the tree. This 
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divide and conquer approach eventually results in the minimum LVT (the GVT) being 

passed to the root node. The strategy is implemented asynchronously, as there is no 

specified time interval when the entire simulation pauses in order to update the GVT. 

Instead, each node updates its LVT whenever it is altered, thus the GVT is assured to 

be as up to date and accurate as possible [24]. 
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1.6 Proposed Changes 

 

Initially there was a list of proposed changes to XSIM, however throughout the 

development of the project these have evolved. XSIM is effectively a work in progress, 

and there are many directions which could be explored depending on what goals the 

simulator should be aiming to achieve.  Originally the main focus points chosen 

included a concept of real-time, useful for gathering performance metrics on the run-

time of the simulator which could then be used for statistical purposes to monitor 

running the simulator with different parameters such as the number of virtual nodes. 

 

 The second point considered was a concept of fault injection, such that node 

failures could be added to the system, both by manually specifying the point of failure, 

or by doing so in a stochastic fashion such that nodes would fail at random; 

information that would be passed to the simulator via command line arguments. This 

would allow for the study of fault tolerance, to monitor the simulator and investigate 

the maximum percentage of single points of failure that the system could handle before 

total failure ensued. 

 

 A few other minor alterations were also discussed. For example, extending the 

range of supported MPI calls and libraries, as XSIM currently only supports what is 

essentially the minimum number of calls necessary for performing a basic simulation, 

including both point-to-point and collective communication models. It is also possible 

that by exploring the inclusion of additional MPI calls there may be more efficient 

ways to execute some of the existing implemented methods. Before the start of the 

report, the most recent feature to be implemented was virtual time, and this may need 

some tweaking as the original method of implementing virtual time was inefficient and 

not very scalable. 

 

 One implementation feature that was decided against was to upgrade the 

simulator to handle an optimistic PDES approach. This is a large and complex task 

beyond the scope of the project, and implementing such would likely require the 
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dedication of an entire project to itself. One of the problems which leads to 

complications when developing an optimistic PDES system is the need to constantly 

allocate memory for the check-pointing process which holds the state of the system in 

case of a roll-back. Another feature considered but ultimately not selected was logical 

process migration; moving a logical process from one virtual node to another in order 

to optimise the speedup due to parallelism by ensuring all nodes are kept as active as 

possible. Once again a feature such as this would probably need an entire project 

dedicated to its development. 

 

 Ultimately, a single main objective was chosen on which to focus the project. 

This is to implement a concept of network latency within the simulator. At present, 

there is no concept of a network model. Messages sent and received between two 

virtual nodes are transmitted instantly, with no consideration for the time that the 

message would take to travel from the source to the destination. The objectives of the 

project have therefore been laid out as follows: 

 

 

 1. Simulate network latency. 

  1.1 Develop network topology model. 

  1.2 Implement latency cost calculations. 

  1.3 Implement bandwidth considerations. 

  1.4 Develop hierarchical structure within topology. 

 

 2. Implement fault injection. 

  2.1 Enable determinate failure of node(s). 

  2.2 Enable indeterminate/random failure of node(s). 

 

 

 As is evident in the objectives above, implementing fault injection has become 

a secondary objective and its completion will depend upon the complexity of the 

primary objective. Simulating network latency has several key components which 
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must be completed. Firstly, a concept of a network topology must be defined so that it 

can be determined exactly how the virtual nodes are connected together. Secondly, 

there must be some kind of relation between the network topology and the latency of 

traversing that network between the source and the destination; this latency must then 

be calculated. Thirdly, there must be some consideration of bandwidth which 

determines how quickly data can pass through the network. And finally, it may be 

necessary to design a hierarchical network topology. 

 

 The secondary objective of fault injection will then involve developing the 

functionality to turn off virtual nodes, either allowing the user to manually specify 

which nodes should be shut off and when, or allowing the user to specify a rate of 

failure and then select random nodes to shut off periodically throughout the program's 

execution. 
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2. Design 

 

 

2.1 Assumptions 

 

The first objective is to identify any necessary assumptions made about the system. 

For the purposes of simplicity is was decided that all elements of the network shall be 

uniform, meaning that the bandwidth of all links is identical, all nodes are identical 

(routers and processing nodes have no functional difference when routing messages), 

each link takes the same amount of time for a message to traverse across and the 

topology across the network is consistently identical. 

 

 One of the issues with the implementation of a network class, is that there are 

so many different possible levels of complexity which can be added to the simulator to 

provide greater functionality and more customisability for the user's, or the 

application's, needs. However, these are considerations which can be added later in the 

simulator's development; the main focal point for the implementation is to construct a 

working network class. However, as will be shown in the following sections, the 

ability to customise certain features of the network and its available topologies has 

been implemented should these be required. 
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2.2 Strategy 

 

In order to create a meaningful concept of latency within the simulator, every 

communication between two nodes should have an associated cost, which reflects the 

time taken to send the message from the source to the destination. Latency is 

proportional to the network distance between the sender and the receiver, and thus also 

proportional to the number of intermediary nodes that must be visited en-route to the 

destination. 

 

 There are many different ways in which the nodes may be connected and thus 

many different forms of network topology which must be considered. The simulator 

must therefore be able to differentiate between topologies and produce an accurate 

latency value between any two given nodes, A and B. However, depending upon 

network configuration and furthermore, depending upon which two nodes A and B 

happen to be, this value may vary greatly within a single topology. For example, 

within a ring network, the latency between two adjacent nodes is going to be less than 

the latency between two distant nodes which occupy opposite sides of the ring. It may 

also be the case in certain networks that sending a message from A to B may not have 

the same cost as sending a message from B to A (for example, in a ring network where 

traffic is only permitted in one direction). 

 

 There are two possible ways to overcome this issue and calculate latency 

between source and destination. The first is to use data structures to simulate an actual 

network topology. For example, there may exist a node class, and when the simulator 

is executed, an object of this class is created for each virtual core. The class might then 

have a private array member titled 'links' which contains a dynamic list of all other 

nodes directly connected to that node; considered its neighbours. This idea though was 

quickly dismissed as a viable option purely due to both the computational and memory 

overhead that would be incurred from instantiating an object for every single core, 

particularly if XSIM is simulating millions of cores. In addition, it may be that the 

simulator is being used to execute a program which only utilises a small subset of the 
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total number of cores, making it a waste of time to define a large number of objects at 

start-up which will never be accessed. 

 

 Another problem with this approach is that calculating the latency between two 

nodes will require accessing the source node object and analysing its neighbours. 

Because for distantly located nodes there is no method of determining travelling to 

which neighbour will place the message closer to the destination, all neighbours must 

then be recursively accessed and analysed. The result can be, that if two nodes are 

located at the maximum network distance from one another, then every single core 

object is accessed and, once again, with millions of cores this is a significantly 

unacceptable amount of wasted overhead. 

 

 The second approach is not to create an actual topology simulation by using 

objects but instead to simply emulate the result of traversing the network by using 

mathematics to calculate the relative network distance between source and destination. 

For example, suppose there exists a simple bi-directional bus network (i.e.: a one 

dimensional mesh) where node zero connects to node one, which in turn connects to 

node two, two connects to three, three to four, and so on. Suppose for the moment that 

latency is purely based upon the number of intermediary links that the message must 

pass through when travelling from source to destination. 

 

 So passing a message from node two to node three would have a relative 

latency of 1. Passing a message from node two to node four (or from node four to node 

two) would have a relative latency of 2. Latency can then simply be defined as the 

absolute difference between the source rank and destination rank. Larger latencies may 

then be obtained by multiplying the relative distance obtained by a pre-determined 

'multiplier', such that for example, traversing node two to three may have a latency of 

10 and traversing node two to four may have a latency of 20. This mathematical 

approach is obviously far simpler than recursively accessing and analysing data 

structures for all objects as it can be performed instantly with one mathematical 

formula, although more complex topologies will need more complex formulae. 
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2.3 Function Design 

 

 It was decided that the simulator should at least implement some of the more 

common topologies in use today in order to be pertinent to modern HPC design. These 

should include a star network, a ring network, a mesh, a torus, a twisted torus and a 

tree. Time permitting, some of the more popular networks in existence within modern 

supercomputers may also be implemented such as the dragonfly topology, used within 

the Jaguar supercomputer at Oak Ridge, and the butterfly topology. The first step in 

design is to analyse each of these network types and calculate the mathematical 

formula for determining the quickest route between any source and any destination. 

 

 The star network is the easiest of all topologies to calculate, as the latency is 

constant regardless of the source and the destination. Ultimately, the latency function 

for a star network will simply echo back the predetermined latency multiplier and 

double this value to simulate the cost of travelling firstly from the source to the central 

switch, and secondly from the switch to the destination. 

 

Figure 2: Star network 

 

 A ring network is also relatively straightforward to implement, because it 

requires calculating the integer difference between the source rank and the destination 

rank, and returning this value. However, there is the added complication that the 

destination rank may be lower than the source rank. As a ring is uni-directional, in this 

instance the message must travel to the final node in the ring, which then links back to 

the first node, essentially looping around the network. In this instance the latency will 
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instead be equivalent the total number of nodes in the ring, minus the difference 

between the source rank and the destination rank. 

 

Figure 3: Ring network 

 

 A mesh network is both a simplification and an extension of the same concept 

used in a ring topology, except that it is legal to travel in both directions, and there may 

be more than one dimension to consider. In this case, calculating the distance between 

source and destination is simply a case of traversing each dimension one at a time, 

effectively aligning each dimension in turn from the source to the destination. Because 

the dimensions of a mesh do not loop around there is no need to consider whether the 

source rank is lower or higher than the destination rank as is the case with a ring, but 

simply to calculate the absolute difference between both source and destination. Once 

each dimension has been successively aligned, the total number of steps needed to do 

this in each dimension can be totalled to work out the latency. 

 

Figure 4: Mesh network 

 

 A torus network works in exactly the same way as with a mesh, except that like 

a ring, each dimension can loop around on itself, so the same technique for doing this 

with a ring is re-used to calculate the difference should a loop around become 

necessary. However, unlike a ring, a torus is bi-directional and messages can travel in 

either direction. The implication of this is that if the destination rank happens to be 

lower than the source rank (and thus would indicate a definite need for a loop-around 
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in a ring), it does not necessarily mean that looping around will produce the fastest 

result. In fact, for every dimensional alignment, regardless of source rank and 

destination rank, it must be checked whether it would be quicker to travel directly 

between source and destination, or to loop around. Once again, after all dimensions are 

aligned in this way, the total number of steps required yields the latency. 

Figure 5: Torus network 

 

 A twisted torus is perhaps the most challenging topology of all those listed 

above. In a twisted torus, once the last element of a given dimension is reached, the 

structure loops around to the first element of that dimension as with a standard torus. 

However, unlike the standard torus, other dimensions may also be incremented (or 

decremented depending on the direction of travel) whenever a dimension loops around. 

Ultimately this means that the dimensions are smeared (or twisted) into one another, 

and it is no longer a case of traversing each dimension independently of the next 

because dimensions now in fact depend on one another. The quickest route between 

source and destination becomes less obvious. The issues of a twisted torus will be 

further addressed in the implementation section of this report. 
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Figure 6: Twisted torus network 

 

 Finally there is the tree topology. The latency calculation must allow for trees 

of varying degrees, not just the obvious binary tree. Latency calculation will involve 

using the source rank and destination rank to calculate how far up the tree the two 

nodes share a common ancestor, and then working the number of steps it takes to get 

up to that ancestor from the source rank and back down to the destination node from 

the ancestor. The results obtained from the mathematical formulae described above are 

then multiplied by the latency multiplier to calculate the base latency. 

 

Figure 7: Tree network 

 

 The time that a message takes to travel from source to destination is of course 

not only dependent upon the route it takes through a given network topology, but also 

upon the size of the message being transmitted, as well as the bandwidth. XSIM 

currently already contains inbuilt information regarding message size, and this will 

need to be factored into the latency calculation. There is no correlation between the 
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message size and the route that the message takes through the network. So an 

additional parameter of bandwidth will need to be specified which will then be used in 

conjunction with the message size to work out how long it will take to get a message 

through a given point in the network. This result will then be added to the base latency 

calculated previously to determine the total latency for getting the message through the 

selected network route. 

 

 Then, there is the issue of hierarchy. The latency between all nodes is not 

identical; the cost of traversing a link between neighbouring nodes is not consistent 

across the entire network. Although there may be various reasons why this is not the 

case, in this project it has been chosen to largely ignore the more minor variations, but 

to instead consider the larger implication of core hierarchy. Thus far, it has been 

assumed that all cores operate within the same local environment, however in reality, it 

may be that the HPC consists of many processors, each with its own subset of cores. 

 

 The cost of travelling from one core to another located within the same 

processor will be less (possibly far less) than the cost of travelling from one core to 

another located on different processors. A method needs to be calculated to determine 

which cores are located on which processors, and thus whenever a message is sent 

between two nodes, it can be recognised if they are on the same processor or not. It 

would then also be necessary to specify two different network topologies, one type of 

topology that indicates how each processor's cores are connected, and another that 

indicates how all processors are connected together within the network. Using this 

information, the latency calculations can then be applied for either inter-core 

communication, or inter-processor communication using the appropriate parameters 

for each to determine the correct base latency. 

 

 The secondary objective of the project is to attempt to implement some method 

of fault injection. The two stages of this are deterministic fault injection and statistical 

fault injection. In deterministic fault injection, the user can specify the failure of 

specific nodes at will via the console during execution. The simulator then shuts these 
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nodes down such that no message may pass through them, and must find alternate 

routes. In doing so, the mathematical models of the aforementioned latency calculation 

will have to be altered to account for this. There may be some kind of limitations 

which specify if node [x,y,z] is offline, then there is a specific set of inhibitory rules 

which come into play and limits the freedom of messages to move in those dimensions 

which violate that position. 

 

 For statistical fault injection, the user specifies a likelihood of a node being 

shut-down. This is a percentage value, which can either indicate how many nodes will 

randomly fail in any given time-step, or how many nodes should fail over the course of 

the simulator's total execution time; the second alternative might be problematic as it is 

not known how long a given application will take to run until it completes. The exact 

nodes which go offline, and when they go offline, is entirely random and, once again, 

the mathematical model for latency calculation will have to be updated to account for 

this phenomena in a similar way to before. 

 

 For both of these varieties of fault injection, it may also be possible to recover 

nodes. In deterministic fault injection, the user may specify a node which has come 

back online that was previously offline, and in statistical fault injection, it may be that 

after a given number of time-steps, any nodes which have entered failure are restored 

to a working state. This would require a dynamic management of the mathematical 

latency model so that it is kept in constant awareness of which nodes are working and 

which are not and finds the fastest route regarding only those nodes which are 

presently operational. 
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3. Implementation 

 

 

3.1 The Network Class 

 

The first step taken during implementation was to develop an entirely new object class 

dedicated to the network model. This network class is responsible for performing all 

manner of calculations relating to the network topology and any associated latency 

calculations. It has two main responsibilities within the simulator; firstly, when the 

simulator is initialised, the network class is instantiated as an object and various 

arguments are passed to it (taken from the command line, specified by the user) which 

determine the nature of the network. Secondly, every time a virtual node receives an 

MPI message, a method of this network class is called to determine the time the 

message took to travel through the network from the source to the destination, and this 

'latency' value is returned. 

 

 The simulator was then modified such that the user is able to specify a single 

argument for the network class which in itself may contain a number of different 

parameters. This is the argument which is then passed to the network object when it is 

first instantiated, and the network constructor breaks down this often lengthy 

parameter using delimiters to extract its various elements which are then stored in 

private variables belonging to the network object. Arguably the most important such 

parameter is the network type, for instance mesh or torus, which defines the topology 

of the network. If no network type is specified, a default star topology is assumed. The 

next argument is the network-latency multiplier, which determines the latency or 

traversal time of a single link between two neighbouring nodes. 

 

 Later on in the implementation, when the hierarchical element was being 

implemented, a processor-latency multiplier was also added which determines the 

latency or traversal time of a single link between two neighbouring cores within a 

processor. An additional argument was added to supply the number of cores that each 



- 32 - 

 

processor has. Then, when calculations are being done to work out the latency of a 

message during execution, and it can be determined whether the source and destination 

are on the same processor or different processors, either the network-latency or the 

processor-latency can be called upon depending upon the result. 

 

 Most of the remaining parameters have duplicates as with the network-latency 

and processor-latency, because it is necessary for defining both the structure of the 

network as a whole and the structure of the processors. There is also network/processor 

degree which indicates the number of dimensions that the relative topology has, and 

network/processor dimensions which specifies the values of those dimensions. For 

torus and twisted torus topologies, there also exists the ability to handle network/core 

toroidal properties which specify which dimensions, if any, are toroidal (wrap around 

from the final element to the first). For twisted toruses there are two further parameters; 

toroidal jump is an integer array and toroidal degree is a single integer. The 

significance and use of both of these will be explained when the development of the 

twisted torus is explored. 

 

 Finally, there exists the network/core bandwidth which determines the rate at 

which data can pass through the links between nodes and this is used to calculate the 

additional latency overhead relative to message size. Bandwidth is specified in 

Megabits per second (Mbps). An example argument passed to the network constructor 

may appear as follows: 

 

ntype=mesh,nlatency=100,ndegree=2,ndimensions=3*3,nbandwidth=10,cores=8,ptype

=twisted,platency=10,pdegree=3,pdimensions=2*2*2,pt_connectedness=101,pt_jump

=1*1*2,pt_degree=1,pbandwidth=100 

 

 Most of these values are assigned defaults if they are not specified by the user. 

There also exists some error checking to ensure that various parameters that rely on 

each other are compatible. For instance, the product of the processor dimensions must 

equal the number of cores, and number of cores multiplied by the product of the 
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network dimensions must equal the number of virtual nodes, found within a separate 

argument specified by the user. This error checking is done in the constructor after 

initialisation to ensure that there will be no problems and conflicts later when 

attempting to calculate message latencies. 
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3.2 The Apply Method 

 

 When an MPI message is received by a node, the apply method of the network 

object is called to calculate how long the message took to travel through the network. 

The first check that is made is to determine whether the source and the destination are 

on the same processor or on different processors. In a similar manner to the way in 

which the virtual network topology is not actually stored in a data structure but 

calculated mathematically, it is not known by any external process which virtual cores 

are on which processors. Instead, this is calculated every time the apply method is 

called. 

 

 This is simply determined by taking the source rank and the destination rank of 

the MPI message, and dividing them both by the number of processors (calculated by 

dividing the total number of virtual nodes by the number of cores per processor). If the 

results are equal, then they exist on the same processor, otherwise they are on different 

processors. This considered, one of two things may then happen. Firstly, if the nodes 

are seen to be on different processors, then the function proceeds to the next step. 

However, if the nodes are on the same processor, the function is recursively called, this 

time passing a different set of parameters. 

 

 The reason for using different parameters becomes apparent when calculating 

the latency is considered. If the nodes are on different processors, the network latency 

and network bandwidth will be needed. However, if the nodes are on the same 

processor, the processor latency and processor bandwidth will be needed. Furthermore, 

the topology of the network and the topology of the processors may not be identical. It 

may be the case for example, that each processor operates a 2*2*2 mesh of 8 cores, 

and all processors are then connected in a binary tree; the number of possibilities is 

vast. Even if the topologies are identical, it is necessary to calculate the relative 

position of the source and destination within the network, or within the processor. 

 

 The source and destination ranks with respect to the network can be calculated 
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by identifying the ranks of the processors that they are each located on. The processor 

rank is determined as before, by dividing both source and destination by the total 

number of processors. The source and destination ranks with respect to the processor 

are only necessary if they are located on the same processor. In this case, the modulus 

function is used instead of divide, to obtain the remainder after calculating the 

processor rank. This remainder then determines the 'core rank' of both source and 

destination, within the processor. For example, suppose the source rank is 14 and the 

destination rank is 20, operating on a network composed of processors with 8 cores 

each. The source rank is on processor 14/8 = 1 and the destination rank is on processor 

20/8 = 2. They are on processors 1 and 2 respectively. 

 

Figure 8: Example of node partitioning into a network with 3 processors and 8 cores 

per processor 

 

 Alternatively, suppose the destination rank is now 15. Now, both ranks are on 

processor 1. So we then determine their respective ranks on the processor. The source 

core-rank is now 14%8 = 6 and the destination core-rank is now 15%8 = 7. So the 
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core-ranks are 6 and 7 within processor 1. Depending on whether or not source and 

destination are on the same processor, either network or processor-specific arguments 

are passed to the next function, which calculates the latency. 

 

 In order to do this, the topology has to first be identified, which is done via a 

large case statement. If the source and destination ranks are on different processors, the 

network topology is needed; however if the ranks are on the same processor, the 

processor topology is needed. A topology-specific function is then called, to which 

various arguments are passed for calculating the latency of the MPI message. This 

function will always take the arguments for source, destination, and the latency-

multiplier (which as explained previously will all vary depending on the original 

source and destination ranks). Additional arguments may be required depending on the 

network type, and these will be discussed in the following section. 
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3.3 Topology 

 

 3.3.1 Star and Ring 

 

 The star topology was as straightforward to implement as anticipated. It is the 

only network topology for which there exists no function for calculating latency; since 

source and destination rank have no bearing on the latency, there is no need for one. 

The star case simply echoes back double the latency-multiplier value. This doubling is 

done to account for the two steps in sending a message through a star network. First 

the message must travel from source to the central node, then from the central node to 

the destination, as explained previously. 

 

Figure 9: A message will always take 2 steps in a star network 

 

 The ring topology does need a separate function because the latency is 

dependent upon the source and destination. Again, as discussed in the design section, 

this is rather straightforward; all that must be done is to find the product of the latency-

multiplier and the number of intermediary links that the message must travel through 

to get there. If the destination rank is ahead of the source, then this is destination minus 

source, and if the source rank is ahead of the destination, then this is node count minus 

source, minus destination, as illustrated below. 
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Figure 10: A message 'looping around' a ring to reach its destination 
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 3.3.2 Mesh 

 

 Implementation of the mesh topology becomes a little more complex as various 

extra parameters are now necessary. First, it is necessary specify the degree of the 

mesh, or the number of dimensions that it has, as well as exactly what these 

dimensions are. There might be a square mesh of degree 2 with dimensions 5*5, or a 

mesh of degree 4 with dimensions 8*8*3*2. If a mesh is thought of as a vector space, a 

node's position within that space can be defined as a Euclidean vector. So in order to 

calculate the positions of the source and destination ranks, these must be broken down 

into their Euclidean counterparts. 

 

Figure 11: All dimensional representations hereafter are laid out in this fashion 

 

 The initial ranks are divided by the first dimension, and the modulus of this 

divisor gives the location in this dimension where the node can be found. Then, the 

divisor is divided by the second dimension, and once again the modulus of this second 

divisor specifies the location of the node in the second dimension. This procedure is 

done repeatedly depending upon the degree of the mesh until both source and 

destination have been translated into two Euclidean co-ordinates. For instance suppose 

the source co-ordinate is 6, and there exists a mesh of degree 3, consisting of 

dimensions 2*2*2. Dividing the source rank by the first dimension; 6/2 = 3 remainder 

0. So the z dimension is 0. Taking the divisor 3 and dividing by the second dimension, 

3/2 = 1 remainder 1. So the y dimension is 1. Taking the divisor 1 and dividing by the 

third dimension, 1/2 = 0 remainder 1. So the x dimension is 1. By reversing the order 

of these results, it can be seen that  node 6 is located at co-ordinates (1,1,0). 
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 The following illustrations demonstrate some possible mesh configurations and 

the resultant co-ordinates that are obtained by performing this calculation on each node. 

This is merely to give an idea of the relative sorts of positions of each node within 

mesh networks, and the general relationship that exists between location and rank. 

These guides can be extrapolated for networks of any degree and size. It should be 

noted from Figure 11, that unlike the conventional labelling of axes, in the subsequent 

diagrams the vertical is the x-axis and the horizontal is the y-axis. There is no 

particular reason things were done this way, it became personal preference when 

making diagrams throughout the project. 

 

Figure 12: The Euclidean co-ordinates in a 2*3*2 mesh 

 

 

Figure 13: The Euclidean co-ordinates in a 2*2*2*2 mesh 

 

 Once the Euclidean co-ordinates for source and destination have been 
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calculated, the quickest route can be determined by considering each dimension in turn, 

and the respective co-ordinate in both the source and destination rank, and summing 

the absolute differences. Suppose that there exists a 4*4 mesh, the source rank is 5 and 

the destination rank is 15. The respective Euclidean co-ordinates are [1,1] and [3,3]. So 

the latency can be calculated by summing the differences in the x dimension and the y 

dimension; (3-1) + (3-1) = 4, as illustrated below. By finding the product of this result 

and the specified latency multiplier, the latency can be calculated. 

 

Figure 14: One possible shortest path that the message may take 
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 3.3.3 Torus 

 

 The latency in a torus network is calculated in a similar fashion. A torus 

network is almost identical to a mesh, with the added consideration that each 

dimension wraps around from the last element to the first, in a similar manner to a ring 

(except of course that it is possible to travel in both directions). So calculating the 

latency is done in almost exactly the same way. Euclidean co-ordinates are extracted 

for source and destination and the differences are then summed. However, it is now 

possible to make the transition in each dimension in one of two directions; either as in 

a mesh, where the message travels through the centre of the mesh between the source 

and the destination, or by looping round in that dimension and crossing the link which 

joins the first and last elements. 

 

 The toroidal connectedness is an additional parameter which is passed to the 

torus latency function. This binary string specifies which, if any, dimensions are 

toroidal. The second option of travelling around a dimension via the link connecting 

the first and last nodes is only available in dimensions which are toroidal. For example, 

[1,0,1] indicates that the first and third dimensions are toroidal but the second is not. 

Non-toroidal dimensions are therefore treated exactly like they are in a mesh, by 

calculating the absolute difference in source and destination co-ordinates. A torus with 

no toroidal dimensions is therefore simply a mesh. 

 

Figure 15: A 3*3 torus with toroidal connectedness vector of [0 1] (left) and [1 0] 

(right) 
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 Obviously for toroidal dimensions, it becomes necessary to calculate which of 

these methods is fastest for each dimension. This is a fairly straightforward operation; 

the respective co-ordinates of a dimension are extracted from the source and 

destination, and their absolute difference is returned as in the mesh function. This 

value is then compared with the size of that dimension. If the absolute difference is 

greater than half the size of the dimension, it is evident that it would be quicker (in the 

sense that the message passes through less intermediary nodes) to traverse the 

dimension by looping around via the link connecting the first and last nodes. 

 

 For example, suppose that the Euclidean co-ordinates of the source and 

destination are [1,0] and [3,3] in a 4*4 torus. The differences between each dimension 

are x = (3-1) = 2 and y = (3-0) = 3. Considering the x dimension; 2 is not greater than 

half of the size of the x dimension, 4, so it would not be any quicker to traverse that 

dimension by 'looping around' between the first and last nodes. In fact in this instance, 

because 2 is exactly half of 4, it wouldn't make any difference in which direction the 

message travels – both methods would have to travel across 2 links. Now considering 

the y dimension; since 3 is greater than half of the size of the y dimension, which is 

again 4, it would be quicker to traverse this dimension by looping around between the 

first and last nodes. The following illustration demonstrates this route, along with a 

few other examples. 

Figure 16: A 4*4 torus with possible shortest paths for a couple of communications 
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 3.3.4 Twisted Torus 

 

 The twisted torus function is the most complex of all, comprising a large 

number of loops which perform various checks and comparisons between co-ordinate 

values. As with mesh and torus, the first task is to calculate the Euclidean co-ordinates 

of both source and destination. The big difference in a twisted torus is that dimensions 

are smeared together. In a mesh or torus, traversing along one dimension has no 

bearing on the position of the message in regards to the other dimensions. All 

dimensions essentially exist independent of one another and can be treated as such. 

However, the nature of a twisted torus, as briefly outlined in the Design section, means 

that when a toroidal dimension links between the first and last nodes, it also changes 

the value of another dimension. 

 

 Considering this fact, there are a further two parameters which are passed to the 

twisted torus function, as well as all the previous parameters which are used for a torus 

(source, destination, latency, degree, dimensions and toroidal connectedness). The first 

such parameter is the toroidal degree; this determines which degree is affected by 

travelling toroidally in a given dimension. Suppose there exists a twisted torus network 

with degree 3 and toroidal degree 1. Assuming that all dimensions are toroidal, this 

means that the x dimension (first) loops around into the y dimension (second), the y 

dimension loops around into the z dimension, and the z dimension loops back into the 

x dimension. 
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Figure 17: A 3*3*2 twisted torus with toroidal degree of 1, twists of the frontal nodes 

are highlighted 

 

 Now assume the toroidal degree is 2. The x dimension (first) loops around into 

the z dimension (third), the y dimension loops around into the x dimension, and the z 

dimension loops around into the y dimension. Simply put, the toroidal degree specifies 

how many dimensions 'ahead' of the current dimension must be counted in order to 

find the dimension which is changed by the twist; it determines which dimensions 

smear into which. 

Figure 18: A 3*3*2 twisted torus with toroidal degree of 2, twists of the frontal nodes 

are highlighted 
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 The second parameter is toroidal jump; this is a vector which determines by 

how much the related dimension is incremented when the dimension being operated on 

loops around. Assuming a twisted torus of degree 3, where all dimensions are toroidal, 

a toroidal jump vector of [2,3,1] and a toroidal degree of 1 would imply that looping 

around in the x dimension would increment the y dimension by 2, looping around in 

the y dimension would increment the z dimension by 3, and looping around in the z 

dimension would increment the x dimension by 1. Again, the following diagrams are 

provided to demonstrate variations of the toroidal jump. 

 

Figure 19: A 4*4 twisted torus with a toroidal jump vector of [1 2] 
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Figure 20: A 4*4 twisted torus with a toroidal jump vector of [2 1] 

 

Figure 21: A 4*4 twisted torus with a toroidal jump vector of [2 2] 

 

 After calculating the Euclidean co-ordinates, the twisted torus function then 

proceeds to examine each dimension in turn. Two vector variables are used to hold the 

positions after traversing that dimension directly and by traversing that dimension by 

looping around, as was done in the torus function. The direct vector simply involves 

replacing the corresponding co-ordinate in the source with the one in the destination. 

For example if the source were [0,2] and the destination were [3,1], then examining the 
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x dimension would give us the new position [3,2], equally examining the y position 

would instead yield [0,1]. 

 

Figure 22: Testing direct traversal in the x (red) and y (green) dimensions 

 

 If the dimension is toroidal, the loop around vector is calculated too. This 

involves replacing the corresponding source co-ordinate with its destination 

counterpart as before, however now it must be taken into consideration how the other 

dimensions are affected by this loop. Firstly, it needs to be determined which 

secondary dimension is affected by traversing the current one. The toroidal degree 

parameter comes into use here, however it needs to be considered that the current 

dimension plus the toroidal degree may be greater than the number of total dimensions. 

For example, in a twisted torus of degree 3, with a toroidal degree of 1, there is no 

fourth dimension for the third to affect, and instead it affects the first. 

 

 Similarly the secondary dimension needs to be examined to see which value it 

currently holds. The toroidal jump vector is also needed to see how by how much this 

value is to be incremented. Once again, it may be the case that the current value plus 

the value extracted from the toroidal jump vector, exceeds the size of that dimension. 
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For example, in a 4*4 twisted torus, if the toroidal jump is [2,2] and the x co-ordinate 

is looping around, affecting the y co-ordinate, then the y co-ordinate needs to be 

incremented by 2. Suppose the Euclidean vector is currently [0,3]; incrementing 3 by 2 

will give 5, but the dimensions have already been defined as 4*4 and so this value is 

clearly 'outside' of the mesh boundaries. As with the toroidal degree, it becomes 

necessary to perform a check such that this does not happen, and thus the new value of 

the y co-ordinate in this case would be 1. 

 

Figure 23: Testing loop-around traversal in the x (red) and y (green) dimensions 

 

 After the function has calculated the new position of the message after both 

direct traversal and looping around, in every dimension, it proceeds to compare all 

results. Each possible option is given an associated cost. This cost is comprised of two 

parts; the first is the distance that the new message position is from the destination. 

This is measured in the same way as distance in a torus, by taking the sum differences 

of all co-ordinates. The second part consists of measuring how far the message has 

travelled to get from the source to its current location. This is done by measuring the 

difference of the value of the dimension which was being traversed in that step. 
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 Finally, the direction of travel with the lowest associated cost is chosen and the 

message advances to this point in the network. The source is updated with this new 

position, and that dimension is marked as being traversed. The cost of this chosen 

direction is also added to a cumulative total. Then the entire process of testing all 

dimensions starts over, but only dimensions which have not yet been marked as 

traversed are tested. Of course, if the message happens to have already reached the 

destination before traversing all dimensions, then the algorithm stops, as is the case in 

the illustrated example above. One way or another, the message will eventually reach 

its destination, and the product of the cumulative total and the latency multiplier again 

yields the final latency. Whilst this is not a one hundred percent guaranteed method of 

finding the shortest path to the destination, it is reliably accurate in the vast majority of 

situations, and so for the purposes of the simulator the small margin of error which 

sometimes arises will suffice. These errors will be investigated further in the 

conclusion section. 
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 3.3.5 Tree 

 

 The final network type to be implemented was tree. Initially, it was thought that 

every node at every level on the tree would hold a processing core. However this 

assumption was found to be incorrect as in reality, tree networks only hold cores on the 

leaf nodes. Nodes on higher levels act as simple routers which forward data. With this 

in mind, the tree function is relatively straightforward. The source and destination 

nodes are both recursively divided by the degree of the tree (for example, 2 in a binary 

tree). Every division identifies the parent of that node, so when the source and 

destination are divided to find the same result, this identifies their common ancestor in 

the tree. 

 

 The number of divisions made is summed and multiplied by two to account for 

travelling up the tree from the source to the common ancestor, and then back down to 

the destination. As with all network types, this product of this value and the latency 

multiplier yields the final latency result which is returned to the apply method. 

 

Figure 24: Traversing a binary tree after finding the common ancestor 
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 3.3.6 Other Considerations 

 

 Once the latency cost of traversing the network has been established, the apply 

method then needs to factor in the bandwidth. Depending upon whether the source and 

destination are located on the same processor or different processors, either the 

processor bandwidth or network bandwidth will be used for this operation. The 

message has an attribute which determines its size in bites, so this is divided by the 

product of the bandwidth value and a constant. The bandwidth value is specified in 

Mbps, so the result of this calculation gives the number of seconds which the message 

takes to pass into and out of the network. 

 

 Towards the end of implementation, the entire simulator was converted from 

C++ to C, so it was necessary to also convert the network class to C. This did not take 

too long, but required changing a few memory management statements, and 

restructuring the methods as functions, which also had implications for accessing data 

as variables no longer belonged to any sort of object, but had to be defined in a 

different way. An enum type was used to store the network/processor topology 

parameters, and these parameters were defined upon the simulator's creation. The 

apply method was transformed into a function which is called as before, when an MPI 

Receive takes place. 

 

 The secondary objective of implementing fault tolerance was never completed, 

as it was realised this would require an additional re-working of the mathematical 

network model. 
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4. Testing 

 

 

4.1 General Performance Analysis 

 

The parameters that can be examined during testing are: number of real nodes (NP), 

number of virtual nodes (VP), network topology, network latency multiplier, network 

bandwidth, network degree, network dimensions, network toroidal connectedness, 

network toroidal jump, network toroidal degree, number of processors/cores per 

processor, processor topology, processor latency multiplier, processor bandwidth, 

processor degree, processor network dimensions, processor toroidal connectedness, 

processor toroidal jump and processor toroidal degree. 

 

 Obviously it would be impractical to test all possible variations of these 

parameters, as the number of permutations in doing so is huge, even after considering 

the fact that various parameters are inter-dependent upon one another in some 

scenarios. Therefore, test cases will be made for each parameter, with all others 

remaining constant, where possible. This should at least give basic insight into how 

altering each parameter, and thus altering the network topology, can impact the 

performance of the simulator. 

 

 Varying NP and VP has already been covered in Frank Lauer's thesis, however 

considering the simulator in its altered state with new functionality, it would be useful 

to re-examine the performance of scaling both of these variables once again. There 

exist several programs included with the simulator which might be useful for testing 

performance. Two were chosen for use in testing; these are Ring, which passes MPI 

messages around the network as if it were a ring, from one neighbour to the next, and 

Random, which is very similar to the Ring function because it passes the same number 

of MPI messages, except that each message travels from a randomly selected source to 

a randomly selected destination, as opposed to the pattern seen in ring communication. 
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 The Random program should be useful in obtaining average latencies which 

suggest the general usefulness of a given network setup when used for a wide variety 

of applications. The Ring program is used to give an example of a specific type of 

communication pattern and how this can affect the results and efficiency of various 

network types. The system on which tests were carried out is a cluster utilising 128 

cores, based at the Oak Ridge Laboratory. 

 

Figure 25 

 

 The first test undertaken was to vary NP and check the resultant performance 

time. The topology used was an 8*16 mesh. As might be expected, when NP increases 

the execution time decreases. Compared with the results found by Lauer, there is a 

notable difference in the execution time  at each stage. However, it should be noted 

that this is most likely the result of using a different test application, namely Random 

as opposed to Heat Transfer. This can be explained by the fact that the Heat Transfer 

application utilises a far greater number of MPI communications. Despite this 

difference, the general trend appears to be similar, as would be expected, because there 

are more cores to split the workload. Evidently as NP continually doubles, the increase 

in performance slows down exponentially, as communication becomes a predominant 

factor in execution time. 
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Figure 26 

 

 VP was then tested, and varied up to a maximum of 65,536 nodes while NP 

was kept at 128 nodes throughout. The number of MPI messages in the Random and 

Ring applications is of the order n² as each of the n nodes must pass on n messages, 

one from itself and one from every other. With this in mind, it is clear that the rate of 

increase in execution time is likely a result of both the increased MPI message count 

from a higher value of VP, and the increased communication overhead that exists 

between virtual nodes as VP is increased. Once again this test used an 8*16 mesh, 

although the choice of topology is an irrelevant factor in these early tests. 

 

 Before analysing the individual components of each topology, it would be 

useful to examine how basic topology configurations compare against one another 

during the execution of the test applications. Figure 27 demonstrates the results after 

executing the Random application using a generic version of every topology that has 

been developed. It should be noted NP remains at 4, and VP is varied up a maximum 

value of 2048. The numbers in parenthesis on the x-axis indicate the dimensions if the 

topology chosen were a mesh, torus or twisted torus. In all the following tests, the 

network latency multiplier is given a default value of 1, and the number of cores per 

processor is assumed to be 1 unless otherwise stated (such that there is no hierarchical 

topology to consider). Finally, in all subsequent tests, unless otherwise stated, all tori 
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and twisted tori are completely toroidal in every dimension (their toroidal 

connectedness values are always [1 1 … 1]), and any twisted tori have a toroidal 

degree of 1, and a toroidal jump vector of [1 1 … 1]. 

 

Figure 27 

 

 What is almost immediately evident is that as VP is scaled upwards, the star 

topology very quickly begins to outperform every other by a significant percentage. In 

fact, the performance of a star network will remain constant, because the latency 

between any source and any destination is a constant value (two times the network 

latency multiplier, in this case 2), regardless of the size of VP. However, despite the 

obvious attractiveness of this prospect, there are some limitations and considerations 

related to the bottleneck phenomenon, which were not within the scope of this project's 

implementation, but mean in reality that the star is actually a rather unfavourable 

choice. This, and other drawbacks, will be covered in the conclusion section. 

 

 The binary tree seems to be the best topology for coping with larger numbers of 
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processors. The reason for this is that every time VP is doubled, an extra layer is added 

to the tree, effectively adding a value of 2 to the average latency. This is evidenced in 

the graph where the average latency changes from roughly 18 at 1024 nodes, (10 levels) 

to 20 at 2048 nodes (11 levels); hence the tree would be ideal for systems with a larger 

processor count because of such scalability. Depending upon the application, as with 

the star topology, there may exist some limitations which mean the tree is an 

impractical solution in certain circumstances. 

 

 The mesh, torus and twisted torus all show very similar results, with one 

particular point of interest; when a balanced topology is being used (n*n rather than 

m*n), the torus and twisted torus improve in their performance, but the mesh does not. 

The reason for this is that in a network of unequal dimensions, the average source and 

destination picked at random are statistically more likely to be further from the edges, 

meaning the advantage of having the edges wrap around into one another becomes less 

significant. In a network of equal dimensions, this effect is reversed and hence in this 

situation the advantages of those extra links within a torus/twisted torus are evident. 
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Figure 28 

 

 The performance of the ring has been included on a separate graph because of 

its significant difference in average latency. Although initially acceptable, the latency 

grows at an exponential rate. The average latency at any given point on the graph is 

equal to approximately half the number of nodes. This is because a randomly selected 

source and destination are going to require anything from a latency of 1 hops, up to a 

latency of n-1 hops (travelling all the way around the ring to previous node. Hence, 

since every selection is equally likely, this average latency will tend towards ½ of n. 

This is the case as can be seen in the graph where the average latency with 2048 nodes 

is approximately 1024, etc. 

 

 If the test application is now changed to Ring, differences can be immediately 

observed. Figure 29 demonstrates the new average latencies across the same VP range 

if the topologies are reapplied. Every MPI message that is now being transmitted is 

sent to the destination rank that immediately follows the source. As can be seen, the 

ring topology has an obvious advantage in being structured in same fashion as the 
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communication pattern of the Ring application, giving it an optimal average latency of 

1. 

 

 The torus and twisted torus approximate the ring closely in terms of this 

performance. The twisted torus algorithm should in fact approximate the ring exactly 

(and thus have a constant average latency of 1) as it contains all of the links which are 

found in a ring. However, due to the minor errors  found within the twisted torus 

implementation, this is not quite the case, and there are a few discrepancies where the 

average latency is slightly higher than it theoretically should be, as a result of these 

errors. The torus topology performs as expected; the loop around in each dimension 

does not take the message to the first node on the next row, but rather to the node 

above it, meaning that every nth message in an n*n torus will require 2 latency hops to 

pass it from the last element in the current row to the first, and then down to the next 

row. The twisted torus and ring take care of this traversal in a single link. Hence as VP 

and thus n grows, the significance of this difference should decrease as it becomes a 

less frequent occurrence when compared to the total number of messages sent. 

 

 Once again it can be seen that the star has a constant average latency of 2. The 

mesh starts off with an efficient average latency, however as VP increases, this value 

converges towards that of the star. This is because, as with the torus and twisted torus, 

every nth message in an n*n mesh must travel from the end of one row, to the start of 

the next. Since there is no toroidal link to do this quickly, the message must travel all 

the way back across the body of the mesh. Essentially these communications account 

for half of the entire latency as for every n messages, n-1 must travel a distance of 1 

(hopping from neighbour to neighbour along the same row), and 1 must travel a 

distance of n (travelling all the way back horizontally along the row and then vertically 

down 1 step to the next row). 
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Figure 29 

 

 The binary tree converges to an average latency of 4. Consider that, since every 

message is being sent to its neighbour immediately to the right, then every second 

message passed along the tree, must only go up one link to find a common ancestor. 

Every other message must go up two links to find a common ancestor. As more and 

more nodes are added to the tree, it becomes apparent that every fourth message must 

go up for 3 links to find its common ancestor, every eighth message 4 links, every 

sixteenth message 5 links, and so on. As the size of VP increases, the frequency with 

which a new layer to the tree is added exponentially decreases. A binary tree of infinite 

size would give an average latency of 4, because the result of summing these rarer and 

rarer occurrences of having to travel further up the tree to find a common ancestor 

would exactly cancel out the number of times when only 1 step up the tree is required, 

leaving the mean number of steps at 2 (a latency value of 4, accounting for travelling 

up to the common ancestor and then back down). 
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4.2 Variable Tuning 

 

 Now that the general performance of the topologies has been briefly introduced 

and explained, it would be useful to examine how tuning their variables may affect 

their performance. Star and ring topologies have no such variables (other than latency 

which is an arbitrary multiplier for the purposes of this implementation and thus does 

not justify investigation). If VP is kept constant, the mesh, torus and twisted torus can 

be compared against varying dimension sizes to see the effect. As is evidenced in 

Figure 30, mesh is constantly outperformed because of the inconvenience of not 

having its dimensions connected or 'wrapped around'. 

 

 Torus and twisted torus perform roughly equally, although in most cases 

twisted torus has slightly better performance, likely a result of the advantage of 

dimensions smeared together resulting in traversing two dimensions in a single step in 

some instances. The various anomalies where twisted torus performs slightly worse 

can be attributed to the errors within the algorithmic implementation. 
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Figure 30 

 

 The variations also demonstrate that breaking a large number of nodes up into 

more dimensions gives better performance, however this is incidental as the higher the 

network degree, the more links that are required in composing the network. At higher 

values of VP, it would therefore become impractical to use a high degree as the number 

of links necessary would become very large. There is a balance to be struck between 

maximising performance, and minimising the number of links. 

 

 Toroidal connectedness within a torus can be analysed to more closely identify 

the relationship between a torus and a mesh. A toroidal connectedness value of [0 0 0] 

is essentially a mesh as no dimensions wrap around. A toroidal connectedness value of 

[1 1 1] is a completely connected torus (as has been used so far in all examples). While 

increasing the number of toroidal dimensions is shown to generally decrease the 

average message latency, this is not always the case. It is seen that making the x 

dimension toroidal has no effect on the average latency, a surprising result as it would 
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be assumed that the extra links between the first and last nodes in the x dimension 

would benefit those randomly selected nodes which happen to be at opposite ends of 

that dimension. This result then is most likely a bug with the implementation as there 

is no logical reason for a zero increase in performance. 

 

Figure 31 

 

 The other results are generally as expected; making the y dimension toroidal is 

advantageous to performance, but not as advantageous as doing so to the z dimension, 

because of the difference in dimension size. Making both the x and y dimensions 

toroidal evidently sums the extra performance gains of both and yields the optimum 

results. 

 

 The same can be done to a twisted torus to identify any similar trends that are 

likely to exist. There are some anomalous results here however, which can be seen in 

Figure 32. As expected, the twisted torus that is fully toroidal has the best performance, 

although there are some surprising results, such as the twisted torus with 
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connectedness of [0 0 1], which actually has a worse performance than that with [0 0 

0]; adding these extra links to a topology should certainly not reduce performance, 

either an identical or increased performance should be observed. These anomalies are 

likely closely related to those found in the torus, and the function probably suffers 

from a similar bug. 

 

Figure 32 

 

 Toroidal degree was then varied, and tests were carried out using two different 

sets of dimensions. A toroidal degree of 0 defines the topology into an ordinary torus, 

as no additional dimension is incremented when a loop around occurs. Hence as might 

be expected, this yields the worst performance results. In the 4*4*8 twisted torus, a 

toroidal degree of 3 is the same as that of 0, as it wraps around 3 dimensions ahead of 

the current one; since there are only 3 dimensions, that sends it back to itself. It was 

intended that error handling be implemented to ensure that the user could not specify a 

toroidal degree greater than or equal to the topology degree, and the graph 

demonstrably shows that there are erroneous results in those instances. In the 4*4*8 
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network, the toroidal degree = 3 performance shows a similar latency to that of 

toroidal degree = 0 as expected. However, as should similarly happen, the toroidal 

degree = 4 performance does not show a similar latency to that of toroidal degree = 1. 

 

 Ignoring these results and examining the meaningful data, namely where 

toroidal degree is between 0-2 in the case of the network of degree 3, the only notable 

thing to be extrapolated is that varying the toroidal degree seems to have little to no 

effect on the average message latency within the network. 

 

Figure 33 

 

 The final twisted torus parameter not yet examined is the toroidal jump vector. 

The following graphs can be analysed to see how the average latency varies. Figure 34 

shows that there are a few performance changes observable by altering the toroidal 

jump, although the number of tests done is too small to gain any insight into what 

exactly is causing the various improvements. It would seem that altering the toroidal 
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jump in different dimensions does produce variously different results, some improved 

and some worsened. Figure 34 therefore was an attempt to try and look a bit more in-

depth at any relationships that might exist. 

 

 To lower the number of factors involved and attempt to simplify things, the 

network degree was reduced to 2, but VP was increased to create a 16*16 twisted torus. 

The optimum performance can be found, when either one or both of the dimensions 

has a toroidal jump value of 8, which is exactly half the size of the dimension. As the 

toroidal jump values start to move further away from 8 on either side, the performance 

decreases. This can be explained by the fact that the toroidal jump essentially acts as a 

'dimensional short-cut' to another part of the network. If this short-cut happens to take 

a message to a the opposite side of the network, it means that the average message will 

have fewer links to traverse to reach its destination. 

 

Figure 34 
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Figure 35 

 Finally the tree can be examined and its only unique variable, degree, can be 

analysed. The degree of the tree indicates how many children each node has. Higher 

degree trees tend to perform better, however they also suffer from bottleneck issues 

covered in the conclusion section of this report, which mean they may not be entirely 

practical; a balance is necessary. As degree increases, the performance improvement 

decreases because, in a very similar way in which binary tree performance converged 

to 4 on the ring as VP varied, the difference in the number of levels on the tree when 

increasing the degree begins to thin out. 
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Figure 36 

 

 The final parameter to adjust is bandwidth. Whilst not strictly “tuning” because 

obviously larger bandwidth desirable in all cases, it is interesting to note the change as 

bandwidth is decreased such it starts to have an impact on the latency. Throughout all 

other tests, network bandwidth (and later, processor bandwidth) has been kept at a 

constant value of 1 Mbps. Due to the nature of the applications being tested, this is 

always large enough such that it has no bearing on the latency result. This is important 

because bandwidth is, for the purposes of this implementation, an unrelated 

consideration which is taken into account after the network latency has been calculated. 

 

 As Figure 37 shows, lowering the bandwidth starts to have an impact on the 

latency at around 0.00001 Mbps, indicating that most of the MPI messages are of a 

relatively small size. As the bandwidth is lowered further and further, messages take 

longer to pass through the network, eventually every communication becoming a 

bottleneck in the simulator. Evidently by the time bandwidth has been lowered to 

0.0000001 Mbps, it is the dominating factor in latency calculation, as opposed to the 

actual message path. The bandwidth was only tested with a mesh network. It may be 
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interesting to examine other networks and the effect of reducing bandwidth, however 

as the network topology type is unrelated to bandwidth, it is almost certain the results 

would be similar, with bandwidth becoming predominant at the same figure. 

 

Figure 37 
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4.3 Hybrid Topologies 

 

 The final phase of testing is to examine hybrid topologies; that is where the 

number of cores per processor is greater than one, and topologies can be mixed and 

matched together such that the processors are using topologies which are different to 

that of the network. The first tests involved using nested topologies which were the 

same, e.g.: a mesh within a mesh, or a tree within a tree. Generally the differences seen 

would be expected to be similar to that of a single topology simulation, such as the 

results shown earlier in Figure 27. For the following tests, whilst the network latency 

multiplier remains 1, the processor latency multiplier has been sent to 0.1, as it would 

be expected that messages would travel faster from core to core, than from processor 

to processor. 

 

Figure 38 

 

 It should be noted that the x axis lists the number of cores per processor, and 
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the two sets of parentheses indicate firstly, the dimensions of the network, and 

secondly, the dimensions of each processor. The mesh, torus and twisted torus have 

almost identical sets of results; as the number of processors is reduced, and the number 

of cores per processor is thus increased, communication takes place predominantly 

within each processor, and thus the average latency converges to the processor latency 

multiplier, 0.1. The tree performs the worst of all the topologies here, which is 

expected considering that VP = 128, as seen in Figure 27. However, the effect is 

worsened here, because VP is divided into processors which are then divided into 

cores; when VP is large the tree has an advantage because adding a new layer to the 

tree becomes more and more infrequent as was discussed previously. Since VP now 

consists of smaller trees, rather than one larger tree, it would take a larger VP count 

before the tree's advantage began to make an impact. 

 

 The following graphs show some of the tests which were undertaken involving 

the mixing of different topologies. This was not done extensively, as an entire project 

may be dedicated to such a task, analysing the various topological combinations and 

their results, but some meaning can nevertheless be extracted from the data at hand. 

One point of interest is that when the processor topology is a mesh, torus or twisted 

torus there tends to be almost no difference in performance. With a processor latency 

multiplier of 0.1, the differences that do exist in the data are too small to be seen on the 

graphs as displayed. 
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Figure 39 

 

Figure 40 
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Figure 41 

 

 There is clearly an optimum split between mesh or twisted torus, and tree 

topologies as can be seen in Figures 38 and 39; although on both graphs they look as 

though they will converge to 0.1, when the processor dimensions become large and the 

network dimensions become small, the performance actually decreases. The reason for 

this is difficult to accurately speculate upon. The most likely reason is that the tree is 

under-performing in relation to the alternate topology, so when the number of cores per 

processor grows, the tree becomes the predominant network used in communication 

and as seen previously, the tree performs worse than the . However it must also be 

considered that the  The exact point of this optimum will be variable depending on the 

defined ratio of the network and processor latency multipliers, in this case a ratio of 

10:1. However by adjusting this figure the optimum point of balance between the 

topologies would shift. 

 

 Given more time, it would be beneficial to study how various topological 

combinations perform when other values are scaled such as VP, and how this affects 
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parameter tuning explored in the previous section. Additionally some of the results are 

unexpected, for example the twisted torus-ring topology mix seems to converge to the 

optimum of 0.1 as the number of cores per processor grows. However, as seen in 

earlier tests, this is most certainly not would be expected of a ring; generally the ring's 

performance degrades linearly as the number of cores increases. 
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5. Conclusions 

 

 

5.1 Limitations and Critique 

 

There are a few limitations to the project which need to be addressed in a future 

version of the simulator. Most of these limitations either arose at, or around, the end of 

the project and thus correcting these problems was difficult to do in the remaining time. 

Some of these are simple to fix and others may require a more in depth evaluation of 

the network structure and possibly some radical changes. 

 

 The first issue is with the twisted torus function. It would be fair to say that 

constructing this function was a task which took up a decent percentage of the total 

time spent working on the simulator. Although the topology was tested as it was being 

developed to ensure that the mathematics and logic behind the processes were sound, 

there are a few bugs which still exist when calculating the fastest route between 

specific nodes within a twisted torus. These bugs only occur in situations where nodes 

on the opposite sides of the network are attempting to communicate by looping around 

in multiple dimensions (traversing the link between the first and last nodes in the 

primary dimension), and furthermore the bugs only appear to occur in twisted tori of 

specific dimension values, and not others. 

 

 The nature of these errors tends arise due to the way in which the quickest route 

is analysed. In each phase of the function, when all remaining dimensions are tested 

culate the traversal cost, it is not accounted for that traversing one dimension to end up 

in a position which is actually further away from the destination, may in fact lead to 

the discovery of the shortest path, due to the smearing effect and some subsequent 

“short-cut”. It should be noted that when the cost of each dimension traversal is 

calculated, the network function only takes into account the physical differences in the 

x, y, z, etc., values of each dimension. At this stage, the algorithm has no knowledge of 

the twists that exist within the network, which surely plays a part in the erroneous data 
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sometimes obtained. Due to this, the twisted torus function is not always entirely 

accurate in its calculations, and leads to some of the anomalies which were seen during 

the testing section, and these are circumstantial. The algorithm is probably not the 

most efficient either, as when the number of dimensions, n, increases, the number of 

tests which must be carried out rises at the rate of (2*n!) which can become very large 

very quickly. 

 

 Additionally there were some instances during the testing phase in which a 

deadlock situation was reached where the simulator effectively froze up because 

various virtual nodes were each waiting on one another for messages with lower time 

stamps to arrive than any of them currently had (using an optimistic PDES would 

avoid this issue). Curiously, this would sometimes only happen with specific 

configurations of network parameters. Furthermore, some parameter configurations 

would execute to completion on some occasions, but not on others. And other 

configurations would run into deadlock every single time. These problems lay outside 

the scope of this project, as they are a feature of the underlying MPI functionality 

which was implemented before the project was started. This part of the simulator will 

need to be adjusted to account for these deadlock bugs. This could have been done as 

part of this project if there had been time. 

 

 Further issues arise when considering elements of the implementation which 

were disregarded for the sake of simplicity, but which are ultimately necessary in the 

future, if the simulator is to be useful when simulating real networks. One such issue is 

that the total number of links within a network is not considered. It might be all very 

well to link every node to every other node within a network and thus minimise the 

shortest path between nodes (it would thus always be 1 times the latency multiplier; 

half the time of a star network), however, this would be a massive waste of resources 

and highly impractical in all but the rarest of situations. As the size of this network is 

scaled up to that of supercomputer proportions, the number of links needed grows at an 

incredible rate and the overwhelming majority of these links will be in a state of disuse 

at all times. 
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 A further element of real world networking which was not implemented is 

variation. All links in the network were assumed to have identical bandwidth, and all 

links were assumed to have equal latency multiplier values. The same assumption was 

made about processor bandwidth and processor latency multiplier values. In actuality, 

it may be the case that different links within a network have different bandwidth 

capacities, and some links, for various reasons, may take longer to traverse than others. 

If this were to be considered in a future version of the simulator, it would probably be 

that a default value for both bandwidth and latency-multiplier would be specified, as is 

the case now, and then any subsequent variations would be specified individually, 

including the specific link ID, along with the value of the specific bandwidth and the 

specific latency-multiplier which that link possesses. 

 

 Likewise, processors connected together in a single network may have different 

internal topologies to one another; for example, some may have their cores organised 

in tree structures, and others arranged into a mesh or torus. As before, a default 

topology could be specified for the majority of processors, and those with different 

topologies to that might then be defined with individual parameters. 

 

 Testing is an area which requires more in depth-analysis. Due to the limited 

time-frame of the project, it was impossible to test all combinations of data. Some key 

elements that need to be looked at include the performance of the simulator when 

using other test applications, such as Heat Transfer and Pi. These applications utilise 

different communication patterns and it would be useful to see how the various 

topologies cope with each of these as they are perhaps more closely representative of 

some of the common communication patterns that would be seen in real world 

applications. Also, as mentioned in the testing section, it would be ideal to more 

rigorously test the hybrid topology configurations, and then test how they perform 

when varying the parameters explored in the fine-tuning section, as well as 

investigating the results obtained when using a much larger value for VP, such as that 

used in the very first test. 
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 One part of the network model which was never included when the simulator 

was converted from C++ to C is parameter validation. In the present working version 

of the simulator, it is therefore very easy for the user to specify invalid arguments and 

then receive error messages when attempting to execute an application. In the C++ 

version, as explained at the start of the implementation section, parameters were 

checked against each other to ensure integrity, such that for example, the dimensions 

specified in a mesh, had to equal the virtual processor count, VP. This would not be too 

difficult to add to the C version, although the code would have to be modified slightly 

because of some C++ exclusive commands and functionality, hence the reason it 

wasn't simply copied across. 

 

 For testing purposes, the simulator was briefly edited to output a few 

performance metrics. A global variable was used to keep track of the number of times 

that the latency of a message had to be calculated. This was incremented every time 

the apply function was called, and another global variable was used to sum the latency 

values which were returned. By dividing the sum of the latency values by the total 

message count, the average message latency could be calculated, which is the figure 

that was then used in the majority of the tests for the y-axis. These variables were then 

simply printed to the standard output just before the simulator terminated. This 

functionality is no longer in the simulator, although re-adding this to the code would 

take a matter of minutes if desired. 

 

 In regards to the project's objectives, the minimum requirements were achieved, 

although the expected requirements were not; network latency was simulated at least to 

a certain extent, but fault injection wasn't. The main reasons for this were the 

unforeseen complications encountered when creating the functionality for calculating 

the shortest message path, specifically for the twisted torus. As a result of this, the 

plans to incorporate a few extra network topologies were also not achieved. Earlier in 

the design section it was proposed to possibly implement the dragonfly topology, 

which itself is used in the Jaguar supercomputer at ORNL. This should be a high 
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priority for future versions of XSIM, as the dragonfly is a very common topology in 

the field of supercomputing and its inclusion in the simulator would be an invaluable 

asset to future research. 

 

 The problems in the twisted torus were not entirely resolved by the completion 

of the project. As mentioned in the testing section, there exist some anomalies when 

calculating the shortest path in certain circumstances. The algorithm for calculating the 

shortest path may therefore need to be reassessed or redesigned. However, the current 

algorithm operates as a good approximation in most cases and so will suffice in the 

short term. One such problem at an earlier stage in the implementation was when 

considering whether to wrap around in a dimension or not. Some nested if-statements 

are used to decide, when a wrap-around is tested, whether the so-called “secondary” 

affected dimension (see the implementation section) should be incremented by the 

dimensional jump value, or decremented by this value. 

 

 Since messages can travel in both directions along a given dimension, this 

varies depending upon whether or not the source co-ordinate for the primary 

dimension is greater than or less than the destination co-ordinate for the primary 

dimension. For example, suppose there exists a 3*3 twisted torus, where the source is 

[2,0] and the destination is [3,3]. Testing the x dimension, the wrap-around would have 

the effect of decrementing the secondary dimension (the y dimension), because the x 

value in the source is lower than that in the destination, and so the 'direct' traversal 

would go forward from 2->3, however the 'wrap-around' would go down from 2->0, 

loop around, and reach 3. As noted in Figure 22 for example, decrementing the x 

dimension to 0, and following the wrap-around link at the top, actually decrements the 

y dimension (although this example is a 3*3 torus, the same concept applies) However, 

once this is decremented by the toroidal jump value (be that 1 or greater), then it has to 

be accounted for the fact that the y dimension is already at 0, (y = 0) and so must flip 

back to the other side of the network (y = 2 or less). Figure 22 demonstrates this with 

the link between [0,0] and [3,3]. 
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 Although these problems seem trivial in hindsight, when first encountering the 

implementation of a twisted torus it becomes fairly problematic to envision exactly 

how traversing dimensions which are smeared together will work in all cases. There 

does not exist a great deal of readily accessible material on the subject of traversing 

twisted tori, however it was recognised that there almost definitely exists an algorithm 

out there which perfectly traverses twisted tori in an optimum fashion, and it would be 

beneficial to incorporate this into the simulator in a future upgrade. The current 

implementation, as with all other topology traversing functions, was implemented 

without external help. 
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5.2 Future Work 

 

One piece of functionality which was considered for implementation towards the end 

of the project is the simulation of overlay networks. Ultimately this idea was never 

followed through to completion. The basic concept is to specify the physical 

topological structure of the nodes within a network/processor but then to incorporate 

the ability to place a 'virtual' network over this underlying topology, and force the 

nodes to communicate as if the overlay network was real. Thus, the mapping of the 

overlay network would need to be translated onto the underlying network, and the 

latency cost calculated for traversing the underlying network according to the rules of 

the overlay network. One such overlay network which was investigated was a binomial 

tree, which is optimal in situations requiring messages to be broadcast. However, this 

was not done, as there is currently no support in XSIM for MPI Broadcast procedures. 

 

 Possibly the biggest requirement in the current implementation, specifically 

pertaining to the newly developed network function, is for some consideration for 

network traffic. Since the latency is calculated as a mathematical cost rather than an 

actual virtual path through the network, the nodes and links which a message passes 

through as it goes from source to destination are not listed or identified. As soon as 

network traffic is taken into account it becomes necessary to determine the exact path 

which each message takes through the network. One way of doing this would be to 

restructure the entire network model such that it uses the data structure approach which 

was discussed in the design section. In this way, every link that a message passes 

through can be recorded, and held in a database, which then expires after a given 

period of time. 

 

 This information can be used to determine how 'busy' a particular link, node or 

router is at any given time, and if bandwidth is factored into the equation, a penalty 

can be applied to subsequent messages which traverse those links which are already 

fully saturated. It is for this reason that the star and tree networks in particular, were 

highlighted as possibly being impractical solutions in reality in some parts of the 
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testing section. In a star network, every message in the network must pass through the 

central router, which will quickly become overloaded and congested. So, once traffic 

hotspots and congestion are taken into account, it may be the case that the star network 

is very impractical for all but the smallest networks. 

 

 Similarly, although increasing the degree of a tree network was seen to increase 

the performance in terms of latency, it ultimately may suffer from the same issues, as 

the routing nodes begin to get very quickly outnumbered by the processing nodes at a 

faster rate as VP increases, and each routing node 'parent' becomes responsible for 

more processing nodes, and handling all messages sent to and from those nodes. As the 

degree increases, parents become bottlenecks in the same fashion as in the star network, 

although the effect is considerably dampened due to the divide and conquer structure 

of a tree. In some applications this may not be an issue, however in many there will be 

some implication which becomes apparent as the network is scaled. 

 

 Considering the alternate data structure approach to network latency once more; 

if this were implemented, and a particular link was saturated to an unacceptable extent, 

the message may then be re-routed through the network. Depending upon the topology 

of the network and the specific ranks of the source and destination nodes, this new 

route may have an equally short path, or it may be longer. No doubt some function 

could be written which determines the next shortest-path given the fact that a particular 

link (or links) is marked as unavailable. The latency penalty of taking this alternate 

route could then be weighed up against the latency penalty of queueing to traverse the 

congested route, and the result which has the lowest latency could then be taken. 

 

 If fault injection were implemented, it may have again been beneficial to use 

the data structure approach to designing the network model, discussed in the design 

section, rather than the mathematical one. In addition to the database suggested for 

holding messages which are currently traversing a given link, a secondary database 

could be created for maintaining a list of links which are unavailable. The user might 

then be able to specify if a given link fails by indicating the nodes which the link 
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connects, and this would then be entered into the database. They would also have the 

ability to indicate if a previously failed link is then rebooted and available for use 

again, removing the entry from the database. Similarly, a function could be written as 

part of the network class, which is fed in a variety of parameters by the user, namely 

the failure rate, and then this could be used to autonomously generate random link 

failures either throughout the entire network, or in a specific area of the network. 

 

 Taking this idea further still, it could be programmed such that links which are 

more congested are more likely to fail, increasing the probability of that link failing 

over any others by a scaled percentage relative to the amount of traffic experienced. 

Nodes could also be programmed to fail (again, either determined by the user or 

randomly generated), and then any links which connect to that node would have to be 

found and included in the database of unavailable links. If a message is then being 

passed from node to node en route to the destination, a function would then be made 

that checks that each and every link or node which is passed through is not currently 

unavailable. In the same way that message routes are recalculated if a link is over-

congested, the message would be directed down an alternate path (if one exists) to 

avoid the failed links/nodes. 

 

 Of course it might be that the amount and locations of multiple failures 

effectively splits the network into two or more disjoint parts, each unable to 

communicate with the other. This would need to be accounted for. It might be that such 

a situation would be prevented from ever occurring by using an algorithm which 

performs some check on any new failures. Or the entire network may freeze, messages 

would pile up on either side of the divide, and then when one of the links is restored, 

the network traffic begins to flow again. It would be interesting to see how the 

different applications and different topologies cope with fault injection. 

 

 The simulator is still very much a work in progress, there are many elements 

which can be added to increase the realism and accuracy in representing a real 

supercomputer, and hence the reason why there are various other simulators which 
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exist, each one different and unique, as they try to focus on certain aspects of the 

process of simulation, depending upon the desired use. Future areas to develop in 

XSIM may include, but are not limited to, the ability to handle broadcast messages, a 

greater number of supported MPI procedures, an optimistic PDES implementation, 

complete with roll-back, and the output of performance metrics. 
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7. Appendices 

 

 

7.1 Source Code 

 

 7.1.1 xsim_nm.h 

 

/**************************************************************************//** 

 * 
 * @file xsim_nm.h 
 * 
 * Header file for the xsim library network model (NM) module. 
 * Copyright (c) 2009-2010 Oak Ridge National Laboratory. 
 * 
 * For more information see the following files in the source distribution top- 
 * level directory or package data directory (usually /usr/local/share/package): 
 * 
 * - README    for general package information. 
 * - INSTALL   for package install information. 
 * - COPYING   for package license information and copying conditions. 
 * - AUTHORS   for package authors information. 
 * - ChangeLog for package changes information. 
 * 
 ******************************************************************************/ 
 
/* Avoid to include the content of this header file twice. */ 
#ifndef XSIM_NM_H 
#define XSIM_NM_H 
 
/****************************************************************************** 
 * 
 * Macros 
 * 
 ******************************************************************************/ 
 
/****************************************************************************** 
 * 
 * Includes 
 * 
 ******************************************************************************/ 
 
/****************************************************************************** 
 * 
 * Data Types 
 * 
 ******************************************************************************/ 
 
/** The network type data type. */ 
typedef enum xsim_nm_type_e { 
  XSIM_NM_STAR = 0,           /**< The star network type. */ 
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  XSIM_NM_RING = 1,           /**< The ring network type. */ 
  XSIM_NM_MESH = 2,           /**< The mesh network. type. */ 
  XSIM_NM_TORUS = 3,          /**< The torus network. type. */ 
  XSIM_NM_TWISTED_TORUS = 4,  /**< The twisted torus network type. */ 
  XSIM_NM_TREE = 5,           /**< The tree network type. */ 
} xsim_nm_type_t;             /**< The network type data type. */ 
 
/** The network model data type. */ 
typedef struct xsim_nm_s { 
  xsim_nm_type_t type;              /**< The network type. */ 
  double    latency;          /**< The network latency in microseconds. */ 
  double          bandwidth;        /**< The network bandwidth in Mbps. */ 
  unsigned int    degree;           /**< The network degree. */ 
  unsigned int    t_degree;         /**< The network toroidal degree. */ 
  unsigned int    *t_connectedness; /**< The network toroidal connectedness. */ 
  unsigned int    *t_jump;          /**< The network toroidal jump. */ 
  unsigned int    *dimensions;      /**< The network dimensions. */ 
} xsim_nm_t;                        /**< The network model data type. */ 
 
/****************************************************************************** 
 * 
 * Function Prototypes 
 * 
 ******************************************************************************/ 
 
/** 
 * Initializes the network model module. 
 * 
 * @param  nmcfg  The network model command line configuration argument (IN). 
 * @return        MPI_SUCCESS for success, or MPI_ERR_OTHER for error with 
 *                errno set appropriately. 
 */ 
int xsim_nm_init (char *nmcfg); 
 
/** 
 * Finalizes the network model module. 
 * 
 * @return  MPI_SUCCESS for success, or MPI_ERR_OTHER for error with errno set 
 *          appropriately. 
 */ 
int xsim_nm_fini (); 
 
/** 
 * Applies the network model to the receive time of a point-to-point message. 
 * 
 * @param  source  The source rank in MPI_COMM_WORLD (IN). 
 * @param  dest    The destination rank in MPI_COMM_WORLD (IN). 
 * @param  bytes   The buffer byte count (IN). 
 * @param  send    The send time in microseconds (IN). 
 * @param  recv    The receive time in microseconds (OUT). 
 * @return         MPI_SUCCESS for success, or MPI_ERR_OTHER for error with 
 *                 errno set appropriately. 
 */ 
int xsim_nm_p2p_apply (unsigned int        source, 
                       unsigned int        dest  , 
                       unsigned int        bytes , 
                       unsigned long long  send  , 
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                       unsigned long long *recv  ); 
 
/** 
 * Applies the network model to the receive time of a broadcast message. 
 * 
 * @param  root    The root rank (IN). 
 * @param  dest    The destination rank (IN). 
 * @param  comm    The communicator (IN). 
 * @param  bytes   The buffer byte count (IN). 
 * @param  send    The send time in microseconds (IN). 
 * @param  recv    The receive time in microseconds (OUT). 
 * @return         MPI_SUCCESS for success, or MPI_ERR_OTHER for error with 
 *                 errno set appropriately. 
 */ 
int xsim_nm_bcast_apply (unsigned int        root , 
                         unsigned int        dest , 
                         MPI_Comm            comm , 
                         unsigned int        bytes, 
                         unsigned long long  send , 
                         unsigned long long *recv ); 
 
/** 
 * Get the positive difference between two integers. 
 * 
 * @param one         The first node 
 * @param two         The second node 
 */ 
int get_absolute(int one, int two); 
 
/** 
 * Checks the network type and calls the appropriate function to calculate 
 * latency. 
 * 
 * @param one         The heirarchy level 
 * @param two         The network type 
 * @param three       The number of nodes 
 * @param four        The source rank 
 * @param five        The destination rank 
 * @param six         The latnecy 
 * @param seven       The dimensions 
 * @param eight       The connectedness 
 * @param nine        The bandwidth 
 * @param ten         The number of cores 
 * @param eleven      The toroidal degree 
 * @param twelve      The toroidal jump 
 */ 
double get_latency (int srank, int drank, int count, int level, xsim_nm_type_t 
type, int size, int src, int dst, double latency, unsigned int degree, 
                  unsigned int *dimensions, unsigned int *connectedness, int 
cores, int t_degree, unsigned int *t_jump); 
 
/** 
 * Get the latency between two nodes in a ring. 
 * 
 * @param one         The number of nodes 
 * @param two         The source rank 
 * @param three       The destination rank 
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 * @param four        The latency 
 */ 
double get_ring_latency(int size, int src, int dst, double latency); 
 
/** 
 * Get the latency between two nodes in a mesh. 
 * 
 * @param one         The number of nodes 
 * @param two         The source rank 
 * @param three       The destination rank 
 * @param four        The latency 
 * @param five        The degree 
 * @param six         The dimensions 
 */ 
double get_mesh_latency(int size, int src, int dst, double latency, unsigned int 
degree, unsigned int *dimensions); 
 
/** 
 * Get the latency between two nodes in a torus. 
 * 
 * @param one         The number of nodes 
 * @param two         The source rank 
 * @param three       The destination rank 
 * @param four        The latency 
 * @param five        The degree 
 * @param six         The dimensions 
 * @param seven       The connectedness 
 */ 
double get_torus_latency(int size, int src, int dst, double latency, unsigned 
int degree, unsigned int *dimensions, unsigned int *connectedness); 
 
/** 
 * Get the latency between two nodes in a twisted torus. 
 * 
 * @param one         The number of nodes 
 * @param two         The source rank 
 * @param three       The destination rank 
 * @param four        The latency 
 * @param five        The degree 
 * @param six         The dimensions 
 * @param seven       The connectedness 
 * @param eight       The toroidal jump index 
 * @param nine        The toroidal degree index 
 */ 
double get_twisted_latency(int size, int src, int dst, double latency, unsigned 
int degree, unsigned int *dimensions, unsigned int *connectedness, 
    int tdegree, unsigned int *tjump); 
 
/** 
 * Get the latency between two nodes in a tree. 
 * 
 * @param one         The number of nodes 
 * @param two         The source rank 
 * @param three       The destination rank 
 * @param four        The latency 
 * @param five        The degree 
 */ 
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double get_tree_latency(int size, int src, int dst, double latency, unsigned int 
degree); 
 
/****************************************************************************** 
 * 
 * Data Exports 
 * 
 ******************************************************************************/ 
 
/** The network model. */ 
extern xsim_nm_t xsim_net; 
 
/** The processor model. */ 
extern xsim_nm_t xsim_processor; 
 
/** The total latency. */ 
extern double total_latency; 
 
/** The number of receives. */ 
extern double total_receives; 
 
#endif /* XSIM_NM_H */ 
 
/****************************************************************************** 
 * 
 * END OF FILE 
 * 
 ******************************************************************************/ 
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 7.1.2 xsim_nm.c 

 

/**************************************************************************//** 

 * 
 * @file xsim_nm.c 
 * 
 * Source file for the xsim library network model (NM) module. 
 * Copyright (c) 2009-2010 Oak Ridge National Laboratory. 
 * 
 * For more information see the following files in the source distribution top- 
 * level directory or package data directory (usually /usr/local/share/package): 
 * 
 * - README    for general package information. 
 * - INSTALL   for package install information. 
 * - COPYING   for package license information and copying conditions. 
 * - AUTHORS   for package authors information. 
 * - ChangeLog for package changes information. 
 * 
 ******************************************************************************/ 
 
/****************************************************************************** 
 * 
 * Macros 
 * 
 ******************************************************************************/ 
 
/****************************************************************************** 
 * 
 * Includes 
 * 
 ******************************************************************************/ 
 
/************************** 
 * Include library header. 
 **************************/ 
#include "xsim.h" 
 
/****************************************************************************** 
 * 
 * Data Types 
 * 
 ******************************************************************************/ 
 
/****************************************************************************** 
 * 
 * Function Prototypes 
 * 
 ******************************************************************************/ 
 
/****************************************************************************** 
 * 
 * Data 
 * 
 ******************************************************************************/ 
 



- 94 - 

 

/** The network model. */ 
xsim_nm_t xsim_net; 
 
/** The processor model. */ 
xsim_nm_t xsim_processor; 
 
/** The total latency. */ 
double total_latency; 
 
/** The number of receives. */ 
double total_receives; 
 
/** The number of cores per processor. */ 
unsigned int cores; 
 
/** Index used for loops. */ 
unsigned int loop_index; 
 
/****************************************************************************** 
 * 
 * Functions 
 * 
 ******************************************************************************/ 
 
/** 
 * Initializes the network model module. 
 * 
 * @param  nmcfg  The network model command line configuration argument (IN). 
 * @return        MPI_SUCCESS for success, or MPI_ERR_OTHER for error with 
 *                errno set appropriately. 
 */ 
int xsim_nm_init (char *nmcfg) { 
  /* The parameter name. */ 
  char *name; 
  /* The parameter value. */ 
  char *value; 
  /* The parameter delimiter. */ 
  char *delimiter; 
  /* The dimension delimiters. */ 
  char *delimiterA; 
  char *delimiterB; 
  /* Check the nmcfg parameter. */ 
  if (NULL == nmcfg) { 
    /* Set errno. */ 
    errno = EINVAL; 
    /* Log error. */ 
    XSIM_LOG_ERROR(The nmcfg parameter is null) 
    /* Return error. */ 
    return MPI_ERR_OTHER; 
  } 
  /* Initialize the total latency. */ 
  total_latency = 0; 
  /* Initialize the number of receives. */ 
  total_receives = 0; 
  /* Initialize the number of cores. */ 
  cores = 1; 
  /* Initialize the network type. */ 
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  xsim_net.type = XSIM_NM_STAR; 
  /* Initialize the network latency. */ 
  xsim_net.latency = 1; 
  /* Initialize the network bandwidth. */ 
  xsim_net.bandwidth = 1; 
  /* Initialize the network degree. */ 
  xsim_net.degree = 1; 
  /* Initialize the network toroidal degree. */ 
  xsim_net.t_degree = 1; 
  /* Initialise the network toroidal jump. */ 
  xsim_net.t_jump = malloc(xsim_net.degree * sizeof(unsigned int)); 
  for (loop_index = 0; loop_index < xsim_net.degree; loop_index++) { 
    xsim_net.t_jump[loop_index] = 1; 
  } 
  /* Initialise the network toroidal connectedness. */ 
  xsim_net.t_connectedness = malloc(xsim_net.degree * sizeof(unsigned int)); 
  for (loop_index = 0; loop_index < xsim_net.degree; loop_index++) { 
    xsim_net.t_connectedness[loop_index] = 1; 
  } 
  /* Initialise the network dimensions. */ 
  xsim_net.dimensions = malloc(xsim_net.degree * sizeof(unsigned int)); 
  for (loop_index = 0; loop_index < xsim_net.degree; loop_index++) { 
    xsim_net.dimensions[loop_index] = 1; 
  } 
  /* Parse the command line configuration argument. */ 
  for (name  = nmcfg; 
       NULL != (delimiter = strchr(name, '=')); 
       name  = delimiter + 1) { 
    /* Set the value pointer. */ 
    value = delimiter + 1; 
    /* Search for the end delimiter. */ 
    if (NULL == (delimiter = strchr(value, ','))) { 
      delimiter = value + strlen(value) + 1; 
    } 
    /* Check for the cores parameter name. */ 
    if (0 == strncmp(name, "cores", 5)) { 
      /* Set the number of cores. */ 
      cores = atoi(value); 
    } 
    /* Check for the network type parameter name. */ 
    if ((0 == strncmp(name, "type", 4)) || (0 == strncmp(name, "ntype", 5))) { 
      /* Check for the star network type parameter value. */ 
      if (0 == strncmp(value, "star", 4)) { 
        /* Set the network type. */ 
        xsim_net.type = XSIM_NM_STAR; 
      } 
      /* Check for the ring network type parameter value. */ 
      else if (0 == strncmp(value, "ring", 4)) { 
        /* Set the network type. */ 
        xsim_net.type = XSIM_NM_RING; 
      } 
      /* Check for the mesh network type parameter value. */ 
      else if (0 == strncmp(value, "mesh", 4)) { 
        /* Set the network type. */ 
        xsim_net.type = XSIM_NM_MESH; 
      } 
      /* Check for the torus network type parameter value. */ 



- 96 - 

 

      else if (0 == strncmp(value, "torus", 5)) { 
        /* Set the network type. */ 
        xsim_net.type = XSIM_NM_TORUS; 
      } 
      /* Check for the twisted torus network type parameter value. */ 
      else if (0 == strncmp(value, "twistedtorus", 12)) { 
        /* Set the network type. */ 
        xsim_net.type = XSIM_NM_TWISTED_TORUS; 
      } 
      /* Check for the tree network type parameter value. */ 
      else if (0 == strncmp(value, "tree", 4)) { 
        /* Set the network type. */ 
        xsim_net.type = XSIM_NM_TREE; 
      } 
    } 
    /* Check for the network latency parameter name. */ 
    else if ((0 == strncmp(name, "latency", 7)) || (0 == strncmp(name, 
"nlatency", 8))) { 
      /* Set the network latency. */ 
      xsim_net.latency = atof(value); 
    } 
    /* Check for the network bandwidth parameter name. */ 
    else if ((0 == strncmp(name, "bandwidth", 9)) || (0 == strncmp(name, 
"nbandwidth", 10))) { 
      /* Set the network bandwidth. */ 
      xsim_net.bandwidth = atof(value); 
    } 
    /* Check for network degree parameter name. */ 
    else if ((0 == strncmp(name, "degree", 6)) || (0 == strncmp(name, "ndegree", 
7))) { 
      /* Set the network degree. */ 
      xsim_net.degree = atoi(value); 
    } 
    /* Check for network toroidal degree parameter name. */ 
    else if ((0 == strncmp(name, "t_degree", 8)) || (0 == strncmp(name, 
"nt_degree", 9))) { 
      /* Set the network toroidal degree. */ 
      xsim_net.t_degree = atoi(value); 
    } 
    /* Check for network toroidal connectedness parameter name. */ 
    else if ((0 == strncmp(name, "t_connectedness", 15)) || (0 == strncmp(name, 
"nt_connectedness", 16))) { 
      /* Initialise the network toroidal connectedness. */ 
      xsim_net.t_connectedness = malloc(xsim_net.degree * sizeof(unsigned int)); 
      /* Set the network toroidal connectedness. */ 
      for (loop_index = 0; loop_index < xsim_net.degree; loop_index++) { 
        xsim_net.t_connectedness[loop_index] = (unsigned int)value[loop_index]-
48; 
      } 
    } 
    /* Check for network toroidal jump parameter name. */ 
    else if ((0 == strncmp(name, "t_jump", 6)) || (0 == strncmp(name, "nt_jump", 
7))) { 
      /* Initialise the network toroidal jump. */ 
      xsim_net.t_jump = malloc(xsim_net.degree * sizeof(unsigned int)); 
      /* Set the starting values for the delimiters. */ 
      delimiterA = strchr(value,'*'); 
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      delimiterB = value; 
      /* Holds the extracted substring containing a single dimension. */ 
      char *value_str; 
      /* Holds the current location in the dimension array. */ 
      unsigned int dimension_index = 0; 
      /* Process each dimension. */ 
      while ((delimiterA != NULL) && (dimension_index < xsim_net.degree)) { 
        /* Allocate enough space to hold the ASCII string of the next dimension. 
*/ 
        value_str = malloc((delimiterA - delimiterB + 1) * sizeof(char)); 
        /* Read the substring. */ 
        for (loop_index = 0; loop_index < (int)strlen(value_str); loop_index++) 
{ 
          value_str[loop_index] = value[delimiterB - value + loop_index]; 
        } 
        /* Convert substring to integer. */ 
        xsim_net.t_jump[xsim_net.degree - dimension_index - 1] = atoi(value_str); 
        dimension_index++; 
        /* Locate the next delimiter. */ 
        delimiterB = delimiterA + 1; 
        delimiterA = strchr(delimiterA + 1, '*'); 
      } 
      /* Check for the special case where only one dimension is defined. */ 
      if (dimension_index == 0) { 
        /* Set all dimensions equal to this value. */ 
        for (loop_index = 1; loop_index < xsim_net.degree; loop_index++) { 
          xsim_net.t_jump[loop_index] = xsim_net.t_jump[0]; 
        } 
      } 
    } 
    /* Check for network dimensions parameter name. */ 
    else if ((0 == strncmp(name, "dimensions", 10)) || (0 == strncmp(name, 
"ndimensions", 11))) { 
      /* Initialise the network dimensions. */ 
      xsim_net.dimensions = malloc(xsim_net.degree * sizeof(unsigned int)); 
      /* Set the starting values for the delimiters. */ 
      delimiterA = strchr(value,'*'); 
      delimiterB = value; 
      /* Holds the extracted substring containing a single dimension. */ 
      char *value_str; 
      /* Holds the current location in the dimension array. */ 
      unsigned int dimension_index = 0; 
      /* Process each dimension. */ 
      while ((delimiterA != NULL) && (dimension_index < xsim_net.degree)) { 
        /* Allocate enough space to hold the ASCII string of the next dimension. 
*/ 
        value_str = malloc((delimiterA - delimiterB + 1) * sizeof(char)); 
        /* Read the substring. */ 
        for (loop_index = 0; loop_index < (int)strlen(value_str); loop_index++) 
{ 
          value_str[loop_index] = value[delimiterB - value + loop_index]; 
        } 
        /* Convert substring to integer. */ 
        xsim_net.dimensions[xsim_net.degree - dimension_index - 1] = 
atoi(value_str); 
        dimension_index++; 
        /* Locate the next delimiter. */ 
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        delimiterB = delimiterA + 1; 
        delimiterA = strchr(delimiterA + 1, '*'); 
      } 
      /* Check for the special case where only one dimension is defined. */ 
      if (dimension_index == 0) { 
        /* Set all dimensions equal to this value. */ 
        for (loop_index = 1; loop_index < xsim_net.degree; loop_index++) { 
          xsim_net.dimensions[loop_index] = xsim_net.dimensions[0]; 
        } 
      } 
    } 
    /* Check for the processor type parameter name. */ 
    else if (0 == strncmp(name, "ptype", 5)) { 
      /* Check for the star network type parameter value. */ 
      if (0 == strncmp(value, "star", 4)) { 
        /* Set the network type. */ 
        xsim_processor.type = XSIM_NM_STAR; 
      } 
      /* Check for the ring network type parameter value. */ 
      else if (0 == strncmp(value, "ring", 4)) { 
        /* Set the network type. */ 
        xsim_processor.type = XSIM_NM_RING; 
      } 
      /* Check for the mesh network type parameter value. */ 
      else if (0 == strncmp(value, "mesh", 4)) { 
        /* Set the network type. */ 
        xsim_processor.type = XSIM_NM_MESH; 
      } 
      /* Check for the torus network type parameter value. */ 
      else if (0 == strncmp(value, "torus", 5)) { 
        /* Set the network type. */ 
        xsim_processor.type = XSIM_NM_TORUS; 
      } 
      /* Check for the twisted torus network type parameter value. */ 
      else if (0 == strncmp(value, "twistedtorus", 12)) { 
        /* Set the network type. */ 
        xsim_processor.type = XSIM_NM_TWISTED_TORUS; 
      } 
      /* Check for the tree network type parameter value. */ 
      else if (0 == strncmp(value, "tree", 4)) { 
        /* Set the network type. */ 
        xsim_processor.type = XSIM_NM_TREE; 
      } 
    } 
    /* Check for the network latency parameter name. */ 
    else if (0 == strncmp(name, "platency", 8)) { 
      /* Set the network latency. */ 
      xsim_processor.latency = atof(value); 
    } 
    /* Check for the network bandwidth parameter name. */ 
    else if (0 == strncmp(name, "pbandwidth", 10)) { 
      /* Set the network bandwidth. */ 
      xsim_processor.bandwidth = atof(value); 
    } 
    /* Check for network degree parameter name. */ 
    else if (0 == strncmp(name, "pdegree", 7)) { 
      /* Set the network degree. */ 
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      xsim_processor.degree = atoi(value); 
    } 
    /* Check for network toroidal degree parameter name. */ 
    else if (0 == strncmp(name, "pt_degree", 9)) { 
      /* Set the network toroidal degree. */ 
      xsim_processor.t_degree = atoi(value); 
    } 
    /* Check for network toroidal connectedness parameter name. */ 
    else if (0 == strncmp(name, "pt_connectedness", 16)) { 
      /* Initialise the network toroidal connectedness. */ 
      xsim_processor.t_connectedness = malloc(xsim_processor.degree * 
sizeof(unsigned int)); 
      /* Set the network toroidal connectedness. */ 
      for (loop_index = 0; loop_index < xsim_processor.degree; loop_index++) { 
        xsim_processor.t_connectedness[loop_index] = (unsigned 
int)value[loop_index]-48; 
      } 
    } 
    /* Check for network toroidal jump parameter name. */ 
    else if (0 == strncmp(name, "pt_jump", 7)) { 
      /* Initialise the network toroidal jump. */ 
      xsim_processor.t_jump = malloc(xsim_processor.degree * sizeof(unsigned 
int)); 
      /* Set the starting values for the delimiters. */ 
      delimiterA = strchr(value,'*'); 
      delimiterB = value; 
      /* Holds the extracted substring containing a single dimension. */ 
      char *value_str; 
      /* Holds the current location in the dimension array. */ 
      unsigned int dimension_index = 0; 
      /* Process each dimension. */ 
      while ((delimiterA != NULL) && (dimension_index < xsim_processor.degree)) 
{ 
        /* Allocate enough space to hold the ASCII string of the next dimension. 
*/ 
        value_str = malloc((delimiterA - delimiterB + 1) * sizeof(char)); 
        /* Read the substring. */ 
        for (loop_index = 0; loop_index < (int)strlen(value_str); loop_index++) 
{ 
          value_str[loop_index] = value[delimiterB - value + loop_index]; 
        } 
        /* Convert substring to integer. */ 
        xsim_processor.t_jump[xsim_processor.degree - dimension_index - 1] = 
atoi(value_str); 
        dimension_index++; 
        /* Locate the next delimiter. */ 
        delimiterB = delimiterA + 1; 
        delimiterA = strchr(delimiterA + 1, '*'); 
      } 
      /* Check for the special case where only one dimension is defined. */ 
      if (dimension_index == 0) { 
        /* Set all dimensions equal to this value. */ 
        for (loop_index = 1; loop_index < xsim_processor.degree; loop_index++) { 
          xsim_processor.t_jump[loop_index] = xsim_processor.t_jump[0]; 
        } 
      } 
    } 
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    /* Check for network dimensions parameter name. */ 
    else if (0 == strncmp(name, "pdimensions", 11)) { 
      /* Initialise the network dimensions. */ 
      xsim_processor.dimensions = malloc(xsim_processor.degree * sizeof(unsigned 
int)); 
      /* Set the starting values for the delimiters. */ 
      delimiterA = strchr(value,'*'); 
      delimiterB = value; 
      /* Holds the extracted substring containing a single dimension. */ 
      char *value_str; 
      /* Holds the current location in the dimension array. */ 
      unsigned int dimension_index = 0; 
      /* Process each dimension. */ 
      while ((delimiterA != NULL) && (dimension_index < xsim_processor.degree)) 
{ 
        /* Allocate enough space to hold the ASCII string of the next dimension. 
*/ 
        value_str = malloc((delimiterA - delimiterB + 1) * sizeof(char)); 
        /* Read the substring. */ 
        for (loop_index = 0; loop_index < (int)strlen(value_str); loop_index++) 
{ 
          value_str[loop_index] = value[delimiterB - value + loop_index]; 
        } 
        /* Convert substring to integer. */ 
        xsim_processor.dimensions[xsim_processor.degree - dimension_index - 1] = 
atoi(value_str); 
        dimension_index++; 
        /* Locate the next delimiter. */ 
        delimiterB = delimiterA + 1; 
        delimiterA = strchr(delimiterA + 1, '*'); 
      } 
      /* Check for the special case where only one dimension is defined. */ 
      if (dimension_index == 0) { 
        /* Set all dimensions equal to this value. */ 
        for (loop_index = 1; loop_index < xsim_processor.degree; loop_index++) { 
          xsim_processor.dimensions[loop_index] = xsim_processor.dimensions[0]; 
        } 
      } 
    } 
  } 
  /* Return success. */ 
  return MPI_SUCCESS; 
} 
 
/** 
 * Finalizes the network model module. 
 * 
 * @return  MPI_SUCCESS for success, or MPI_ERR_OTHER for error with errno set 
 *          appropriately. 
 */ 
int xsim_nm_fini () { 
  /* Return success. */ 
  return MPI_SUCCESS; 
} 
 
/** 
 * Applies the network model to the receive time of a point-to-point message. 
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 * 
 * @param  source  The source rank in MPI_COMM_WORLD (IN). 
 * @param  dest    The destination rank in MPI_COMM_WORLD (IN). 
 * @param  bytes   The buffer byte count (IN). 
 * @param  send    The send time in microseconds (IN). 
 * @param  recv    The receive time in microseconds (OUT). 
 * @return         MPI_SUCCESS for success, or MPI_ERR_OTHER for error with 
 *                 errno set appropriately. 
 */ 
int xsim_nm_p2p_apply (unsigned int        source, 
                       unsigned int        dest  , 
                       unsigned int        bytes , 
                       unsigned long long  send  , 
                       unsigned long long *recv  ) { 
total_receives ++; 
  total_latency += 
          get_latency(source, dest, xsim_vps.count, 1, xsim_net.type, 
xsim_sim.count, source/cores, dest/cores, 
          xsim_net.latency, xsim_net.degree, xsim_net.dimensions, 
xsim_net.t_connectedness, cores, xsim_net.t_degree, xsim_net.t_jump); 
  /* Calculate the receive time. */ 
  *recv = send + 
          get_latency(source, dest, xsim_vps.count, 1, xsim_net.type, 
xsim_sim.count, source/cores, dest/cores, 
          xsim_net.latency, xsim_net.degree, xsim_net.dimensions, 
xsim_net.t_connectedness, cores, xsim_net.t_degree, xsim_net.t_jump); 
  if ((a/(xsim_vps.count/cores)) == (b/(xsim_vps.count/cores))) { 
    total_latency += ((0 == xsim_net.bandwidth)?0: 
                (unsigned long long) 
                ((bytes/(131072.0 * xsim_net.bandwidth)) + 0.5)); 
    *recv += ((0 == xsim_net.bandwidth)?0: 
                (unsigned long long) 
                ((bytes/(131072.0 * xsim_net.bandwidth)) + 0.5)); 
  } 
  else { 
    total_latency += ((0 == xsim_processor.bandwidth)?0: 
                (unsigned long long) 
                ((bytes/(131072.0 * xsim_processor.bandwidth)) + -.5)); 
    *recv += ((0 == xsim_processor.bandwidth)?0: 
                (unsigned long long) 
                ((bytes/(131072.0 * xsim_processor.bandwidth)) + -.5)); 
  } 
 
  /* Return success. */ 
  return MPI_SUCCESS; 
} 
 
/** 
 * Applies the network model to the receive time of a broadcast message. 
 * 
 * @param  root    The root rank (IN). 
 * @param  dest    The destination rank (IN). 
 * @param  comm    The communicator (IN). 
 * @param  bytes   The buffer byte count (IN). 
 * @param  send    The send time in microseconds (IN). 
 * @param  recv    The receive time in microseconds (OUT). 
 * @return         MPI_SUCCESS for success, or MPI_ERR_OTHER for error with 
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 *                 errno set appropriately. 
 */ 
int xsim_nm_bcast_apply (unsigned int        root , 
                         unsigned int        dest , 
                         MPI_Comm            comm , 
                         unsigned int        bytes, 
                         unsigned long long  send , 
                         unsigned long long *recv ) { 
  /* Return success. */ 
  return MPI_SUCCESS; 
} 
 
/** 
 * Checks the network type and calls the appropriate function to calculate 
 * latency. 
 * 
 * @param one         The heirarchy level 
 * @param two         The network type 
 * @param three       The number of nodes 
 * @param four        The source rank 
 * @param five        The destination rank 
 * @param six         The latnecy 
 * @param seven       The dimensions 
 * @param eight       The connectedness 
 * @param nine        The number of cores 
 * @param ten         The toroidal degree 
 * @param eleven      The toroidal jump 
 */ 
double get_latency (int srank, int drank, int count, int level, xsim_nm_type_t 
type, int size, int src, int dst, double latency, unsigned int degree, 
                  unsigned int *dimensions, unsigned int *connectedness, int 
cores, int tdegree, unsigned int *tjump) { 
  /* Check if the nodes are on the same processor. */ 
  if ((level == 1) && (cores > 1) && (src == dst)) { 
 /* Recursively find the latency considering a processor topology */ 
    return get_latency(srank, drank, count, 2, xsim_processor.type, cores, 
srank%(cores), drank%(cores), xsim_processor.latency, 
                        xsim_processor.degree, xsim_processor.dimensions, 
xsim_processor.t_connectedness, cores, xsim_processor.t_degree, 
                        xsim_processor.t_jump); 
  } 
  /* Check if the nodes are on different processors. */ 
  else { 
    /* Check the network type. */ 
    switch (type) { 
      /* Check for star network. */ 
      case XSIM_NM_STAR: { 
        return 2*latency; 
      } 
      /* Check for ring network. */ 
      case XSIM_NM_RING: { 
        return get_ring_latency(size, src, dst, latency); 
      } 
      /* Check for mesh network. */ 
      case XSIM_NM_MESH: { 
        return get_mesh_latency(size, src, dst, latency, degree, dimensions); 
      } 
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      /* Check for torus networkk. */ 
      case XSIM_NM_TORUS: { 
        return get_torus_latency(size, src, dst, latency, degree, dimensions, 
connectedness); 
      } 
      /* Check for twisted torus network. */ 
      case XSIM_NM_TWISTED_TORUS: { 
        return get_twisted_latency(size, src, dst, latency, degree, dimensions, 
connectedness, tdegree, tjump); 
      } 
      /* Check for tree network. */ 
      case XSIM_NM_TREE: { 
        return get_tree_latency(size, src, dst, latency, degree); 
      } 
      /* Check for unsupported network. */ 
      default: { 
        /* Log error. */ 
        XSIM_LOG_ERROR(Unsupported network type) 
        /* Return error. */ 
        return -1; 
      } 
    } 
  } 
} 
 
/** 
 * Get the positive difference between two integers. 
 * 
 * @param one         The first node 
 * @param two         The second node 
 */ 
int get_absolute(int one, int two) { 
  /* Check if the first number is larger. */ 
  if (one >= two) { 
    /* Return the positive difference. */ 
    return one - two; 
  } 
  /* Check if the second number is larger. */ 
  else { 
    /* Return the positive difference. */ 
    return two - one; 
  } 
} 
 
/** 
 * Get ring latency. 
 * 
 * @param one         The number of nodes 
 * @param two         The source rank 
 * @param three       The destination rank 
 * @param four        The latency 
 */ 
double get_ring_latency(int size, int src, int dst, double latency) { 
  /* Check if source is ahead of destination. */ 
  if (dst < src) { 
    /* Return the latency cost to loop around the ring. */ 
    return latency*(size - get_absolute(src, dst)); 
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  } 
  /* Check if the destination is ahead of the source. */ 
  else { 
    /* Return the latency cost to travel directly from source to destination. */ 
    return latency*get_absolute(src, dst); 
  } 
} 
 
/** 
 * Get mesh latency. 
 * 
 * @param one         The number of nodes 
 * @param two         The source rank 
 * @param three       The destination rank 
 * @param four        The latency 
 * @param five        The degree 
 * @param six         The dimensions 
 */ 
double get_mesh_latency(int size, int src, int dst, double latency, unsigned int 
degree, unsigned int *dimensions) { 
  /* The total mesh distance between the source and the destination. */ 
  int mesh_distance = 0; 
  /* Array to hold mesh co-ordinates of source. */ 
  unsigned int cartesian_src[degree]; 
  /* Array to hold mesh co-ordinates of destination. */ 
  unsigned int cartesian_dst[degree]; 
  /* The number of remaining processors in x dimensions. */ 
  int remaining_count = size; 
  int remaining_src = src; 
  int remaining_dst = dst; 
  /* Iterate through each dimension. */ 
  for (loop_index = 1; loop_index <= degree; loop_index++) { 
    /* Calculate the processors in the remaining dimensions. */ 
    remaining_count /= dimensions[degree-loop_index]; 
    /* Calculate the position of source within the current dimension. */ 
    cartesian_src[loop_index-1] = remaining_src/remaining_count; 
    remaining_src %= remaining_count; 
    /* Calculate the position of destination within the current dimension. */ 
    cartesian_dst[loop_index-1] = remaining_dst/remaining_count; 
    remaining_dst %= remaining_count; 
    /* Get the latency for traversing the current dimension. */ 
    mesh_distance += get_absolute(cartesian_src[loop_index-1], 
cartesian_dst[loop_index-1]); 
  } 
  return latency*mesh_distance; 
} 
 
/** 
 * Get torus latency. 
 * 
 * @param one         The number of nodes 
 * @param two         The source rank 
 * @param three       The destination rank 
 * @param four        The latency 
 * @param five        The degree 
 * @param six         The dimensions 
 * @param seven       The connectedness 
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 */ 
double get_torus_latency(int size, int src, int dst, double latency, unsigned 
int degree, 
                                      unsigned int *dimensions, unsigned int 
*connectedness) { 
  /* The total mesh distance between the source and the destination. */ 
  int torus_distance = 0; 
  /* Array to hold mesh co-ordinates of source. */ 
  unsigned int cartesian_src[degree]; 
  /* Array to hold mesh co-ordinates of destination. */ 
  unsigned int cartesian_dst[degree]; 
  /* The number of remaining processors in x dimensions. */ 
  int remaining_count = size; 
  int remaining_src = src; 
  int remaining_dst = dst; 
  /* Iterate through each dimension. */ 
  for (loop_index = 1; loop_index <= degree; loop_index++) { 
    /* Calculate the processors in the remaining dimensions. */ 
    remaining_count /= dimensions[degree-loop_index]; 
    /* Calculate the position of source within the current dimension. */ 
    cartesian_src[loop_index-1] = remaining_src/remaining_count; 
    remaining_src %= remaining_count; 
    /* Calculate the position of destination within the current dimension. */ 
    cartesian_dst[loop_index-1] = remaining_dst/remaining_count; 
    remaining_dst %= remaining_count; 
    /* Check if current dimension is toroidal. */ 
    if (connectedness[loop_index-1] == 1) { 
      /* Check if nodes are more closely connected directly. */ 
      if (get_absolute(cartesian_src[loop_index-1], cartesian_dst[loop_index-1]) 
<= (int)(dimensions[loop_index-1]/2)) { 
        /* Get the latency for directly traversing the current dimension. */ 
        torus_distance += get_absolute(cartesian_src[loop_index-1], 
cartesian_dst[loop_index-1]); 
      } 
      else { 
        /* Get the latency for toroidally traversing the current dimension. */ 
        torus_distance += (dimensions[degree-loop_index] - 
get_absolute(cartesian_src[loop_index-1], cartesian_dst[loop_index-1])); 
      } 
    } 
    /* Check if the current dimension is not toroidal. */ 
    else { 
      /* Get the latency for directly traversing the current dimension. */ 
      torus_distance += get_absolute(cartesian_src[loop_index-1], 
cartesian_dst[loop_index-1]); 
    } 
  } 
  return latency*torus_distance; 
} 
 
/** 
 * Get twisted torus latency. 
 * 
 * @param one         The number of nodes 
 * @param two         The source rank 
 * @param three       The destination rank 
 * @param four        The latency 
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 * @param five        The degree 
 * @param six         The dimensions 
 * @param seven       The connectedness 
 * @param eight       The toroidal jump index 
 * @param nine        The toroidal degree index 
 */ 
double get_twisted_latency(int size, int src, int dst, double latency, unsigned 
int degree, unsigned int *dimensions, unsigned int *connectedness, 
    int tdegree, unsigned int *tjump) { 
 
/* Switch source and dest so dest is always greater - avoids some issues. */ 
if (src > dst) { 
  int tmp = src; 
  src = dst; 
  dst = tmp; 
} 
  /* The total twisted torus distance between source and destination. */ 
  int twisted_distance = 0; 
  /* Array to hold mesh co-ordinates of source. */ 
  unsigned int cartesian_src[degree]; 
  /* Array to hold mesh co-ordinates of destination. */ 
  unsigned int cartesian_dst[degree]; 
  /* The number of remaining processors in x dimensions. */ 
  int remaining_count = size; 
  int remaining_src = src; 
  int remaining_dst = dst; 
  /* Iterate through each dimension. */ 
  for (loop_index = 1; loop_index <= degree; loop_index++) { 
    /*Calculate the processors in the remaining dimensions. */ 
    remaining_count /= dimensions[degree-loop_index]; 
    /* Calculate the psoition of source within the current dimension. */ 
    cartesian_src[loop_index-1] = remaining_src/remaining_count; 
    remaining_src %= remaining_count; 
    /* Calculate the position of destination within the current dimension. */ 
    cartesian_dst[loop_index-1] = remaining_dst/remaining_count; 
    remaining_dst %= remaining_count; 
  } 
  /* Array to hold record of dimensions traversed. */ 
  unsigned int record[degree][degree+3]; 
  /* Assign all dimensions as not yet traversed. */ 
  for (loop_index = 0; loop_index < degree; loop_index++) { 
    /* Set as 0 to indicate not done. */ 
    record[loop_index][0] = 0; 
  } 
  /* Loop variables. */ 
  unsigned int trav = 0; 
  unsigned int test = 0; 
  unsigned int source = 0; 
  /* Traverse each dimension. */ 
  for (trav = 0; trav < degree; trav++) { 
    /* Test each dimension. */ 
    for (test = 0; test < degree; test++) { 
      /* Check if current dimension has not been traversed. */ 
      if (record[test][0] == 0) { 
        /* Holds the possible position after dimension has been traversed 
directly. */ 
        unsigned int direct_location[degree]; 
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        /* Holds the possible position after dimension has been traversed by 
looping. */ 
        unsigned int loop_location[degree]; 
        /* Use the source array as the starting point. */ 
        for (source = 0; source < degree; source++) { 
          /* Copy the source into the direct/loop arrays. */ 
          direct_location[source] = cartesian_src[source]; 
          loop_location[source] = cartesian_src[source]; 
        } 
        /* Calculate the new position from direct traversal. */ 
        direct_location[test] = cartesian_dst[test]; 
        /* Check if current dimension is toroidal. */ 
        if (connectedness[test] == 1) { 
          /* Check if the source node is 'ahead' of the destination node in the 
current dimension. */ 
          if (cartesian_src[test] > cartesian_dst[test]) { 
            /* Check if the next dimension is the first. */ 
            if (test+tdegree >= degree) { 
              /* Check if the first dimension is at the last level. */ 
              if (loop_location[(test+tdegree)-degree] + tjump[test] >= 
dimensions[(test+tdegree)-degree]) { 
                /* Loop around in the positive direction to the start of the 
first dimension. */ 
                loop_location[(test+tdegree)-degree] = tjump[test] - 
(dimensions[(test+tdegree)-degree] - loop_location[(test+tdegree)-degree]); 
              } 
              else { 
                /* Loop around in the positive direction in the first dimension. 
*/ 
                loop_location[(test+tdegree)-degree] += tjump[test]; 
              } 
            } 
            else { 
              /* Check if the next dimension is at the last level. */ 
              if (loop_location[test+tdegree] + tjump[test] >= 
dimensions[degree-test-tdegree-1]-1) { 
                /* Loop around in the positive direction to the start of the 
next dimension. */ 
                loop_location[test+tdegree] = tjump[test] - 
(dimensions[test+tdegree] - loop_location[test+tdegree]); 
              } 
              else { 
                /* Loop around in the positive direction in the next dimension. 
*/ 
                loop_location[test+tdegree] += tjump[test]; 
              } 
            } 
          } 
          /* Check if the destination node is 'ahead' of the source node in the 
current dimension. */ 
          else { 
            /* Check if the next dimension is the first. */ 
            if (test+tdegree >= degree) { 
              /* Check if the first dimension is at the first level. */ 
              if ((int)(loop_location[(test+tdegree)-degree] - tjump[test]) < 0) 
{ 
                /* Loop around in the negative direction to the end of the first 
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dimension. */ 
                loop_location[(test+tdegree)-degree] = 
dimensions[(test+tdegree)-degree] + loop_location[(test+degree)-degree] - 
tjump[test]-1; 
              } 
              else { 
                /* Loop around in the negative direction in the first dimension. 
*/ 
                loop_location[(test+tdegree)-degree] -= tjump[test]; 
              } 
            } 
            else { 
              /* Check if the next dimension is at the first level. */ 
              if ((int)(loop_location[test+tdegree] - tjump[test]) < 0) { 
                /* Loop around in the negative direction to the end of the next 
dimension. */ 
                loop_location[test+tdegree] = dimensions[test+tdegree] + 
loop_location[test+tdegree]- tjump[test]; 
              } 
              else { 
                /* Loop around in the negative direction in the next dimension. 
*/ 
                loop_location[test+tdegree] -= tjump[test]; 
              } 
            } 
          } 
          /* Calculate the toroidal distance between the source and the 
destination in the current dimension. */ 
          loop_location[test] = cartesian_dst[test]; 
          /* Calculate the cost of traversing both directly and by loop. */ 
          int direct_cost = 0; 
          int loop_cost = 0; 
          /* Check how far from the destination in each dimension sequentially. 
*/ 
          for (loop_index = 0; loop_index < degree; loop_index++) { 
            /* Calculate the cost for direct traversal in this dimension. */ 
            direct_cost += get_absolute(direct_location[loop_index], 
cartesian_dst[loop_index]); 
            /* Calculate the cost for loop traversal in this dimension. */ 
            loop_cost += get_absolute(loop_location[loop_index], 
cartesian_dst[loop_index]); 
          } 
          /* Factor the cost for traversing the current dimension. */ 
          direct_cost += get_absolute(cartesian_src[test], 
direct_location[test]); 
          /* Factor the cost for traversing the current dimension. */ 
          loop_cost += (dimensions[test]-1 - get_absolute(cartesian_src[test], 
loop_location[test])); 
          /* Check if the direct method is best. */ 
          if (direct_cost <= loop_cost) { 
            /* Save the cost of traversing this dimension. */ 
            record[test][1] = get_absolute(cartesian_src[test], 
direct_location[test]); 
            record[test][2] = direct_cost; 
            /* Save the new position should this dimension be traversed. */ 
            for (loop_index = 0; loop_index < degree; loop_index++) { 
              /* Save the loop_index of each dimension. */ 
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              record[test][loop_index+3] = direct_location[loop_index]; 
            } 
          } 
          /* Check if the loop method is best. */ 
          else { 
            /* Save the cost of traversing this dimension. */ 
            record[test][1] = (dimensions[degree-test-1] - 
get_absolute(cartesian_src[test], direct_location[test])); 
            record[test][2] = loop_cost; 
            /* Save the new position should this dimension be traversed. */ 
            for (loop_index = 0; loop_index < degree; loop_index++) { 
              /* Save the position of each dimension. */ 
              record[test][loop_index+3] = loop_location[loop_index]; 
            } 
          } 
        } 
        /* If not toroidal use direct by default. */ 
        else { 
          int direct_cost = 0; 
          /* Check how far from the destination in each dimension sequentially. 
*/ 
          for (loop_index = 0; loop_index < degree; loop_index++) { 
            /* Calculate the cost for direct traversal in this dimension. */ 
            direct_cost += get_absolute(direct_location[loop_index], 
cartesian_dst[loop_index]); 
          } 
          /* Factor the cost for traversing the current dimension. */ 
          direct_cost += get_absolute(cartesian_src[test], 
direct_location[test]); 
          /* Save the cost of traversing this dimension. */ 
          record[test][1] = get_absolute(cartesian_src[test], 
direct_location[test]); 
          record[test][2] = direct_cost; 
          /* Save the new position should this dimension be traversed. */ 
          for (loop_index = 0; loop_index < degree; loop_index++) { 
            /* Save the position of each dimension. */ 
            record[test][loop_index+3] = direct_location[loop_index]; 
          } 
        } 
      } 
    } 
    /* Find the dimension which is best to traverse next. */ 
    int min_cost = 0; 
    /* Find the first dimension which has NOT yet been traversed as a minimum. 
*/ 
    while (record[min_cost][0] != 0) { 
      min_cost++; 
    } 
    /* Check each dimension to find the minimum cost. */ 
    for (loop_index = 0; loop_index < degree; loop_index++) { 
      /* Check if this dimension is better than the current best. */ 
      if ((record[loop_index][2] < record[min_cost][2]) && 
(record[loop_index][0] != 1)) { 
        /* Set this dimension as the best. */ 
        min_cost = loop_index; 
      } 
    } 
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    /* Add the traversal cost to the total cost. */ 
    twisted_distance += record[min_cost][1]; 
    /* Commit the changes by traversing the best dimension. */ 
    for (loop_index = 0; loop_index < degree; loop_index++) { 
      /* Update the position of each dimension. */ 
      cartesian_src[loop_index] = record[min_cost][loop_index+3]; 
    } 
    /* Mark dimension as traversed. */ 
    record[min_cost][0] = 1; 
    /* Check if destination has already been reached. */ 
    int difference = 0; 
    /* Check every dimension. */ 
    for (loop_index = 0; loop_index < degree; loop_index++) { 
      /* Check for equality. */ 
      if (cartesian_src[loop_index] != cartesian_dst[loop_index]) { 
        difference++; 
      } 
    } 
    /* Check if there is no need to continue traversing dimensions. */ 
    if (difference == 0) { 
      /* Add the latency of traversing the twisted torus to the message VP 
source time. */ 
      return latency*twisted_distance; 
    } 
  } 
  return latency*twisted_distance; 
 
} 
/** 
 * 
 * Get tree latency. 
 * 
 * @param one       The number of nodes 
 * @param two       The source rank 
 * @param three     The destination rank 
 * @param four      The latency 
 * @param five      The degree 
 */ 
double get_tree_latency(int size, int src, int dst, double latency, unsigned int 
degree) { 
  /* The total tree distance between the source and the destination. */ 
  int tree_distance = 0; 
  /* The parent of the source node. */ 
  unsigned int src_parent = src; 
  /* The parent of the destination node. */ 
  unsigned int dst_parent = dst; 
  /* Determine if the source and destination nodes share a common link on this 
level. */ 
  while (src_parent != dst_parent) { 
    /* Add the cost of traversing the current level to the total distance. */ 
    tree_distance += 2; 
    /* Calculate the parent of the current source. */ 
    src_parent /= degree; 
    /* Calculate the parent of the current destination. */ 
    dst_parent /= degree; 
  } 
  return latency*tree_distance;          
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} 
 
/****************************************************************************** 
 * 
 * END OF FILE 
 * 
 ******************************************************************************/ 
 

 


