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• Nation’s largest energy laboratory 
• Nation’s largest science facility: 

•  The $1.4 billion Spallation Neutron Source 
• Nation’s largest concentration of open source 

materials research 
• Nation’s largest scientific computing facility 

•  Privately managed for US DOE 
•  $1.4 billion budget 
•  4600+ employees total 
•  3,000 research guests annually 
•  30,000 visitors each year 
•  Total land area 58mi2 (150km2) 
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  40,000 ft2 (3700 m2) computer center: 
 36-in (~1 m) raised floor, 18 ft (5.5 m) deck-to-deck 
 36 MW of power with 6,600 t of redundant cooling 
 High-ceiling area for visualization lab: 35 MPixel PowerWall 

  5 systems in the Top 500 List of Supercomputer Sites: 
     1. Jaguar XT5: Cray XT5, with 224,162 processor cores at 2,331 TFlop/s peak 
     3. Kraken:        Cray XT5, with   98,928 processor cores at 1,028 TFlop/s peak 
   16. Jaguar XT4: Cray XT4, with   30,976 processor cores at    260 TFlop/s peak 
   30. Athena:        Cray XT4, with   17,956 processor cores at    165 TFlop/s peak 
 370. Eugene:        IBM BGP, with     8,192 processor cores at      28 TFlop/s peak 
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#1: Jaguar at Oak Ridge National Laboratory 



 Leading partnership in developing the National 
Leadership Computing Facility 
 Leadership-class scientific computing capability 
 Currently planning for 10-20 PFlop/s in 2012 
 On the path toward: 

    100 PFlop/s in 2015 (  10-   100 million cores) 
 1,000 PFlop/s in 2018 (100-1,000 million cores) 

 Attacking key computational challenges 
 Climate change 
 Nuclear astrophysics 
 Fusion energy 
 Materials sciences 
 Biology 

 Providing access to computational resources 
through high-speed networking 
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Computer Science and Mathematics Division 

•  Applied research focused on computational sciences, 
intelligent systems, and information technologies 

•  CSM Research Groups: 
- Application Performance Tools 
- Complex Systems 
- Computational Astrophysics 
- Computational Earth Sciences 
- Computational Engineering and Energy Sciences 
- Computational Materials Science 
- Computational Mathematics 
- Computer Science Research (23 researchers & postdocs) 
- Future Technologies 
- Statistics and Data Science 
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Computer Science Research Group Projects 

•  Parallel Virtual Machine (PVM) 
•  MPI Specification, FT-MPI and Open MPI 
•  Common Component Architecture (CCA) 
•  Open Source Cluster Application Resources (OSCAR) 
•  Scalable cluster tools (C3) 
•  Scalable Systems Software (SSS) 
•  Fault-tolerant metacomputing (HARNESS) 
•  High availability and resilience (RAS, FAST-OS 1 & 2) 
•  Super-scalable algorithms research 
•  Distributed file and storage systems (Freeloader) 
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Research and Development Areas 

•  Efficient hypervisors for limiting interferences with 
scientific applications in HPC systems 

•  Minimal host operating system for reduced system 
footprint of system-level virtualization solutions 

•  System management tools for supporting virtualized and 
standard HPC systems in disk-full and disk-less scenarios  

•  Performance characterization of scientific applications 
running in virtual machines 

•  Configurable virtual system environments for adaptation 
of HPC system properties to scientific application needs 
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Virtualized System Environment (VSE) 

•  Hypervisors can provide a configurable 
‘sandbox’ environment for system 
software and scientific application 
development and deployment 

•  System-level virtualization on 
development systems (desktops and 
small HPC systems) and production- 
type systems (large HPC systems) can 
provide: 
- Simplified application porting through virtualization 
- On-demand OS deployment on virtualized HPC systems 
- On-demand deployment of virtual testbeds isolated from the 

real systems and from each other via a hypervisor 
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Virtual System Environment (VSE): 
System Architecture 

•  Hypervisor on development 
and compute nodes 

•  Virtual machines run the 
customized virtualized 
environment 

•  Customization is based on: 
-  Application needs 
-  System capabilities 
-  Resource allocation 

12   C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory 



Virtual System Environment (VSE): 
Management 
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Virtual System Environment (VSE): 
Life Cycle 

•  System management tools 
for VSE configuration: 
-  Description 
-  Creation 
-  Deployment 
-  Cleanup 
-  Destruction 

•  Adaptation of existing VM 
management tools to HPC 
system resource 
management and software 
development tools 
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Virtual System Environment (VSE): 
Configuration Management 

•  Hierarchical configuration 
scheme enables users to: 
- Override 
- Remove 
- Add 

 configuration options. 
•  Vendor and/or system 

operator configuration 
descriptions can be used 
as base configuration 

15   C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory 



Virtual System Environment (VSE): 
Use Case Scenarios 

•  Application and system 
software developers can 
deploy VSEs based on 
their actual needs to: 
–  Desktops 
–  Small-scale HPC systems 
–  Large-scale HPC systems 

 for software development 
and deployment activities.  
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A developer can work on his local desktop 
instead of  logging into a remote HPC 

system development environment server! 

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory 



OSCAR-V: System Management with 
Virtualization Support 
•  Extension of Open Source Cluster Application 

Resources (OSCAR) Linux cluster installation 
and management suite 

•  Includes system-level virtualization support: 
-  Capability to switch between virtual and standard 

cluster computing environments 

•  Abstracts underlying virtualization solution: 
-  Generic virtual machine management (V2M) layer 
-  Capability to switch between different virtualization 

solution 

•  VSE configuration consists of a set of OSCAR 
packages 

•  Support for various Linux distributions: SUSE, 
RedHat, Debian, … 
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Virtual Machine Management (V2M): 
Architecture 
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High-Level Interface  
boot_vm, create_image_from_cdrom,  
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pause_vm, unpause_vm 
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Ongoing Studies 

•  Hypervisor for high-performance computing 
-  Low-profile virtual machine monitors (VMMs) 
- Modular VMMs for adaptation 
-  Efficient I/O using VMM-bypass: 
•  Isolation vs. performance 
•  RDMA support 

- Optimizations for modern hardware features, such as IOMMU, Intel-
VT, and AMD-V 

•  Tiny domains 
-  Decrease the size of the host OS and VMs 
- Minimize overall system footprint 
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Motivation 

•  Large-scale PFlop/s systems have arrived 
- #1 ORNL Jaguar XT5:  1.759 PFlop/s LINPACK, 224,162 cores 
- #2 LANL Roadrunner:  1.042 PFlop/s LINPACK, 122,400 cores 

•  Other large-scale systems exist 
- #3 NICS Kraken XT5:  0.831 PFlop/s LINPACK,   98,928 cores 
- #4 Juelich JUGENE:  0.825 PFlop/s LINPACK, 294,912 cores 

•  The trend is toward larger-scale systems 
- Exascale (1,000 PFlop/s) system with 100M-1B cores by 2018 

•  Significant increase in component count and complexity 

•  Expected matching increase in failure frequency 

•  Checkpoint/restart is becoming less and less efficient 
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Parallel File System Checkpoint/Restart 
Efficiency Study (2006 @ LANL) 
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J. T. Daly. ADTSC Nuclear Weapons Highlights: Facilitating High-Throughput ASC Calculations. 
Technical Report LALP-07-041, Los Alamos National Laboratory, June 2007. 

85-55% 
Efficiency 



Parallel File System Checkpoint/Restart 
Efficiency Model 
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J. T. Daly. Methodology and metrics for quantifying application throughput. In Proceedings of the Nuclear 
Explosives Code Developers Conference (NECDC) 2006, Los Alamos, NM, USA, Oct. 23-27, 2006. 
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Reactive vs. Proactive Fault Tolerance 

•  Reactive fault tolerance 
- Keeps parallel applications alive through recovery from 

experienced failures 
- Employed mechanisms react to failures 
- Examples: Checkpoint/restart, message logging/replay 

•  Proactive fault tolerance 
- Keeps parallel applications alive by avoiding failures through 

preventative measures 
- Employed mechanisms anticipate failures 
- Example: Preemptive migration 
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Proactive Fault Tolerance using Preemptive 
Migration 

•  Relies on a feedback-loop control mechanism 
-  Application health is constantly monitored and analyzed 
-  Application is reallocated to improve its health and avoid failures 
-  Closed-loop control similar to dynamic load balancing 

•  Real-time control problem 
-  Need to act in time to avoid imminent failures 

•  No 100% coverage 
-  Not all failures can be anticipated, such as random bit flips 
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Type 1 Feedback-Loop Control Architecture 

•  Alert-driven coverage 
-  Basic failures 

•  No evaluation of application 
health history or context 
-  Prone to false positives 
-  Prone to false negatives 
-  Prone to miss real-time 

window 
-  Prone to decrease application 

heath through migration 
-  No correlation of health 

context or history 
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Type 2 Feedback-Loop Control Architecture 

•  Trend-driven coverage 
-  Basic failures 
-  Less false positives/negatives 

•  No evaluation of application 
reliability 
-  Prone to miss real-time 

window 
-  Prone to decrease application 

heath through migration 
-  No correlation of health 

context or history 
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Type 3 Feedback-Loop Control Architecture 

•  Reliability-driven coverage 
-  Basic and correlated failures 
-  Less false positives/negatives 
-  Able to maintain real-time 

window 
-  Does not decrease application 

heath through migration 
-  Correlation of short-term 

health context and history 

•  No correlation of long-term 
health context or history 
-  Unable to match system and 

application reliability patterns 
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Type 4 Feedback-Loop Control Architecture 

•  Reliability-driven coverage of 
failures and anomalies 
-  Basic and correlated failures, 

anomaly detection 
-  Less prone to false positives 
-  Less prone to false negatives 
-  Able to maintain real-time 

window 
-  Does not decrease application 

heath through migration 
-  Correlation of short and long-

term health context & history 
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VM-level Preemptive Migration using Xen 

•  Type 1 system setup 
-  Xen VMM on entire system 
-  Host OS for management 
- Guest OS for computation 
-  Spare nodes without Guest 

OS 
-  System monitoring in Host OS 
-  Decentralized scheduler/load 

balancer using Ganglia 

•  Deteriorating node health 
- Ganglia threshold trigger 
- Migrate guest OS to spare 
-  Utilize Xen’s migration facility 
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VM-level Migration Performance Impact 

•  Single node migration 
-  0.5-5% longer run time 

•  Double node migration 
-  2-8%  longer run time 

•  Migration duration 
-  Stop & copy : 13-14s 
-  Live  : 14-24s 

•  Application downtime 
-  Stop & copy > Live 

16-node Linux cluster at NCSU with dual core, 
dual-processor AMD Opteron and Gigabit Ethernet 
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Process-Level Preemptive Migration w/ BLCR 

•  Type 1 system setup 
-  LAM/MPI with Berkeley Lab 

Checkpoint/Restart (BLCR) 
-  Per-node health monitoring 

•  Baseboard management 
controller (BMC) 

•  Intelligent platform 
management interface (IPMI) 

-  New decentralized scheduler/ 
load balancer in LAM 
-  New process migration facility 

in BLCR (stop&copy and live) 

•  Deteriorating node health 
-  Simple threshold trigger 
- Migrate process to spare 
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Process-Level Migration Performance Impact 

•  Single node migration overhead 
-  Stop & copy : 0.09-6 % 
-  Live  : 0.08-2.98% 

•  Single node migration duration 
-  Stop & copy : 1.0-1.9s 
-  Live  : 2.6-6.5s 

•  Application downtime 
-  Stop & copy > Live 

•  Node eviction time 
-  Stop & copy < Live 

16-node Linux cluster at NCSU with dual core, 
dual-processor AMD Opteron and Gigabit Ethernet 
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Simulation of Fault Tolerance Policies 

•  Evaluation of fault tolerance 
policies 
-  Reactive only 
-  Proactive only 
-  Reactive/proactive combination 

•  Evaluation of fault tolerance 
parameters 
-  Checkpoint interval 
-  Prediction accuracy 

•  Event-based simulation framework 
using actual HPC system logs 

•  Customizable simulated 
environment 
-  Number of active and spare 

nodes 
-  Checkpoint and migration 

overheads 
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Combining Proactive & Reactive Approaches 

•  Best: Prediction accuracy >60% 
and checkpoint interval 16-32h 

•  Better than only proactive or only 
reactive 

•  Results for higher accuracies 
and very low intervals are worse 
than only proactive or only 
reactive 

Number of processes 125 

Active/Spare nodes 125/12 

Checkpoint overhead  50min 

Migration overhead 1 min 

Simulation based on ASCI White system logs 
(nodes 1-125 and 500-512) 
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Research in Reliability Modeling 

•  Type 3 system setup 
- Monitoring of application and 

system health 
-  Recording of application and 

system health monitoring data 
-  Reliability analysis on 

recorded data 
-  Application mean-time to 

interrupt (AMTTI) estimation 

•  Type 4 system setup 
-  Additional recording of 

application interrupts 
-  Reliability analysis on recent 

and historical data 
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Implementation of Type 1-4 RAS Framework 

•  Focus on proactive FT approach 

•  Central MySQL database for data 
logging and analysis 

•  Environmental monitoring 
-  OpenIPMI and Ganglia 

•  Event logging and analysis 
-  Syslog (node-local logging and 

forwarding to central server) 

•  Job and resource monitoring 
-  Torque (epilogue/prologue) 

•  Migration mechanisms 
-  Process-level using BLCR 
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Type 1-4 RAS Framework: Initial Results 

•  Deployed on XTORC @ ORNL 
-  64-node Intel-based Linux cluster 

•  MySQL, Gangila, Torque, Syslog, 
LAM-MPI+BLCR with migration 

•  Experiment #1: 
-  Fully deployed on 64 nodes 
-  30 second data collection interval 
-  Collection of 20 metrics resulted in 

over 20GB of data in 27 days 
(~33MB/hour or ~275kb/interval) 

-  Basic temperature threshold triggers 
for migration resulted in migration 
when covering up air intake holes 

•  Experiment #2: 
-  Fully deployed on 32 nodes 
-  Collection of 40 metrics 
-  30 second data collection interval 
-  No measurable impact on NAS 

benchmarks (see Figure below) 
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Ongoing and Future Work 

•  Research in scalable monitoring data aggregation/filtering 
- Scalable, fault tolerant overlay reduction networks 
-  In-flight monitoring data aggregation 
- Current MSc student (Swen Boehm) 

•  Research in scalable monitoring data filtering 
- Extend the current prototype with in-flight data filtering 
- Enhance filters with statistical analysis techniques  

•  Research in scalable syslog data aggregation/filtering 
- Extend the current prototype with log message aggregation 

•  Integrate scalable monitoring prototype with proactive 
fault tolerance framework 
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Challenges Ahead 

•  Health monitoring 
-  Identifying deteriorating applications and OS conditions 
- Coverage of application failures: Bugs, resource exhaustion 

•  Reliability analysis 
- Performability analysis to provide extended coverage 

•  Scalable data aggregation and processing 
- Key to timeliness in the feedback control loop 

•  Need for standardized metrics and interfaces 
- System MTTF/MTTR  != Application MTTF/MTTR 
- System availability  != Application efficiency 
- Monitoring and logging is system/vendor dependent 
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Objectives 

•  Simulation of system architectures at scale 

•  To investigate scalability, performance, and fault 
tolerance of algorithms at extreme scale 

•  ORNL’s earlier work was already able to run up to 
1,000,000 simulated processes (JCAS) 
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Java Cellular Architecture Simulator (JCAS) 

•  Developed at ORNL in Java 
•  Native C and Fortran application support using JNI 
•  Runs as standalone or distributed application 
•  Lightweight framework simulates up to 1,000,000 

lightweight virtual processes on 9 real processors 
•  Standard and experimental network interconnects: 
- Multi-dimensional mesh/torus 
- Nearest/Random neighbors 

•  Message driven simulation without notion of time 
- Not in real-time, no time-accurate discrete event simulation 

•  Primitive fault-tolerant MPI support 
- No collectives, no MPI 2 
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Technical Approach 

•  Distributed set of discrete 
event simulators with node-
local message queues 

•  Simulation of virtual MPI 
processes for parallel app. 

•  Virtual processes run on 
real hardware with virtual 
MPI 

•  No virtual process time 
•  Fault injection capability 
•  Interactive graphical user 

interface as front-end 
•  TCP servers as back-ends 

Application 

Virtual MPI 
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Implementation 

•  Every cell has own code, memory and neighbors list 

•  Server hosts cells and initiates the context switch 

•  Cells communicate asynchronously using messages 

Cell Cell 

Queue Server Thread Receiver Thread 

Cell 

Sender 

Deliver 

Send 

Send 

TCI/IP Network 

Receive 
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Each dot is a task 
executing an algorithm 
that communicates only 
to neighbor tasks in an 
asynchronous fashion 



Graphical User Interface allows to: 
• Configure: 

• Network topology 
• Number of tasks 

• Retrieve: 
• Task-specific information 

• Delete: 
• Individual tasks 
• All tasks within an entire region 
• A percentage of tasks within a region 

• Add: 
• Individual tasks 
• A percentage of tasks within a region 



IAA Simulation Efforts at ORNL 

•  Investigate scalability, performance and fault tolerance of 
algorithms at extreme scale through simulation 

•  Extending the JCAS simulation capabilities 
- Simulating more processes (~10,000,000) 
- Running more complex and resource-hungry algorithms 
- Support for unmodified MPI applications 

•  Evaluation of algorithms at extreme scale 
- Notion of global virtual time and virtual process clocks 
- Accounting for resource usage, such as processor and 

network 
- Gathering of scalability, performance & fault tolerance 

metrics 
- Parameter studies at scale 
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Technical Approach 

•  Parallel discrete event 
simulation (PDES) atop MPI 

•  Simulation of virtual MPI 
processes for parallel app. 

•  Virtual processes run on real 
hardware with virtual MPI 

•  Consistent virtual process 
clock from PDES 

•  Virtual process clock can be 
scaled by PDES via model 

•  Virtual interconnect latency is 
set by PDES via model 

Application 
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Ongoing and Future Work 

•  Ported JCAS to C/C++ to improve scalability/performance 

•  Replaced TCP/IP with (native) MPI communication 

•  Replaced distributed set of DESs with PDES 
- Conservative synchronization only, need optimistic and time-

warp synchronization 

•  Extend virtual MPI capabilities 
- Asynchronous, collectives, process control (spawn), … 

•  Extend fault injection and notification mechanisms 
-  Injection based on failure distributions and application state  

•  Add simulated machine model (for network) 

•  Gather scalability, performance & fault tolerance metrics 

•  * easy (days/weeks), difficult (weeks), challenge (months) 
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Motivation 

•  Next-generation HPC systems will have 
- More frequent failures in general 
- More frequent soft errors in particular 
- Less efficient parallel file system checkpoint/restart 

•  Existing fault tolerance approaches an ongoing research 
efforts do not cover soft error resilience 
- ECC double-bit errors require node/process restart 
- Silent data corruption remains undetected 

•  Lack of soft error resilience strategy is preventing 
deployment of GPUs and FPGAs at scale 
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Technical approach 

•  Compute-node in-memory checkpoint caching 
- Short-term solution 
-  Improving parallel file system checkpoint/restart 

•  Compute-node in-memory checkpoint/restart 
- Near-term solution 
- Replacing parallel file system checkpoint/restart 

•  Dual-modular redundancy (DMR) 
- Long-term solution 
- Replacing rollback recovery schemes in HPC 
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Comparison of traditional and proposed 
technologies (1/2) 
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Improving System Availability with 
Modular Redundancy 

•  Modular redundancy concepts 
have been around for a while 
-  E.g. aerospace and command 

& control systems 

•  System availability is improved 
using redundant components 

•  Dual-modular redundancy (DMR) 
offers protection against hard 
errors and some soft errors 

•  Triple-modular redundancy 
(TMR) offers protection against 
hard and soft errors 

•  Dynamic dual- or triple-modular 
redundancy uses reboot or spare 
to reduce component MTTR 
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Improving Compute Node Availability with 
Modular Redundancy 

•  Today’s large-scale HPC systems have tens-to-hundreds 
of thousands of diskless compute nodes consisting of 
- processor(s), memory module(s) and a network interface 

•  Deploying modular redundancy for these systems would 
require to double or triple the number of compute nodes 

•  However, the network infrastructure is able to recover soft 
errors by retransmitting messages 

•  We only need to double or triple the number of processors 
and memory modules within each compute node 

•  A modular redundancy mechanism is needed for 
replication, error detection and error recovery in a 
massively parallel HPC system 
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Compute Node Availability Improvement with 
Modular Redundancy 
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Compute Node Availability Improvement with 
Dynamic Modular Redundancy 
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Improving HPC System Availability with 
Compute-Node Modular Redundancy 

•  The availability of a modular 
redundant compute node is 
based on 2×/3× parallel coupling 

•  The availability of a HPC system 
is based on n× serial coupling 

•  The availability of a compute-
node modular redundant HPC 
system is based on n× serial of 
2×/3× parallel components 

•  Dynamic modular redundancy 
additionally reduces the MTTR of 
1 (DMR) or 2 (TMR) components  
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HPC System Availability Improvement with 
Modular Redundancy 
(2, 3 and 4 Nines Compute Node Availability) 
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HPC System Availability Improvement with 
Dynamic Modular Redundancy 
(2, 3 and 4 Nines Compute Node Availability) 
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Observations 

•  DMR and TMR for compute nodes significantly increases 
compute node availability, which in turn dramatically 
increases HPC system availability 

•  DMR: Compute node MTTF can be 100-1,000× less 

•  TMR: Compute node MTTF can be 1,000-10,000× less 

•  DDMR and DTMR for compute nodes improve compute 
node availability even further, which in turn increases HPC 
system availability even more 

•  DDMR: Compute node MTTF can be 1,000-10,000× less 

•  DTMR: Compute node MTTF can be 10,000-100,000× less 
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Financial Cost and Power Consumption 
(Based on 2009 ORNL Jaguar Hardware and Market Prices) 

Solution Processor Memory Price Power 
Traditional 
checkpoint/ 
restart 

1x AMD Opteron 2356 
2x4GB Micron DDR2-800 ECC 

  $  500 
+$  750 
=$1250 

    75W 
+    2W 
=  77W 

In-memory 
checkpoint 
caching 

1x AMD Opteron 2356  
4x4GB Micron DDR2-800 ECC 

  $  500 
+$1500 
=$2000 

    75W 
+    4W 
=  79W 

In-memory 
checkpoint/ 
restart with 
new boards 

1x AMD Opteron 2356  
2x4GB Micron DDR2-800 ECC 
4x4GB Kingston DDR2-800 ECC 

  $  500 
+$  750 
+$  600 
>$1700 

    75W 
+    2W 
+    4W 
=  81W 

DMR w/new 
boards & 
more racks 

2x AMD Opteron 2356  
4x4GB Kingston DDR2-800 ECC 

  $1000 
+$  600 
>$1600 

  150W 
+    4W 
=154W 

TMR w/new 
boards & 
more racks 

3x AMD Opteron 2356 
6x4GB Kingston DDR2-800 ECC 

  $1500 
+$  900 
>$2400 

  225W 
+    6W 
>231W 

R
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k 
R
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R
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Financial Cost and Power Consumption 
(Based on 2009 ORNL Jaguar Hardware and Market Prices) 

Solution Processor Memory Price Power 
Traditional 
checkpoint/ 
restart 

1x AMD Opteron 2356 
2x4GB Micron DDR2-800 ECC 

=$1250 =  77W 

In-memory 
checkpoint 
caching 

1x AMD Opteron 2356  
4x4GB Micron DDR2-800 ECC 

=160% =103% 

In-memory 
checkpoint/ 
restart with 
new boards 

1x AMD Opteron 2356  
2x4GB Micron DDR2-800 ECC 
4x4GB Kingston DDR2-800 ECC 

=136% =105% 
DMR w/new 
boards & 
more racks 

2x AMD Opteron 2356  
4x4GB Kingston DDR2-800 ECC 

>128% =200% 
TMR w/new 
boards & 
more racks 

3x AMD Opteron 2356 
6x4GB Kingston DDR2-800 ECC 

>192% >300% 

R
ol
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k 
R
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y 

R
ed
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y 

Not 2x/3x! 
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Availability Analysis Conclusions 

•  DMR with 4-nine or TMR with 3-nine compute node rating 
provides enough system availability for HPC systems 
planned for the next 10 years with 1,000,000 compute 
nodes and beyond 

•  DDMR with 3-nine or DTMR with 2-nine single component 
rating provides enough overall system availability for 
future HPC systems 

•  The reduction of individual component reliability within a 
modular redundant system permits recovering the costs 
for using 2× or 3× the number of components 

•  This tunable cost vs. reliability/availability trade-off is the 
counter argument to the traditional view that modular 
redundancy comes at 2× or 3× costs 
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Implementation as Sphere of Replication 

•  A logical boundary of redundancy for a replicated system 
•  Components within are protected via redundancy 
•  Components outside are not 
•  Data entering the sphere (input) is replicated 
•  Data leaving the sphere (output) is compared 
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Existing non-HPC Solutions 

•  Thread-level redundancy 
- On the same processor core using different pipelines 
- On the same processor using different cores 
- On different processors in the same system 
- HP’s NonStop Advanced Architecture (NSAA) (form. Tandem) 

•  Process-level redundancy 
- On the same processor using different cores 
- On different processors in the same system 
- HP's NonStop Himalaya 

•  System-level redundancy 
- On split or separate systems 
- Saturn V guidance computer, Boeing/Airbus navigation 
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Proposed Solution for Modular 
Redundancy for Extreme-scale HPC 

Process-level approach System-level approach 
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Ongoing and Future Work 

•  Design modular redundancy models and algorithms 
•  Implement a static modular redundancy prototype with 

system-level replication (MR-MPI) 
-  Interact with MPI fault tolerance approaches 
- Provide redundancy layer between application and MPI 
-  Investigate moving the redundancy layer into MPI 

•  Experiment with I/O & file system access scenarios 
- Performance as well as failure modes, masking and recovery 

•  Implement dynamic modular redundancy prototype with 
system-level replication (dMR-MPI) 
- Utilize process cloning for hard- and soft-error recovery 

•  Create trade-off models 
- When does it make sense to use which type of redundancy? 
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HPC Computer Science Research Driver: 
The Road to Exa-Scale Computing 
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Collaboration Opportunities 

•  Exa-scale computing research: 
- U.S. Department of Energy calls for proposals are out 

(x-stack, advanced architectures, sci. data management) 
- G8 (Europe) calls for proposals are out 
- U.S. National Science Foundation calls will be out soon 

•  Focus areas: 
- Power and heat management (hardware & system software) 
- Billion-way parallelism (algorithms, math libraries, 

programming models, environments & frameworks) 
- Scalability (system software: management, I/O & file systems) 
- Fault tolerance and resilience (system software) 
-  Information hiding to reduce complexity (system software, 

programming models, environments & frameworks) 
- Crosscutting efforts: resilience/power/performance/… 
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Questions? 

C. Engelmann and S.L. Scott: HPC System Software Research at Oak 
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