
Dr. Christian Engelmann and Dr. Stephen L. Scott

Computer Science and Mathematics Division
Oak Ridge National Laboratory

HPC System Software Research at
Oak Ridge National Laboratory

C. Engelmann and S.L. Scott: HPC System Software Research at Oak
Ridge National Laboratory

• Nation’s largest energy laboratory
• Nation’s largest science facility:

•  The $1.4 billion Spallation Neutron Source
• Nation’s largest concentration of open source

materials research
• Nation’s largest scientific computing facility

•  Privately managed for US DOE
•  $1.4 billion budget
•  4600+ employees total
•  3,000 research guests annually
•  30,000 visitors each year
•  Total land area 58mi2 (150km2)

2 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

3 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

  40,000 ft2 (3700 m2) computer center:
 36-in (~1 m) raised floor, 18 ft (5.5 m) deck-to-deck
 36 MW of power with 6,600 t of redundant cooling
 High-ceiling area for visualization lab: 35 MPixel PowerWall

  5 systems in the Top 500 List of Supercomputer Sites:
  1. Jaguar XT5: Cray XT5, with 224,162 processor cores at 2,331 TFlop/s peak
  3. Kraken: Cray XT5, with 98,928 processor cores at 1,028 TFlop/s peak
  16. Jaguar XT4: Cray XT4, with 30,976 processor cores at 260 TFlop/s peak
  30. Athena: Cray XT4, with 17,956 processor cores at 165 TFlop/s peak
 370. Eugene: IBM BGP, with 8,192 processor cores at 28 TFlop/s peak

4 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

#1: Jaguar at Oak Ridge National Laboratory

 Leading partnership in developing the National
Leadership Computing Facility
 Leadership-class scientific computing capability
 Currently planning for 10-20 PFlop/s in 2012
 On the path toward:

  100 PFlop/s in 2015 (10- 100 million cores)
 1,000 PFlop/s in 2018 (100-1,000 million cores)

 Attacking key computational challenges
 Climate change
 Nuclear astrophysics
 Fusion energy
 Materials sciences
 Biology

 Providing access to computational resources
through high-speed networking

6 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Computer Science and Mathematics Division

•  Applied research focused on computational sciences,
intelligent systems, and information technologies

•  CSM Research Groups:
- Application Performance Tools
- Complex Systems
- Computational Astrophysics
- Computational Earth Sciences
- Computational Engineering and Energy Sciences
- Computational Materials Science
- Computational Mathematics
- Computer Science Research (23 researchers & postdocs)
- Future Technologies
- Statistics and Data Science

7 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Computer Science Research Group Projects

•  Parallel Virtual Machine (PVM)
•  MPI Specification, FT-MPI and Open MPI
•  Common Component Architecture (CCA)
•  Open Source Cluster Application Resources (OSCAR)
•  Scalable cluster tools (C3)
•  Scalable Systems Software (SSS)
•  Fault-tolerant metacomputing (HARNESS)
•  High availability and resilience (RAS, FAST-OS 1 & 2)
•  Super-scalable algorithms research
•  Distributed file and storage systems (Freeloader)

8 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory

System-level Virtualization Research

C. Engelmann and S.L. Scott: HPC System Software Research at Oak
Ridge National Laboratory

Research and Development Areas

•  Efficient hypervisors for limiting interferences with
scientific applications in HPC systems

•  Minimal host operating system for reduced system
footprint of system-level virtualization solutions

•  System management tools for supporting virtualized and
standard HPC systems in disk-full and disk-less scenarios

•  Performance characterization of scientific applications
running in virtual machines

•  Configurable virtual system environments for adaptation
of HPC system properties to scientific application needs

10 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Virtualized System Environment (VSE)

•  Hypervisors can provide a configurable
‘sandbox’ environment for system
software and scientific application
development and deployment

•  System-level virtualization on
development systems (desktops and
small HPC systems) and production-
type systems (large HPC systems) can
provide:
- Simplified application porting through virtualization
- On-demand OS deployment on virtualized HPC systems
- On-demand deployment of virtual testbeds isolated from the

real systems and from each other via a hypervisor

11

Hardware

VMM

Host OS VM VM

Type I Virtualization

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Virtual System Environment (VSE):
System Architecture

•  Hypervisor on development
and compute nodes

•  Virtual machines run the
customized virtualized
environment

•  Customization is based on:
-  Application needs
-  System capabilities
-  Resource allocation

12 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Virtual System Environment (VSE):
Management

13

Application Developer
Needs & Constraints

System Administration
Needs & Constraints

Operating System &
Runtime Environment Definition

VSE Golden Image

VSE Description

Image Creation

VSE Image on the
Management Node

Disk-full
Platform

Disk-less
Platform

Virtual
Machines Deployed VSEs

Image Deployment

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Virtual System Environment (VSE):
Life Cycle

•  System management tools
for VSE configuration:
-  Description
-  Creation
-  Deployment
-  Cleanup
-  Destruction

•  Adaptation of existing VM
management tools to HPC
system resource
management and software
development tools

14 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Virtual System Environment (VSE):
Configuration Management

•  Hierarchical configuration
scheme enables users to:
- Override
- Remove
- Add

 configuration options.
•  Vendor and/or system

operator configuration
descriptions can be used
as base configuration

15 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Virtual System Environment (VSE):
Use Case Scenarios

•  Application and system
software developers can
deploy VSEs based on
their actual needs to:
–  Desktops
–  Small-scale HPC systems
–  Large-scale HPC systems

 for software development
and deployment activities.

16

A developer can work on his local desktop
instead of logging into a remote HPC

system development environment server!

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

OSCAR-V: System Management with
Virtualization Support
•  Extension of Open Source Cluster Application

Resources (OSCAR) Linux cluster installation
and management suite

•  Includes system-level virtualization support:
-  Capability to switch between virtual and standard

cluster computing environments

•  Abstracts underlying virtualization solution:
-  Generic virtual machine management (V2M) layer
-  Capability to switch between different virtualization

solution

•  VSE configuration consists of a set of OSCAR
packages

•  Support for various Linux distributions: SUSE,
RedHat, Debian, …

17 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Virtual Machine Management (V2M):
Architecture

18

High-Level Interface
boot_vm, create_image_from_cdrom,
install_vm_with_oscar, migrate_vm,

pause_vm, unpause_vm

Virtualization Abstraction

Qemu Xen VMWare ...
V3M

Back-ends

V3M
Front-end

V2M
Virtual Machine Management

Command Line Interface

Applications
based on

libv3m

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Ongoing Studies

•  Hypervisor for high-performance computing
-  Low-profile virtual machine monitors (VMMs)
- Modular VMMs for adaptation
-  Efficient I/O using VMM-bypass:
•  Isolation vs. performance
•  RDMA support

- Optimizations for modern hardware features, such as IOMMU, Intel-
VT, and AMD-V

•  Tiny domains
-  Decrease the size of the host OS and VMs
- Minimize overall system footprint

19 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Proactive Fault Tolerance Using
Preemptive Migration

C. Engelmann and S.L. Scott: HPC System Software Research at Oak
Ridge National Laboratory

Motivation

•  Large-scale PFlop/s systems have arrived
- #1 ORNL Jaguar XT5: 1.759 PFlop/s LINPACK, 224,162 cores
- #2 LANL Roadrunner: 1.042 PFlop/s LINPACK, 122,400 cores

•  Other large-scale systems exist
- #3 NICS Kraken XT5: 0.831 PFlop/s LINPACK, 98,928 cores
- #4 Juelich JUGENE: 0.825 PFlop/s LINPACK, 294,912 cores

•  The trend is toward larger-scale systems
- Exascale (1,000 PFlop/s) system with 100M-1B cores by 2018

•  Significant increase in component count and complexity

•  Expected matching increase in failure frequency

•  Checkpoint/restart is becoming less and less efficient
21 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Parallel File System Checkpoint/Restart
Efficiency Study (2006 @ LANL)

22 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

J. T. Daly. ADTSC Nuclear Weapons Highlights: Facilitating High-Throughput ASC Calculations.
Technical Report LALP-07-041, Los Alamos National Laboratory, June 2007.

85-55%
Efficiency

Parallel File System Checkpoint/Restart
Efficiency Model

23 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

J. T. Daly. Methodology and metrics for quantifying application throughput. In Proceedings of the Nuclear
Explosives Code Developers Conference (NECDC) 2006, Los Alamos, NM, USA, Oct. 23-27, 2006.

€

Solve Time
Run Time

€

Checkpoint Interval
MTTI

€

= Dump Time Parameter =
2 Dump Time

MTTI

24

Reactive vs. Proactive Fault Tolerance

•  Reactive fault tolerance
- Keeps parallel applications alive through recovery from

experienced failures
- Employed mechanisms react to failures
- Examples: Checkpoint/restart, message logging/replay

•  Proactive fault tolerance
- Keeps parallel applications alive by avoiding failures through

preventative measures
- Employed mechanisms anticipate failures
- Example: Preemptive migration

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

25

Proactive Fault Tolerance using Preemptive
Migration

•  Relies on a feedback-loop control mechanism
-  Application health is constantly monitored and analyzed
-  Application is reallocated to improve its health and avoid failures
-  Closed-loop control similar to dynamic load balancing

•  Real-time control problem
-  Need to act in time to avoid imminent failures

•  No 100% coverage
-  Not all failures can be anticipated, such as random bit flips

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

26

Type 1 Feedback-Loop Control Architecture

•  Alert-driven coverage
-  Basic failures

•  No evaluation of application
health history or context
-  Prone to false positives
-  Prone to false negatives
-  Prone to miss real-time

window
-  Prone to decrease application

heath through migration
-  No correlation of health

context or history

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

27

Type 2 Feedback-Loop Control Architecture

•  Trend-driven coverage
-  Basic failures
-  Less false positives/negatives

•  No evaluation of application
reliability
-  Prone to miss real-time

window
-  Prone to decrease application

heath through migration
-  No correlation of health

context or history

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

28

Type 3 Feedback-Loop Control Architecture

•  Reliability-driven coverage
-  Basic and correlated failures
-  Less false positives/negatives
-  Able to maintain real-time

window
-  Does not decrease application

heath through migration
-  Correlation of short-term

health context and history

•  No correlation of long-term
health context or history
-  Unable to match system and

application reliability patterns

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

29

Type 4 Feedback-Loop Control Architecture

•  Reliability-driven coverage of
failures and anomalies
-  Basic and correlated failures,

anomaly detection
-  Less prone to false positives
-  Less prone to false negatives
-  Able to maintain real-time

window
-  Does not decrease application

heath through migration
-  Correlation of short and long-

term health context & history

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

VM-level Preemptive Migration using Xen

•  Type 1 system setup
-  Xen VMM on entire system
-  Host OS for management
- Guest OS for computation
-  Spare nodes without Guest

OS
-  System monitoring in Host OS
-  Decentralized scheduler/load

balancer using Ganglia

•  Deteriorating node health
- Ganglia threshold trigger
- Migrate guest OS to spare
-  Utilize Xen’s migration facility

30 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

31

VM-level Migration Performance Impact

•  Single node migration
-  0.5-5% longer run time

•  Double node migration
-  2-8% longer run time

•  Migration duration
-  Stop & copy : 13-14s
-  Live : 14-24s

•  Application downtime
-  Stop & copy > Live

16-node Linux cluster at NCSU with dual core,
dual-processor AMD Opteron and Gigabit Ethernet

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

32

Process-Level Preemptive Migration w/ BLCR

•  Type 1 system setup
-  LAM/MPI with Berkeley Lab

Checkpoint/Restart (BLCR)
-  Per-node health monitoring

•  Baseboard management
controller (BMC)

•  Intelligent platform
management interface (IPMI)

-  New decentralized scheduler/
load balancer in LAM
-  New process migration facility

in BLCR (stop© and live)

•  Deteriorating node health
-  Simple threshold trigger
- Migrate process to spare

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

33

Process-Level Migration Performance Impact

•  Single node migration overhead
-  Stop & copy : 0.09-6 %
-  Live : 0.08-2.98%

•  Single node migration duration
-  Stop & copy : 1.0-1.9s
-  Live : 2.6-6.5s

•  Application downtime
-  Stop & copy > Live

•  Node eviction time
-  Stop & copy < Live

16-node Linux cluster at NCSU with dual core,
dual-processor AMD Opteron and Gigabit Ethernet

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Simulation of Fault Tolerance Policies

•  Evaluation of fault tolerance
policies
-  Reactive only
-  Proactive only
-  Reactive/proactive combination

•  Evaluation of fault tolerance
parameters
-  Checkpoint interval
-  Prediction accuracy

•  Event-based simulation framework
using actual HPC system logs

•  Customizable simulated
environment
-  Number of active and spare

nodes
-  Checkpoint and migration

overheads
34 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

35

Combining Proactive & Reactive Approaches

•  Best: Prediction accuracy >60%
and checkpoint interval 16-32h

•  Better than only proactive or only
reactive

•  Results for higher accuracies
and very low intervals are worse
than only proactive or only
reactive

Number of processes 125

Active/Spare nodes 125/12

Checkpoint overhead 50min

Migration overhead 1 min

Simulation based on ASCI White system logs
(nodes 1-125 and 500-512)

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

36

Research in Reliability Modeling

•  Type 3 system setup
- Monitoring of application and

system health
-  Recording of application and

system health monitoring data
-  Reliability analysis on

recorded data
-  Application mean-time to

interrupt (AMTTI) estimation

•  Type 4 system setup
-  Additional recording of

application interrupts
-  Reliability analysis on recent

and historical data

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Implementation of Type 1-4 RAS Framework

•  Focus on proactive FT approach

•  Central MySQL database for data
logging and analysis

•  Environmental monitoring
-  OpenIPMI and Ganglia

•  Event logging and analysis
-  Syslog (node-local logging and

forwarding to central server)

•  Job and resource monitoring
-  Torque (epilogue/prologue)

•  Migration mechanisms
-  Process-level using BLCR

37 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Type 1-4 RAS Framework: Initial Results

•  Deployed on XTORC @ ORNL
-  64-node Intel-based Linux cluster

•  MySQL, Gangila, Torque, Syslog,
LAM-MPI+BLCR with migration

•  Experiment #1:
-  Fully deployed on 64 nodes
-  30 second data collection interval
-  Collection of 20 metrics resulted in

over 20GB of data in 27 days
(~33MB/hour or ~275kb/interval)

-  Basic temperature threshold triggers
for migration resulted in migration
when covering up air intake holes

•  Experiment #2:
-  Fully deployed on 32 nodes
-  Collection of 40 metrics
-  30 second data collection interval
-  No measurable impact on NAS

benchmarks (see Figure below)

38 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Ongoing and Future Work

•  Research in scalable monitoring data aggregation/filtering
- Scalable, fault tolerant overlay reduction networks
-  In-flight monitoring data aggregation
- Current MSc student (Swen Boehm)

•  Research in scalable monitoring data filtering
- Extend the current prototype with in-flight data filtering
- Enhance filters with statistical analysis techniques

•  Research in scalable syslog data aggregation/filtering
- Extend the current prototype with log message aggregation

•  Integrate scalable monitoring prototype with proactive
fault tolerance framework

39 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Challenges Ahead

•  Health monitoring
-  Identifying deteriorating applications and OS conditions
- Coverage of application failures: Bugs, resource exhaustion

•  Reliability analysis
- Performability analysis to provide extended coverage

•  Scalable data aggregation and processing
- Key to timeliness in the feedback control loop

•  Need for standardized metrics and interfaces
- System MTTF/MTTR != Application MTTF/MTTR
- System availability != Application efficiency
- Monitoring and logging is system/vendor dependent

40 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

41

Acknowledgements

•  Investigators at Oak Ridge National Laboratory:
- Stephen L. Scott [Lead PI], Christian Engelmann, Geoffroy Vallée,

Thomas Naughton, Anand Tikotekar, George Ostrouchov
•  Investigators at Louisiana Tech University:
- Chokchai (Box) Leangsuksun [Lead PI], Nichamon Naksinehaboon,

Raja Nassar, Mihaela Paun
•  Investigators at North Carolina State University:
- Frank Mueller [Lead PI], Chao Wang, Arun Nagarajan, Jyothish

Varma
•  Funding sources:
- U.S. Department of Energy, Office of Science, FASTOS Program

C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Institute for advanced Architectures
and Algorithms (IAA): Simulation
Efforts at ORNL

C. Engelmann and S.L. Scott: HPC System Software Research at Oak
Ridge National Laboratory

Objectives

•  Simulation of system architectures at scale

•  To investigate scalability, performance, and fault
tolerance of algorithms at extreme scale

•  ORNL’s earlier work was already able to run up to
1,000,000 simulated processes (JCAS)

43 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Java Cellular Architecture Simulator (JCAS)

•  Developed at ORNL in Java
•  Native C and Fortran application support using JNI
•  Runs as standalone or distributed application
•  Lightweight framework simulates up to 1,000,000

lightweight virtual processes on 9 real processors
•  Standard and experimental network interconnects:
- Multi-dimensional mesh/torus
- Nearest/Random neighbors

•  Message driven simulation without notion of time
- Not in real-time, no time-accurate discrete event simulation

•  Primitive fault-tolerant MPI support
- No collectives, no MPI 2

44 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Technical Approach

•  Distributed set of discrete
event simulators with node-
local message queues

•  Simulation of virtual MPI
processes for parallel app.

•  Virtual processes run on
real hardware with virtual
MPI

•  No virtual process time
•  Fault injection capability
•  Interactive graphical user

interface as front-end
•  TCP servers as back-ends

Application

Virtual MPI

V
P

V
P

V
P

V
P

V
P

V
P

V
P

V
P

DES

TCP

P

DES

TCP

P

DES

TCP

P

DES

TCP

P

45 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Implementation

•  Every cell has own code, memory and neighbors list

•  Server hosts cells and initiates the context switch

•  Cells communicate asynchronously using messages

Cell Cell

Queue Server Thread Receiver Thread

Cell

Sender

Deliver

Send

Send

TCI/IP Network

Receive

46 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Each dot is a task
executing an algorithm
that communicates only
to neighbor tasks in an
asynchronous fashion

Graphical User Interface allows to:
• Configure:

• Network topology
• Number of tasks

• Retrieve:
• Task-specific information

• Delete:
• Individual tasks
• All tasks within an entire region
• A percentage of tasks within a region

• Add:
• Individual tasks
• A percentage of tasks within a region

IAA Simulation Efforts at ORNL

•  Investigate scalability, performance and fault tolerance of
algorithms at extreme scale through simulation

•  Extending the JCAS simulation capabilities
- Simulating more processes (~10,000,000)
- Running more complex and resource-hungry algorithms
- Support for unmodified MPI applications

•  Evaluation of algorithms at extreme scale
- Notion of global virtual time and virtual process clocks
- Accounting for resource usage, such as processor and

network
- Gathering of scalability, performance & fault tolerance

metrics
- Parameter studies at scale

49 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Technical Approach

•  Parallel discrete event
simulation (PDES) atop MPI

•  Simulation of virtual MPI
processes for parallel app.

•  Virtual processes run on real
hardware with virtual MPI

•  Consistent virtual process
clock from PDES

•  Virtual process clock can be
scaled by PDES via model

•  Virtual interconnect latency is
set by PDES via model

Application

Virtual MPI

V
P

V
P

V
P

V
P

V
P

V
P

V
P

V
P

PDES

MPI

P P P P

50 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Ongoing and Future Work

•  Ported JCAS to C/C++ to improve scalability/performance

•  Replaced TCP/IP with (native) MPI communication

•  Replaced distributed set of DESs with PDES
- Conservative synchronization only, need optimistic and time-

warp synchronization

•  Extend virtual MPI capabilities
- Asynchronous, collectives, process control (spawn), …

•  Extend fault injection and notification mechanisms
-  Injection based on failure distributions and application state

•  Add simulated machine model (for network)

•  Gather scalability, performance & fault tolerance metrics

•  * easy (days/weeks), difficult (weeks), challenge (months)

51 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Soft-Error Resilience for Future-
Generation High-Performance
Computing Systems

C. Engelmann and S.L. Scott: HPC System Software Research at Oak
Ridge National Laboratory

Motivation

•  Next-generation HPC systems will have
- More frequent failures in general
- More frequent soft errors in particular
- Less efficient parallel file system checkpoint/restart

•  Existing fault tolerance approaches an ongoing research
efforts do not cover soft error resilience
- ECC double-bit errors require node/process restart
- Silent data corruption remains undetected

•  Lack of soft error resilience strategy is preventing
deployment of GPUs and FPGAs at scale

53 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Technical approach

•  Compute-node in-memory checkpoint caching
- Short-term solution
-  Improving parallel file system checkpoint/restart

•  Compute-node in-memory checkpoint/restart
- Near-term solution
- Replacing parallel file system checkpoint/restart

•  Dual-modular redundancy (DMR)
- Long-term solution
- Replacing rollback recovery schemes in HPC

54 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Comparison of traditional and proposed
technologies (1/2)

55 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Improving System Availability with
Modular Redundancy

•  Modular redundancy concepts
have been around for a while
-  E.g. aerospace and command

& control systems

•  System availability is improved
using redundant components

•  Dual-modular redundancy (DMR)
offers protection against hard
errors and some soft errors

•  Triple-modular redundancy
(TMR) offers protection against
hard and soft errors

•  Dynamic dual- or triple-modular
redundancy uses reboot or spare
to reduce component MTTR

56 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Improving Compute Node Availability with
Modular Redundancy

•  Today’s large-scale HPC systems have tens-to-hundreds
of thousands of diskless compute nodes consisting of
- processor(s), memory module(s) and a network interface

•  Deploying modular redundancy for these systems would
require to double or triple the number of compute nodes

•  However, the network infrastructure is able to recover soft
errors by retransmitting messages

•  We only need to double or triple the number of processors
and memory modules within each compute node

•  A modular redundancy mechanism is needed for
replication, error detection and error recovery in a
massively parallel HPC system

57 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Compute Node Availability Improvement with
Modular Redundancy

58 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Compute Node Availability Improvement with
Dynamic Modular Redundancy

59 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Improving HPC System Availability with
Compute-Node Modular Redundancy

•  The availability of a modular
redundant compute node is
based on 2×/3× parallel coupling

•  The availability of a HPC system
is based on n× serial coupling

•  The availability of a compute-
node modular redundant HPC
system is based on n× serial of
2×/3× parallel components

•  Dynamic modular redundancy
additionally reduces the MTTR of
1 (DMR) or 2 (TMR) components

60 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

HPC System Availability Improvement with
Modular Redundancy
(2, 3 and 4 Nines Compute Node Availability)

61 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

HPC System Availability Improvement with
Dynamic Modular Redundancy
(2, 3 and 4 Nines Compute Node Availability)

62 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Observations

•  DMR and TMR for compute nodes significantly increases
compute node availability, which in turn dramatically
increases HPC system availability

•  DMR: Compute node MTTF can be 100-1,000× less

•  TMR: Compute node MTTF can be 1,000-10,000× less

•  DDMR and DTMR for compute nodes improve compute
node availability even further, which in turn increases HPC
system availability even more

•  DDMR: Compute node MTTF can be 1,000-10,000× less

•  DTMR: Compute node MTTF can be 10,000-100,000× less

63 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Financial Cost and Power Consumption
(Based on 2009 ORNL Jaguar Hardware and Market Prices)

Solution Processor Memory Price Power
Traditional
checkpoint/
restart

1x AMD Opteron 2356
2x4GB Micron DDR2-800 ECC

 $ 500
+$ 750
=$1250

 75W
+ 2W
= 77W

In-memory
checkpoint
caching

1x AMD Opteron 2356
4x4GB Micron DDR2-800 ECC

 $ 500
+$1500
=$2000

 75W
+ 4W
= 79W

In-memory
checkpoint/
restart with
new boards

1x AMD Opteron 2356
2x4GB Micron DDR2-800 ECC
4x4GB Kingston DDR2-800 ECC

 $ 500
+$ 750
+$ 600
>$1700

 75W
+ 2W
+ 4W
= 81W

DMR w/new
boards &
more racks

2x AMD Opteron 2356
4x4GB Kingston DDR2-800 ECC

 $1000
+$ 600
>$1600

 150W
+ 4W
=154W

TMR w/new
boards &
more racks

3x AMD Opteron 2356
6x4GB Kingston DDR2-800 ECC

 $1500
+$ 900
>$2400

 225W
+ 6W
>231W

R
ol

lb
ac

k
R

ec
ov

er
y

R
ed

un
da

nc
y

64 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Financial Cost and Power Consumption
(Based on 2009 ORNL Jaguar Hardware and Market Prices)

Solution Processor Memory Price Power
Traditional
checkpoint/
restart

1x AMD Opteron 2356
2x4GB Micron DDR2-800 ECC

=$1250 = 77W

In-memory
checkpoint
caching

1x AMD Opteron 2356
4x4GB Micron DDR2-800 ECC

=160% =103%

In-memory
checkpoint/
restart with
new boards

1x AMD Opteron 2356
2x4GB Micron DDR2-800 ECC
4x4GB Kingston DDR2-800 ECC

=136% =105%
DMR w/new
boards &
more racks

2x AMD Opteron 2356
4x4GB Kingston DDR2-800 ECC

>128% =200%
TMR w/new
boards &
more racks

3x AMD Opteron 2356
6x4GB Kingston DDR2-800 ECC

>192% >300%

R
ol

lb
ac

k
R

ec
ov

er
y

R
ed

un
da

nc
y

Not 2x/3x!

65 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Availability Analysis Conclusions

•  DMR with 4-nine or TMR with 3-nine compute node rating
provides enough system availability for HPC systems
planned for the next 10 years with 1,000,000 compute
nodes and beyond

•  DDMR with 3-nine or DTMR with 2-nine single component
rating provides enough overall system availability for
future HPC systems

•  The reduction of individual component reliability within a
modular redundant system permits recovering the costs
for using 2× or 3× the number of components

•  This tunable cost vs. reliability/availability trade-off is the
counter argument to the traditional view that modular
redundancy comes at 2× or 3× costs

66 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Implementation as Sphere of Replication

•  A logical boundary of redundancy for a replicated system
•  Components within are protected via redundancy
•  Components outside are not
•  Data entering the sphere (input) is replicated
•  Data leaving the sphere (output) is compared

67 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Existing non-HPC Solutions

•  Thread-level redundancy
- On the same processor core using different pipelines
- On the same processor using different cores
- On different processors in the same system
- HP’s NonStop Advanced Architecture (NSAA) (form. Tandem)

•  Process-level redundancy
- On the same processor using different cores
- On different processors in the same system
- HP's NonStop Himalaya

•  System-level redundancy
- On split or separate systems
- Saturn V guidance computer, Boeing/Airbus navigation

68 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Proposed Solution for Modular
Redundancy for Extreme-scale HPC

Process-level approach System-level approach

69 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Ongoing and Future Work

•  Design modular redundancy models and algorithms
•  Implement a static modular redundancy prototype with

system-level replication (MR-MPI)
-  Interact with MPI fault tolerance approaches
- Provide redundancy layer between application and MPI
-  Investigate moving the redundancy layer into MPI

•  Experiment with I/O & file system access scenarios
- Performance as well as failure modes, masking and recovery

•  Implement dynamic modular redundancy prototype with
system-level replication (dMR-MPI)
- Utilize process cloning for hard- and soft-error recovery

•  Create trade-off models
- When does it make sense to use which type of redundancy?

70 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

HPC Computer Science Research Driver:
The Road to Exa-Scale Computing

71 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Collaboration Opportunities

•  Exa-scale computing research:
- U.S. Department of Energy calls for proposals are out

(x-stack, advanced architectures, sci. data management)
- G8 (Europe) calls for proposals are out
- U.S. National Science Foundation calls will be out soon

•  Focus areas:
- Power and heat management (hardware & system software)
- Billion-way parallelism (algorithms, math libraries,

programming models, environments & frameworks)
- Scalability (system software: management, I/O & file systems)
- Fault tolerance and resilience (system software)
-  Information hiding to reduce complexity (system software,

programming models, environments & frameworks)
- Crosscutting efforts: resilience/power/performance/…

72 C. Engelmann and S.L. Scott: HPC System Software Research at Oak Ridge National Laboratory

Questions?

C. Engelmann and S.L. Scott: HPC System Software Research at Oak
Ridge National Laboratory

