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Abstract

High availability data storage systems are critical for many applications as research
and business become more data-driven. Since metadata management is essential to
system availability, multiple metadata services are used to improve the availability
of distributed storage systems. Past research focused on the active/standby model,
where each active service has at least one redundant idle backup. However, inter-
ruption of service and even some loss of service state may occur during a fail-over
depending on the used replication technique. In addition, the replication overhead
for multiple metadata services can be very high. The research in this paper targets
the symmetric active/active replication model, which uses multiple redundant ser-
vice nodes running in virtual synchrony. In this model, service node failures do not
cause a fail-over to a backup and there is no disruption of service or loss of ser-
vice state. A fast delivery protocol is further discussed to reduce the latency of the
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needed total order broadcast. The prototype implementation shows that metadata
service high availability can be achieved with an acceptable performance trade-off
using the symmetric active/active metadata service solution.
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1 Introduction

High availability data storage systems are critical for many applications as re-
search and business become more data-driven. A file system typically consists
of two types of data: user data and metadata. Metadata is essential to system
availability, because it defines how a file system utilizes its storage space to
manage user data. Since metadata is ”the data of the data”, disruption of
metadata access could result in a failure of the entire I/O system, while the
loss of user data normally only affects some user files. Any I/O request can be
classified into either a user data or metadata request.

In a traditional storage system [47,16,41], metadata is stored and managed
by dedicated metadata services. There are three major components in such a
typical storage system: metadata services, data services, and clients. A meta-
data service maintains information about files and directories in a file system.
Data services store file data. Clients send requests to the metadata service and
data services to store and retrieve file data. This system architecture has been
proved to be very efficient. However, it also implies several reliability defi-
ciencies resulting in system-wide availability and serviceability issues [24]. An
entire distributed storage system depends on the metadata service to function
properly. It is a single point of failure.

One way to improve the availability of parallel file systems is to deploy mul-
tiple metadata services. Multiple services back each other up. As long as at
least one metadata service is alive, the entire system does not fail. Several
models exist to perform reliable and consistent replication of service state to
multiple redundant services for high availability. Past research focused on the
active/standby model [7,53,26], where each service has at least one redundant
idle backup. However, interruption of service and even loss of service state
may occur during a fail-over depending on the replication technique, such as
hot-, warm- or cold-standby.

The research presented in this paper targets the symmetric active/active repli-
cation model [25] for metadata service high availability, which uses multiple
redundant service nodes running in virtual synchrony [35]. In this model, ser-
vice failures do not cause a fail-over to a backup and there is no disruption
of service or loss of service state. All services are active and ready to serve
requests from clients. This architecture improves availability and reliability.

The total order communication [12,23] is important for the symmetric active/ac-
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tive replication model, but the agreement on a total order usually bears a cost
of performance. A fast delivery protocol is discussed to reduce the latency of to-
tally ordered broadcasting. The protocol performs well for both idle and active
services. The results show that for write requests, the performance degrada-
tion is acceptable for typical distributed storage systems, and the throughput
of read requests increases linearly with the number of services. We are able
to show that metadata service high availability can be achieved without in-
terruption of service and with an acceptable performance trade-off using the
symmetric active/active metadata service solution.

This paper is organized as follows. The symmetric active/active replication
model is discussed in Section 2. Section 3 defines the system model. The ser-
vices of a total order broadcasting system is discussed in Section 4. Section 5
illustrates the fast delivery total order communication protocol. Section 6 de-
scribes the symmetric active/active metadata service design in more detail.
Experimental results are presented in Section 7. The related work is examined
in Section 8, and conclusions are drawn in Section 9.

2 Symmetric Active/Active Replication

The symmetric active/active replication model [25] allows to provide high
availability for any type of client-service scenario using the well known state-
machine replication concept [32,42] that relies on a group communication sys-
tem [18,20] for totally ordered and reliably delivered messages in a virtual
synchronous service group [35].

The symmetric active/active metadata service configuration (Fig. 1) allows
more than one redundant service to be active, i.e., to accept state changes,
while it does not waste system resources, as seen in an active/standby model.
Furthermore, there is no interruption of service and no loss of state, since
active services run in virtual synchrony without the need to fail over. The size
of the active service group is variable at runtime, i.e., services may join, leave,
or fail. Its membership is maintained by the group communication system in
a fault tolerant, adaptive fashion, ensuring group messaging properties. As
long as one active service is alive, state is never lost, state changes can be
performed, and output is produced according to state changes.

The concept of internal symmetric active/active replication (Fig. 2) allows
each active service of a replicated service group to accept query and request
messages from external clients individually, while using a process group com-
munication system for total state change message order and reliable state
change message delivery to all members of the service group. All state changes
are performed in the same order at all services, thus virtual synchrony is given.
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Symmetric Active/Active Metadata Service

Compute Nodes (Metadata/Storage Clients)

Storage Services

Fig. 1. Symmetric Active/Active Metadata Service Configuration

Consistently produced service group output may be routed through the process
group communication system for at-most-once delivery if dependent clients,
services, and users can‘t handle duplicated messages.

For example, a networked server that changes its state based on remote pro-
cedure calls (RPCs), such as the metadata service of a parallel file system,
is modified to replicate all state changes in form of messages to all services
in the service group. Upon delivery, state changes are performed in virtual
synchrony. RPCs and respective state changes are decoupled and executed by
separate event handler routines. RPC return messages may be unified via the
process group communication system, delivered by every process group mem-
ber, or delivered by only one process group member and temporarily cached
by others.

The developed proof-of-concept prototype is a customized implementation for
offering symmetric active/active high availability for the metadata service. It
is based on the internal RPC and state change mechanisms of the original
metadata service implementation and utilizes adaptors as part of the inter-
nal replication architecture (Fig. 2) to provide symmetric active/active high
availability without any interruption of service and without any loss of state.
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Fig. 2. Symmetric Active/Active Replication Architecture using Internal Replica-
tion by Service Modification/Adaptation. The service interface could be metadata
service interface if this model is used to develop active/active high availability for
the metadata service.

3 Model and Definition

Symmetric active/active metadata services for a file system do not allow group
partitions, otherwise a single global state for the file system cannot be main-
tained. There is only one primary group providing metadata services to clients.
Any service that leaves the primary group because of either malfunction or
network partition should stop responding to any requests from clients.

Assume that the primary group P consists of a group of metadata services
{p1, p2, · · · , pn}. We define St

p as the state of metadata in a service p at a time
t. We denote with Gt if metadata in the group P is consistent at time t.

Property 1: The metadata in the primary group P is consistent at time t, if
and only if any two services in the P have same state at time t.

Gt ←→ ∀p, q ∈ P (St
p = St

q)

We define an initial state S0
p for a service p in the primary group P , and we

assume that ∀p, q ∈ P, (S0
p = S0

q ). mi
p is the ith message which changes the

state of a service p since the initial state S0
p . Function time(mi

p) returns the
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time a message mi
p arrives at the service p. Sp,i is the state of service p after

the mi
p.

Qi
p represents a sequence of ordered messages sent to service p since the the

initial state S0
p , and the last message of the sequence is mi

p. {Qi
p} defines the

the message set of the sequence: {Qi
p} = {m1

p, m
2
p, · · · , mi

p}. |Qi
p| is the number

of messages in the sequence. ~Qi
p defines the message order of the sequence:

∀mj
p, m

k
p ∈ {Qi

p}, j < k −→ (time(mj
p) < time(mk

p))

Property 2: A message sequence Qi
p is said to be the same as a message

sequence Qj
q, if and only if message set and message order of the two sequences

are the same.

Qi
p = Qj

q ←→ ({Qi
p} = {Qj

q}) ∧ ( ~Qi
p = ~Qj

q)

A sequence of ordered messages sent to service p changes the state of a service p
from the initial state S0

p to Sp,i. We define a recurrence relation and a function
T̄ such that

Sp,i = T̄ (Sp,i−1, m
i
p)

Sp,0 = S0
p

According to the definition of Qi
p, a sequence of ordered messages sent to

service p since the the initial state S0
p , the recurrence relation can be solved

to obtain a non-recursive definition of a state transformation function T .

Sp,i = T (S0
p ,Qi

p)

Property 3: If a message sequence Qi
p is same as a message sequence Qj

q,
then the state of service p, Sp,i, is said to be same as the state of service q,
Sq,j.

Qi
p = Qj

q −→ Sp,i = Sq,j

Proof: Sp,i = T (S0
p ,Qi

p), Sq,j = T (S0
q ,Qj

q),

since S0
p = S0

q , if Qi
p = Qj

q,

then Sp,i = Sq,j.
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Function time(Qi
p) returns the time the last message of sequence Qi

p arrives
at the service p. Q̄t

p defines the longest message sequence for service p before
time t.

Q̄t
p = Qi

p −→6 ∃Qj
p, (|Qj

p| > |Qi
p|) ∧

(time(Qi
p) < t) ∧ (time(Qj

p) < t)

Property 4: If a message sequence Q̄t
p is same as a message sequence Q̄t

q, the
state of service p, St

p, is said to be same as the state of service q, St
q, at a time

t.

Q̄t
p = Q̄t

q −→ St
p = St

q

After combining Property 1 and Property 4, we have Property 5:

Property 5: The metadata in the primary group P is consistent at time t, if
any two services in the P receive same message sequence at time t.

∀p, q ∈ P (Q̄t
p = Q̄t

q) −→ Gt

A group communication substrate provides a virtual synchronous environment
for application processes. It means that every two processes that observe the
same two consecutive membership changes, receive the same set of regular
multicast messages between the two changes. Regarding to the order of the
regular messages received between the two changes, the group communication
service provides total order communication. It guarantees that all messages
are delivered in the same order to all group members. Combined with virtual
synchrony and total order communication, a group communication service
guarantees that any two services in the primary group P receive the same
message sequence. According to Property 5, the metadata in the primary
group P is consistent.

4 Total Order Broadcasting Service

Section 3 shows that a total order broadcasting service is important to guar-
antee metadata consistency in a symmetric active/active service group. In this
section, the services of a total order broadcasting is briefly discussed . We as-
sume that there is a substrate layer providing basic broadcasting services. A
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typical parallel computing system comprises of a set of processes that com-
municate via broadcasting messages. We assume that messages are uniquely
identified through a pair (sender, counter).

4.1 Basic Broadcasting Services

In a distributed system of a set of machines, each machine has a sequence
of events. An event is any operation executed on the machines, and thus
sending or receiving a message is an event. A machine in the system uses
a broadcasting service to send messages. A broadcast message is sent once
by its source machine, and arrives to all target machines in the system, at
different time. The broadcasting service is responsible for the reliable delivery
of messages. Internally, causal delivery order [31] of messages is guaranteed
by the service. It is based on the relation ’precedes’ (denoted by →), which is
defined as follows.

(Definition 1): Assume that ei and ej are two events in such a distributed
system. The transitive relation ei → ej ( ”happened before” relation) holds if
any of the following conditions is satisfied:

(1) ei and ej are two events on the same machine, and ei comes before ej.
(2) ei is the sending of a message m by one machine and ej is the receipt of

m by another machine.
(3) There exists a third event ek such that ei → ek and ek → ej.

The causal order for broadcast messages is defined as follows [27]:

(Causal Order): If the broadcast of a message mi causally precedes the
broadcast of a message mj, mi → mj, then no machine delivers mj before mi.

(Definition 2): Message mi and message mj are concurrent, if mi does not
causally precede mj, and mj does not causally precede mi.

The basic broadcasting service receives the messages on the network. It keeps
causal order of messages and delivers them to the fast delivery protocol. The
broadcasting service does not guarantee the same delivery sequence of concur-
rent messages in the system.

Failure can be defined as deviations from correct behaviors. Some type of
previously studied failures [27] include: crash failure, send-omission failure,
receive omission failure, and Byzantine failure. If a machine commits a failure,
it is faulty; otherwise it is correct. The following properties [27] are guaranteed
by the service:
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(Validity): If a correct machine broadcasts a message m, then it eventually
delivers m.

(Agreement): If a correct machine delivers a message m, then all correct
processes eventually deliver m.

(Integrity): For any message m, every machine delivers m at most once, and
only if m was previously broadcasted by sender(m).

4.2 Total Order Broadcasting

On top of the basic broadcasting service, totally ordered broadcasting extends
the underlying causal order to a total order for concurrent messages.

(Total Order): If two correct machines p and q both deliver message mi and
mj, then p delivers mi before mj if and only if q delivers mi before mj.

The total order broadcasting provided by the system does not guarantee the
total order across multiple partitions. As long as partitions do not occur,
all machines deliver the messages in the same total order. When a partition
occurs, machines in the same partition continue to form the same total order.
However, it may differ across partitions. The total order broadcasting service
of the system is defined in Fig. 3.

• Let mi and mj are two total order broadcasting messages:
(1) If mi causally precedes mj , all machines that deliver mi and mj

deliver mi before mj .

(2) If mi and mj are concurrent, if machine p delivers mi before
mj , then any machine q that belongs to the same partition with
p delivers mi before mj .

Fig. 3. Total-Order Broadcasting Service Definition

5 Fast Delivery Protocol for Total Order Broadcasting

Total order broadcasting is important for group communication services [18,12,20],
but the agreement on a total order usually bears a cost of performance: a
message is not delivered immediately after being received, until all the group
members reach agreement on a single total order of delivery. Generally, the
cost is measured as latency of totally ordered messages, from the point the
message is ready to be sent, to the time it is delivered.
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Traditionally three approaches are widely used to implement total ordering:
sequencer, privilege-based, and communication history algorithms [20]. In se-
quencer algorithms, one machine is responsible for ordering the messages on
behalf of other machines in the group. Privilege-based algorithms rely on the
idea that senders can broadcast messages only when they are granted the priv-
ilege to do so. For example, in a token-based algorithm [8], a token is rotated
among machines in the same group, and one machine can only send messages
while it holds the token. In communication history algorithms, total order
messages can be sent by any machine at any time, without prior enforced
order, and total order is ensured by delaying the delivery of messages, until
enough information of communication history has been gathered from other
machines.

These three types of algorithms have both advantages and disadvantages. Se-
quencer and privilege-based algorithms provide good performance when a sys-
tem is relatively idle. However, when multiple machines are active and con-
stantly send messages, the latency is limited by the time to circulate the token
or produce the order number from the sequencer. Communication history algo-
rithms have a post-transmission delay [20,23]. To collect enough information,
the algorithm has to wait for a message from each machine in the group, and
then delivers the set of messages that do not causally follow any other, in a
predefined order, for example, by sender ID. The length of the delay is set
by the slowest machine to respond with a message. The post-transmission de-
lay is most apparent when the system is relatively idle, and when waiting for
response from all other machines in the group. In the worst case, the delay
may be equal to the interval of heart beat messages from an idle machine.
On the contrary, if all machines produce messages and the communication in
the group is heavy, the regular messages continuously form a total order, and
the algorithm provides the potential for low latency of total order message
delivery.

In a parallel computing system, multiple concurrent requests are expected to
arrive simultaneously. A communication history algorithm is preferred to order
requests among multiple machines, since such algorithm performs well under
heavy communication loads with concurrent requests. However, for relatively
light load scenarios, the post-transmission delay is high.

In this section, we describe a fast delivery protocol to reduce this post-trans-
mission delay. The fast delivery protocol provides the total order broadcasting
service defined in Section 4.2. We assume that the protocol works on top of
the basic broadcasting service described in Section 4.1. We first consider a
static system of n machines, which means no failure of machines, no network
partitions and re-merges, no new machines. Those features will be considered
in the Section 5.3, in which we show how to extend the protocol to handle
dynamic environments. The fast delivery protocol forms the total order by
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waiting for messages only from a subset of the machines in the group, thus it
fast delivers total order messages. The protocol is implemented on top of the
Transis [23] group communication system.

Each machine will not deliver any messages until it collects a message set
from other machines in the group. The message set should contain enough
information to guarantee totally ordered delivery. After a machine receives
enough messages, it delivers the set of messages that do not causally follow
any other, in a predefined order. Idle machines periodically broadcast heart
beat messages with a predefined interval on behalf of other machines. Those
heart beat messages will not be delivered, but used by machines to determine
the order of received messages.

5.1 Notation and Definition

We define that a partition P consists of a group of machines {p1, p2, · · · , pN}.
We assume each machine in the group P has a distinct ID. For a machine p,
function id(p) returns its ID. If the number of machines in the primary group
P is N ,

∀p, q ∈ P, id(p), id(q) ∈ {1, 2, · · · , N},
id(p) 6= id(q)

We associate with each machine p ∈ P the functions prefix and suffix which
are defined:

(1) prefix(p) = {q|∀q ∈ P, id(q) < id(p)}
(2) suffix(p) = {q|∀q ∈ P, id(q) > id(p)}

The input to the fast delivery protocol is a stream of causally ordered messages
from the underlying broadcasting service. We define a function sender(m)
accepting an input paramerter of any message m, and the function returns
the ID of the machine sending this message m. For example, if a message mi

is sent by a machine p, then sender(mi) = p. If a message mi is delivered
before a message mj, deliver(mi) < deliver(mj).

We define a pending message [22] to be a message that was received by the
protocol but has not been agreed on a total order, thus, not delivered for
processing. A pending message that follows only delivered messages is called
a candidate message. The set of concurrent candidate messages is called the
candidate set. This is the set of messages that are considered for the next slot
in the total order. For example, a system has 5 machines, {p1, p2, p3, p4, p5}.
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After a certain time, there are no undelivered messages on any machines.
Machine p1 broadcasts a message mp1, and machine p4 broadcasts a message
mp4. All five machines receive both mp1 and mp4, but none of them can deliver
the two messages, because except of the sending machines, no one knows if
messages mp2 and mp3 are sent by p2 and p3 concurrently with mp4, or not.
All machines should not deliver mp1 and mp4, until enough information is
collected to determine total order. The message set of mp1 and mp4 is called
the candidate set, and messages mp1 and mp4 are called candidate messages.
Let Mp = {m1, m2, · · · , mk} be the set of candidate messages in a machine p.
We associate with Mp a function senders.

senders(Mp) = {sender(mi)|∀mi ∈Mp}

Let Mdp be the set of messages ready to be delivered in a machine p such that
Mdp ⊆Mp. The Mdp is called the deliver set.

5.2 The Fast Delivery Protocol

• When receiving a regular message m in machine p:
(1) if m is a new candidate message

add m into candidate set Mp

(2) if Mp 6= φ
for all mi ∈Mp {
if prefix(sender(mi)) ⊆ senders(Mp)

add mi into delivery set Mdp

}
(3) if Mdp 6= φ

if causal order exsits in Mdp

deliver messages in causal order
for all concurrent messages mj in Mdp

deliver in the order of id(sender(mj))
(4) if sender(m) 6∈ suffix(p)

return
if message m is not a total order message

return
if there are messages waiting to be broadcast from the machine
p

return
if ∃mi ∈Mp, id(sender(mi)) = p

return
otherwise, fast acknowledge m

Fig. 4. Fast Delivery Protocol Algorithm
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The fast delivery protocol is symmetric, and we describe it for a specific ma-
chine p (see pseudo code in Fig. 4). The basic concept of the fast delivery
protocol is to form total order by waiting for messages only from a subset
of the machines in the group. Assuming a candidate message m is in candi-
date set Mp, we use the following delivery criterion to define what messages a
machine has to wait before delivering m:

(1) Add m into deliver set Mdp when:

prefix(sender(m)) ⊆ senders(Mp)

(2) Deliver the messages in the Mdp with the following order:
∀mi, mj ∈Mdp,
if mi → mj

deliver(mi) < deliver(mj)
if mj → mi

deliver(mj) < deliver(mi)
otherwise mi and mj are concurrent

id(sender(mi)) < id(sender(mj)) −→ deliver(mi) < deliver(mj)

With the same example in Section 5.1, we explain how the protocol works.
All five machines can deliver mp1 immediately, because prefix(p1) = φ, and
senders(Mp) = φ. The five machines can’t deliver mp4, because prefix(p4) =
{p1, p2, p3} and senders(Mp) = p1. Machines have to wait for messages from
both p2 and p3, but do not need to wait for a message from p5, because
p5 6∈ prefix(p4).

Property 6: With fast delivery algorithm, if a machine p delivers mi before
mj, then any machine q that belongs to the same partition with p delivers mi

before mj, which means, total ordering is guaranteed in the same partition.
Proof:

(1) If there is a casual order between mi and mj, and if p delivers mi before
mj, then mi causally precedes mj, so any machine q in the same partition
delivers mi before mj.

(2) Otherwise, mi and mj are concurrent. if p delivers mi before mj, then
id(sender(mi)) < id(sender(mj)). Any machine q in the same partition
delivers mi before mj.

According to the protocol, if prefix(sender(m)) 6⊆ senders(Mp). The machine
p has to wait for messages from other machines before delivering m. If any of
those machines is idle, the waiting time could be up to the interval of heart beat
messages. To speedup the delivery of m, idle machines should immediately
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acknowledge m on behalf of other machines. If a machine q receives a message
m, and q is idle, q broadcasts a fast acknowledgment when:

sender(m) ∈ suffix(q)

In the same example, if p2 and p3 are idle, they should fast acknowledge mp4,
because p4 ∈ suffix(p2), and p4 ∈ suffix(p3). If p5 is idle, it does not need
to send a fast acknowledgment, because p4 6∈ suffix(p5).

Fast acknowledgment reduces the latency of message delivery, however, it in-
jects more packets into the network. If communication is heavy, fast acknowl-
edgment may burden network and machines, thus increase delivery latency.
To reduce the cost, we define the following acknowledgment criterion:

(ACK) Fast acknowledge a message m from a machine q when:

(1) message m is a total order message, and
(2) there is no message waiting to be sent from the machine q, and
(3) 6 ∃mj ∈Mp, id(sender(mj)) = q.

Condition 1 is straightforward. Condition 2 means if a machine is sending reg-
ular messages, it is not an idle machine, and the regular messages themselves
are enough to form a total order. Condition 3 means if a machine already sent
a regular message, which is still in the Mp, that message can be used to form a
total order, without an additional acknowledgment. In the same example, if p1

is idle after sent mp1, it does not need to send any acknowledgment (although
p4 ∈ suffix(p1)), because mp1 is still in Mp.

In a parallel system, when multiple concurrent requests arrive a machine si-
multaneously and the system is busy, conditions 2 and 3 could not be satisfied
simultaneously, so no additional acknowledgments are injected into the net-
work when communication is heavy.

5.3 Fast Delivery Protocol for Dynamic Systems

The fast delivery protocol operates on an asynchronous stream of causal order
messages. So far, the protocol does not account for failures, network parti-
tioning and re-merging, and joining machines. In this section, we show how to
extend the protocol to handle above issues in dynamic environments.

The fast delivery protocol is integrated into the group communication service
to provide total order delivery of messages on top of the basic broadcasting
service. We assume that the system contains a membership service, which
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maintains a view of the current membership set (CMS) consistent among all
machines in the dynamic environment. When machines crash or disconnect,
the network partitions and re-merges, or new machines join, the membership
service of all connected machines must reconfigure and reach a new agreement
on the CMS.

After a new agreement is reached, the membership service delivers a view change
event indicating a new configuration. All connected machines in the new con-
figuration agree on the set of regular messages that belong to the previous
membership, and must be delivered before the new view change event. The
fast delivery protocol is extended to define how to deliver such messages in
the dynamic environment.

We assume that after a new agreement on the CMS, the membership service
notifies the fast delivery protocol with a special event. With such event, the
protocol gets the machine set, Pf , which belongs to previous configuration,
but is included in the new configuration. The new prefix(p) and suffix(p)
are calculated based on the Pf :

(1) prefix(p) = {q|∀q ∈ Pf , id(q) < id(p)}
(2) suffix(p) = {q|∀q ∈ Pf , id(q) > id(p)}

Using the algorithm described in Section 5, the set of regular messages that
belong to the previous configuration are delivered before the view change event
with the new prefix(p) and suffix(p). Since a new CMS always completes
within a finite delay of time, any total order message could be delivered within
a limited time interval.

6 Symmetric Active/Active Metadata Service Design

1. Input Message

Fig. 5. Internal Replication Design of the Symmetric Active/Active Metadata Ser-
vice

16



Conceptually, the symmetric active/active metadata service software archi-
tecture (Fig. 5) consists of several major parts, to handle client requests, up-
date global state, and manage membership of the service group. The current
proof-of-concept prototype implementation uses the Transis [23] process group
communication system in conjunction with the fast delivery protocol to pro-
vide total order and virtual synchrony, and the Parallel Virtual File System
(PVFS) [16].

We provide basic metadata manipulation interfaces for clients. To balance
workloads among multiple services, a client randomly chooses a service to
send a request. All client requests are sent to the request interface module.
It interprets the requests, creates new jobs for them, then either dispatches
the jobs directly to the basic metadata services module or requests Transis
to broadcast them in total order. Jobs are first put into an active queue. The
scheduler module chooses one active job to execute, until it is blocked by I/O
operations and thus the job is put into the idle queue. After I/O operations
finish, the job is put back into the active queue and waits to be scheduled.
The scheduling mechanism guarantees that a metadata service is not blocked
by any I/O operation and multiple concurrent requests could be interleaved
for improved throughput performance.

The basic metadata services module is responsible for updating local meta-
data and provides basic metadata management functions, such as create new
object (file or directory), add a new entry into a directory, get attribute, and
so on. Some client requests could be mapped to basic metadata services di-
rectly, such as get or set attribute, but some updating requests involve several
basic metadata services and are also considered as atomic operations. For
example, a create new file request involves three basic services: reading the
parent directory to make sure no object has same name, create an object, and
add the handle of the new object into the parent directory. It is an atomic
operation, because a failure of any step requires a roll back of all steps. The
transaction control module is responsible for processing of such requests auto-
matically handling roll back if a failure occurs. It ensures that transactions are
processed consistently across all service instances using process group commu-
nication services. All services make the same decision for a transaction, either
submit, or rollback. The module coordinates transaction processing, and dis-
patches any real metadata operation to the basic services module.

Jobs are interleaved by the scheduler, but concurrent operations on the same
objects are serialized by a locking service. The locking service provides three
lock modes: read, write, and update. Incompatibility of the three modes is
shown in Table 1. The update lock is designed to improve performance of
transactions. A transaction first applies an update lock, without blocking other
read requests, then upgrades to write mode only when operations modifying
local objects are ready to be submitted. This design allows disabling the lock-
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read update write

read X

update X X

write X X X
Table 1
Transaction Control Module Locking Table of the Symmetric Active/Active Meta-
data Service

ing service if the parallel file system itself provides other means of locking at
the client side or if POSIX file operation semantics are relaxed. Both may lead
to further performance improvement.

The file handle space is managed by a dedicated module. Each metadata
service allocates and releases file handles independently, but the file handle
management must be consistent among all services of the group. The han-
dle management module is responsible for allocating and releasing handles
consistently for all services and maintaining global state of the handle space.

The membership management module is responsible for maintaining integrity
of the service group. Every time when new services join the group or current
members leave the group, the module is notified with a view change message
from Transis. The metadata is a global state that must be consistent across all
services at any time, so the service group does not allow multiple partitions.
Even if a network partition exists, the symmetric active/active metadata ser-
vice group should only enable one primary group. Any service either belongs to
a default primary group, or disables (fences) itself, until it rejoins the primary
group. If a service crashes, it is already disabled automatically. If a service
leaves because of a network error, it must also stop responding to any client
requests. If a client happens to connect a service not belonging to the primary
group because of network partition, the client gets a negative response from
the service, thus the client either tries to find other active services belonging
to the primary group, or is notified with an operation failure event. In either
case, metadata is kept consistent. After joining the primary group, a service
gets the current metadata service state from other members of the group, and
thus updates its local copy. Since the view change messages are also totally or-
dered to request messages from clients, the current state of metadata obtained
from other members is exactly consistent to global state.

Read requests do not modify metadata except that in POSIX compliant file-
systems, the last access time information is updated upon file read requests.
The POSIX compliance of updating last access time under read requests is
relaxed in this design. Last access time is updated at the server handling the
read request, but not instantly broadcasted to other servers. The update is
put into a queue, and broadcasted to the group with later write requests. Any
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active service may handle read requests independently and locally (Fig. 6).
However, write requests arriving at any metadata service have to be totally
ordered by group communication services before submitted to the basic meta-
data service (Fig. 7). A typical write request is processed by following steps:

(1) Client sends request to the request interface.
(2) Transis is requested to broadcast the state change message.
(3) Transis delivers the state change message to local scheduler.
(4) The state change message is sent to transaction control module.
(5) Transaction control decomposes the state change messages.
(6) The state change messages update local metadata.
(7) The operation results are returned to the request interface.
(8) The service results are returned to clients.

Active/Active Metadata Service

 Client Library/Kernel Module

4. Output 
Message

1. Query 
Message

Request Interface Meta Data Service

3. Output Message

2. Query Message

Fig. 6. Read Request Handling of the Symmetric Active/Active Metadata Service
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Fig. 7. Write Request Handling of the Symmetric Active/Active Metadata Service
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7 Experimental Results

To verify above model, a proof-of-concept prototype for symmetric active/active
metadata services has been implemented using the PVFS 2 [16] and deployed
on the XTORC cluster at Oak Ridge National Laboratory, using up to 4 meta-
data services and 32 client nodes in various combinations for functional and
performance testing. The compute nodes of the XTORC cluster are IBM In-
telliStation M Pro series services. Individual nodes contain a Intel Pentium
2GHz processor with 768MB memory, and a 40GB hard disk. All nodes are
connected via Fast Ethernet (100MBit/s full duplex) switches. Although the
Fast Ethernet is pretty slow, the network performance will not be the bottle-
neck of the system, since we only measure read/write performance of metadata
operations, which are very small messages (less than 1KB in most requests).
Federa Core 5 has been installed as the operating system. Transis v1.03 with
the fast delivery protocol is used to provide group communication services.
Failures are simulated by unplugging network cables and by forcibly shutting
down individual processes.

7.1 Benchmark

Both micro-benchmark and macro-benchmark are used to evaluate the effec-
tiveness of the fast delivery protocol and the Active/Active metadata service.

A MPI-based micro-benchmark was developed to study the latency and through-
put of the group communication service and the metadata servers built on it.
The benchmark has two testing modes. In mode A, multiple benchmark in-
stances concurrently send messages to associated group communication servers,
and then block until deliveries of all messages are confirmed. The latency of
group communication service is measured between the point the messages are
sent out and the point the confirmations are delivered. In mode B, multi-
ple benchmark instances concurrently send metadata requests to associated
metadata servers, and wait server responses. The blocked requests are sent for
latency measurements, and a group of unblocked requests from each bench-
mark instance are sent for throughput measurements. Please bearing in mind
that the micro benchmark only measures the latency/throughput of operations
at metadata servers, not the operations of the entire file system.

Several macro-benchmarks, including PostMark [4], Iozone [1], and BTIO from
NAS PARALLEL BENCHMARKS (NPB) [2], were used to study peculiari-
ties of a metadata service. A tracing method is used to evaluate various stan-
dard file-system workloads. Traces were collected by instrumenting a PVFS2
file system to log various operations in the metadata servers(MDS) and the
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object-based storage devices(OSD). The collected traces were analyzed offline
to study the access patterns observed in metadata services. The test bed con-
sisted of 1 MDS, 3 OSDs, and multiple clients.

The PostMark benchmark was used to simulate heavy file system loads. Post-
Mark is designed to create a large pool of continually changing files and to
measure the transaction rates for a workload approximating a large Internet
e-mail server. In this study, the initial number of files was set to 100. Files
ranged between 1MB to 64MB in size. PostMark performed 1000 transactions
on each file. Block sizes were 512 bytes and UNIX buffered I/O was used.

IOzone generates and measures a variety of file operations for determining a
broad file system analysis. In this study, both sequential and random access
patterns are simulated with read, write, re-read and re-write operations on a
4GB file with various request sizes from 4KB to 128KB.

BTIO is a MPI-IO benchmark from NPB used for studying access pattern
of parallel I/Os. It is compiled with OpenMPI [3] and ROMIO [5]. MPI-Full
mode with collective I/O was enabled to examine the cost of MDS and OSDs
under concurrent IO accesses from multiple clients.

7.2 Fast Delivery Protocol Performance

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8

Number of Processes (P)

La
te

nc
y 

in
 M

ic
ro

se
co

nd
s 

Transis with 1 Sender (Minimum) Improved Transis with 1 Sender
Transis with P Senders Improved Transis with P Senders
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At the first step, the effectiveness of the fast delivery protocol was examined.
The mode A of the MPI-based micro-benchmark was used to send concurrent
requests from multiple machines. The latency was measured with blocked re-
quests, and an average latency was calculated from 100 requests of each ma-

21



chine. The results under various configurations were provided for comparison
from 1 to 8 machines. In the configuration of only one machine, the latency
overhead mainly came from the processing cost of the group communication
service. When the number of machines increased, additional overhead was
introduced by the network communication and total order communication al-
gorithm to reach agreement among machines. For each configuration, we mea-
sured the latency under both, idle and busy systems. In an idle system, only a
single machine sent requests. In a busy system, all machines sent concurrent
requests.

The fast delivery protocol was compared with the traditional communication
history algorithm provided by the original Transis system. In an idle system,
the post-transmission delay of traditional communication history algorithm
was apparent. The latency is a random variable, and in the worst case, it is
equal to the interval of heart beat messages from an idle machine. A typical
interval is in the gratitude of several hundred milliseconds, and the default
value of Transis is 500ms. To compare with the fast delivery protocol, Fig. 8
plots the minimum delay of Transis with 1 sender. In the figure, the latency
of the plain communication history algorithm and the fast delivery protocol
is almost identical, because we compared to the minimum value of a random
variable. The proof-of-concept prototype shows that although the latency in-
creased with the number of machines, the fast delivery protocol works well
to keep the overall overhead far more acceptable and consistent. In an idle
system, the latency of the new protocol is very close to the minimum delay of
the Transis. In a busy system (Fig. 8 with P senders), the latency of the fast
delivery protocol is almost the same as the traditional communication history
algorithm, because the protocol held unnecessary acknowledgments. We found
that when all machines sent concurrent requests, the fast delivery protocol did
not acknowledge any broadcast, and the regular messages continuously formed
total order.

7.3 Metadata Service Failure Handling

In the experiments, configuration changes including failures of metadata servers
and new service joining were simulated. The initial configuration of the sys-
tem consisted of 1 metadata server and multiple clients. Configuration changes
were simulated at the time clients were randomly updating metadata. Exces-
sive functional testing revealed correct behavior during normal system oper-
ation and in case of single and multiple simultaneous failures. The functions
monitored in the simulation included

(1) Correct behavior of metadata services in the process of configuration
changes.
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(2) Consistence of metadata crossing all metadata servers in new configura-
tions.

(3) Any disruption of service or loss of service state in the process of config-
uration changes.

First, additional metadata servers were added into the service group. New
servers were allowed to join the group, and served requests from clients right
after they got the current metadata service state from other members of the
group. A consistent metadata state was maintained in the group, for both
old members and new members. There was no disruption of service or loss
of service state in this process, and clients were not aware of changes of the
configurations.

Then, one and more members were forced to leave the group, by unplugging
network cables and by forcibly shutting down individual processes. Correct be-
havior of metadata services was maintained and clients were not aware of any
changes. Metadata state was consistent in the group before and after mem-
bers left the group. No disruption of service or loss of service state occurred
while metadata is maintained consistently at all services and high availability
service is provided to clients.

7.4 Metadata Service with a micro-benchmark

The proof-of-concept prototype shows a comparable latency and throughput
performance. In the experiment, both the client and service caches were dis-
abled to avoid interference. The mode B of the MPI-based micro-benchmark
was used to send concurrent read/write requests from multiple clients. The
latency and throughput of the original PVFS metadata service were compared
with proposed symmetric active/active PVFS metadata service solution. The
results under various configurations were provided for comparison between 1,
2, and 4 symmetric active/active metadata services. The latency was measured
with blocked requests, and an average value was calculated from 100 requests
of each client. The read latency was not provided, because read requests are
independently handled by each active metadata service, and thus there was no
difference to the original PVFS metadata service. The throughput was mea-
sured with unblocked requests. The total requests sent to the services were
5000∗N , where N is the number of metadata services. Each client sent 5000∗N

n

unblocked requests to services (n is number of clients), and then waited for
the completion of all requests. An average throughput was calculated in terms
of requests/second.

Benefited from the highly efficient total order service, the request latency of
the proof-of-concept prototype(Fig. 9) increases very conservatively from a
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single PVFS metadata server. The delay of a single PVFS metadata service
was used as a baseline, and data is normalized to the point of one PVFS ser-
vice with one client. The latency of the baseline increases with the number of
clients, and the normalized latency of active/active metadata service followes
the same trend. The new design shows the same scalability as the baseline,
since the latency difference keeps small even with large number of clients. It is
consistent for both the small and the large number of clients. In the configura-
tion of only one metadata service with the symmetric active/active design, the
latency overhead (compared to baseline) mainly comes from processing cost
of the Transis group communication service. When the number of metadata
services increases, additional overhead is introduced by the network communi-
cation and the total order communication algorithm to reach agreement among
services. A service with two active/active servers is a practical configuration,
because two servers could provide necessary high availability with no disrup-
tion of service, but minimize costs. In the configuration of two active/active
servers, the latency overhead is very minor. The fast acknowledgment aggres-
sively acknowledges total order messages to reduce the latency of idle services
when the number of clients is small. The protocol is smart enough to hold
its acknowledgments when the network communication is heavy because more
clients are involved.

The comparison of write throughput (Fig. 10) illustrates the trend that the
overhead of virtual synchrony could be amortized with a large number of
clients. At the point of one client, the configuration of two metadata servers
introduces an overhead of 20%. If the number of clients increase to 32, the over-
head drops to less than 5%. With large number of clients, the regular messages
from each servers automatically form a total order without the overhead from
additional acknowledges.
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On the contrary, the read throughput (Fig. 11) increases linearly with the num-
ber of services. It is not surprising, because multiple services can process con-
current read requests simultaneously, a feature of the symmetric active/active
replication architecture. With the same configuration of two servers, the im-
provement can be as high as 80%. In a metadata access pattern with realis-
tic work load, the overheads suffered from update/write operations would be
amortized with an improved scalability of read requests.
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7.5 Metadata Service with macro-benchmarks

The use of symmetric active/active replication allows for no interruption
of service upon failure of service nodes. Requiring virtual synchrony of all
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update/write operations adds overhead to the ”common path”. The proof-
of-concept prototype shows very conservative overhead for write operations
(Fig. 9), and shows that the read throughput increases linearly with the num-
ber of services (Fig. 11). The further study of access patterns observed in
metadata services under various file system benchmarks (section 7.1) could
provide a view with realistic file-system workloads of how the overall I/O per-
formances would be impacted by applying the active/active metadata service
and the possibility that the overheads suffered from update/write operations
would be amortized with an improved scalability of read requests.
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Fig. 12. Comparison of execution time of MDS and OSDs under various standard
file-system workloads. Iozone 4KB req, 32KB req, and 128KB req indicate the vari-
ous request sizes in the study with Iozone benchmark. MDS is the metadata server,
and the OSD is the object-based storage device.

A file system operation initiated from clients consists of two types of sub-
actions: one is on metadata server, and another is on OSDs. Correspondently,
the delay of such operations can be decomposed into the delay on OSDs and
the delay on MDS. Different file-system workloads have different access pat-
terns, and the proportion of execution time on MDS and on OSDs are various.
The collected traces from realistic file-system workloads (section 7.1) were an-
alyzed by an in-house developed profiler. The overall execution time of these
workloads was decomposed into the time spent on OSDs and the time spent
on MDS (Fig. 12). The results indicate that under most workloads, the exe-
cution time of OSDs is a dominant figure of the overall I/O delay: the time
spent on a metadata server is less than 1%. In those workloads, most file sys-
tem operations occured on OSDs. The comparison of execution time between
MDS and OSDs illustrated that overhead of metadata servers is a trivial com-
ponent in the ”common path” for most realistic workloads. As a consequence,
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overall I/O performances may not be impacted by applying the active/active
metadata service.

Since multiple metadata services have the capability of processing concurrent
read requests simultaneously, an analysis of the proportion of the execution
time of write operations and read operations on a metadata server (Fig. 13)
illustrates that the overheads suffered from update/write metadata operations
may be amortized with an improved scalability of read requests. PostMark is
the worst case: read operations accounts for 20% of total metadata execution
time. Considering that the proof-of-concept prototype imposes very conserva-
tive overhead for write operations, and the improvement of read operations
could be as high as 80% with two metadata servers, the high availability of
metadata services can be achieved with an acceptable performance trade-off
even for the workloads with high amount of small I/O requests.

Comparison of  Read and Write Operations on a 
Metadata Server 

0%

20%

40%

60%

80%

100%

PostMark Iozone 4KB
req

Iozone 32KB
req

Iozone
128KB req

BTIO

pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n 
tim

e

Write
Read

Fig. 13. Comparison of execution time spent on read operations and write operations
on a metadata server under various standard file-system workloads. Iozone 4KB req,
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benchmark. MDS is the metadata server, and the OSD is the object-based storage
device.

8 Related Work

Past work in high availability for metadata services primarily focused on the
active/standby model. The PVFS metadata service, for example, can be de-
ployed on two machines using active/standby and crosswise active/standby
strategies involving a shared storage device and the heartbeat mechanism [39].
Recent research in symmetric active/active replication for high-performance
system services [24,25] uses multiple redundant service nodes running in vir-
tual synchrony [35]. Particularly, the JOSHUA solution [49] for symmetric
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active/active HPC job and resource management was a precursor to the re-
search presented in this paper.

Previous research of distributed versioning [9,10] provided an efficient model
to establish strong consistency (1-copy serializability) crossing multiple active
replicas. Distributed versioning provides both the consistency guarantees of
eager replication and the scaling properties of lazy replication. It does so by
combining a novel concurrency control method based on explicit versions with
conflict-aware query scheduling that reduces the number of lock conflicts, and
content-aware scheduling that enable a lazy read-one, write-all replications.
Both the Distributed versioning model and the active/active model guaran-
tees strong consistency among multiple active replicas, and achieves the high
degrees of concurrency with read-one, write-all scheme, but the differences
exist at how the two models implement the same total order at all replicas.
Distributed versioning uses highly optimized schedulers and sequencers to as-
sign distinct version number to replicas to guarantee the same total order,
while active/active model uses virtual synchrony and the fast delivery proto-
col to achieve the same total order.

Total order communication is important for symmetric active/active replica-
tion. Among the several algorithms to implement total ordering, there are
three most used approaches: sequencer, privilege-based, and communication
history [20]. In the sequencer algorithms [14,28,38,30], one machine is respon-
sible for ordering the messages on behalf of other processes in the group.
Privilege-based algorithms [19,8] rely on the idea that senders can broadcast
messages only when they are granted the privilege to do so, and thus the total
order is forced in the process of competition of the privilege. In communica-
tion history algorithms [23,22,21,6,13], total order is ensured by delaying the
delivery of messages, until the enough information of communication history
has been gathered from other machines. The agreement on a total order usu-
ally bears a cost of performance: the latency from the point the message is
ready to be sent, to the time it is delivered. Early delivery algorithms [22,13]
reduce the latency by reaching agreement with a subset of the machines in the
group. Optimal delivery algorithms [29,51] deliver messages before the total
order is determined, but notify the applications and cancel the delivery if the
final order is different from delivered order.

Metadata is very important for file systems. Researchers have developed many
algorithms to efficiently and reliably manage metadata. An approach called
Lazy Hybrid metadata management for high-performance object-based stor-
age systems [15] combines the best aspects of two managing metadata tech-
niques: Directory subtree partitioning and pure hashing. Zhu et al. [54] propose
a hierarchical metadata management scheme. A dynamic subtree partition-
ing and adaptive metadata management system [52] is proposed to service a
petabyte-scale distributed file system, using a dynamic subtree technique to
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distribute workload while maximizing overall scalability. To solve the metadata
consistency problem, a metadata snapshotting [45] is presented to provide sys-
tem availability at very little cost. Journal-based metadata and multi-version
b-trees [46] are used in a comprehensive versioning file system (CVFS) to
reduce the space utilization without decreasing the performance of data ac-
cessing. Two methods for improving metadata operations, journaling and soft
updates, are explored [43] to improve the performance of metadata operations.

Previous file systems distribute and replicate metadata and user data to im-
prove availability. XFS file system [11] distributes metadata into multiple man-
agers across the system on a per-file granularity by utilizing a new serviceless
management scheme. Furthermore, location independence provides high avail-
ability by allowing any machine to take over the responsibilities of a failed
component after recovering its state from the redundant log-structured stor-
age system. The active/standby model is used in XFS to organize a redundant
storage system. The Frangipani file system [48] uses the large, sparse disk ad-
dress space of the substrate Petal storage system [34] to simplify its data
structures. The data and metadata of Frangipani are stored and managed on
top of the virtual address space provided by Petal, similar to traditional file
systems on top of the address space of hard disks, but the real data is phys-
ically distributed to multiple Petal storage services. High availability of both
user data and metadata is provided by a replication based redundancy scheme
called chained de-clustering of the Petal system.

Various research efforts in file systems have shown that total-ordering can be
used to provide high availability. Deceit file system [44] behaves like a plain
NFS service. The deceit services are interchangeable and collectively provide
the illusion of a single service to any clients. It uses the ISIS [14] distributed
programming environment for all totally ordered communication and process
group management. Non-volatile replicas of each file are stored on a subset of
the file services.

Recent research in providing service redundancy focused on practical solutions
for solving the Byzantine generals problem [33], where malicious attacks and
software errors result in incorrect process group behavior. These approaches
go beyond the fail-stop model, which assumes that system components, such
as services, nodes, or links, fail by simply stopping. Byzantine Fault Tolerance
with Abstract Specification Encapsulation (BASE) [40] is a communication
library for state-machine replication. It uses abstraction to reduce the cost
of Byzantine fault tolerance and to improve its ability to mask software er-
rors. Using BASE, each replica can be repaired periodically using an abstract
view of the state stored by correct replicas. Furthermore, each replica can run
distinct or nondeterministic service implementations, which reduces the prob-
ability of common mode failures. Prototype implementations for a networked
file system [17] and an object-oriented database [50] suggest that the tech-
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nique can be used in practice with a modest amount of adaptation and with
comparable performance results.

9 Conclusions

This paper presented a recent research in symmetric active/active metadata
services as a generic approach for highly available cluster storage systems.
This concept provides a virtually synchronous environment for high avail-
ability without any interruption of service and without any loss of state. It
guarantees the safety of global state updating by utilizing group communi-
cation services and total order broadcasting. The number of services in the
service group is variable at runtime. The internal scheduler improves system
performance by interleaving concurrent requests, and the build-in transaction
control mechanism provides atomic services and guarantees data consistency
in case of operation failures.

A fast delivery protocol is illustrated to reduce the latency of ordering mes-
sages. The protocol optimizes the total ordering process by waiting for mes-
sages only from a subset of the machines in the group. The protocol performs
well for both, idle and active services. Furthermore, the fast acknowledgment
aggressively acknowledges total order messages to reduce the latency when
some services are idle. The protocol is smart enough to hold its acknowledg-
ments when the network communication is heavy.

Both the functional and the performance test results are presented with com-
prehensive experiments under various system configurations. The results show
that for write requests, the overhead of latency and throughput increases with
the number of services, but is still acceptable for typical distributed storage
systems. The throughput of read requests increases linearly with the number
of services. The experimental results show that high availability of metadata
services can be achieved without interruption of service and with an acceptable
performance trade-off using the active/active metadata service solution.
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