
Facilitating Co-Design for Extreme-Scale Systems Through Lightweight Simulation

Christian Engelmann and Frank Lauer
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA

engelmannc@ornl.gov and FrankLauer@gmx.com

Abstract—This work focuses on tools for investigating algo-
rithm performance at extreme scale with millions of concurrent
threads and for evaluating the impact of future architecture
choices to facilitate the co-design of high-performance comput-
ing (HPC) architectures and applications. The approach focuses
on lightweight simulation of extreme-scale HPC systems with
the needed amount of accuracy. The prototype presented in
this paper is able to provide this capability using a parallel
discrete event simulation (PDES), such that a Message Passing
Interface (MPI) application can be executed at extreme scale,
and its performance properties can be evaluated. The results
of an initial prototype are encouraging as a simple hello
world MPI program could be scaled up to 1,048,576 virtual
MPI processes on a four-node cluster, and the performance
properties of two MPI programs could be evaluated at up to
16,384 virtual MPI processes on the same system.

Keywords-high-performance computing; parallel discrete
event simulation; hardware/software co-design; performance
evaluation; Message Passing Interface;

I. INTRODUCTION

Recent trends in high-performance computing (HPC) ar-
chitectures show that, due to the end of processor fre-
quency scaling, performance increases are entirely gained by
employing more processor cores. For example, the Jaguar
system at Oak Ridge National Laboratory (ORNL) has
224,256 cores (see http://www.nccs.gov/jaguar). Its LIN-
PACK benchmark performance of 1.759 PFlop/s perfor-
mance was achieved by switching from four- to six-core
processors in 2009. Prior to that in 2008, it was upgraded
from dual-core to quad-code processors and from 11,508
single- to 18,688 dual-processor nodes. Ongoing planning
activities for the road toward multi-petascale and exascale
HPC recognize that these increases are going to continue for
the next 10 years. An exascale computing system may have
up to 1,000,000 compute nodes with 1,000 cores per node
by 2018 (see the International Exascale Software Project
at http://www.exascale.org). While processors in 2018 may
look completely different than today’s and may employ a
significant amount of hardware threads similar to today’s
graphics processing units (GPUs), the amount of concur-
rency a HPC application needs to deal with is immense.

Investigating algorithm performance at this scale becomes
rather difficult, especially considering the challenge of non-
intrusive scalable profiling using tracing tools. Furthermore,

current-generation HPC systems provide not nearly enough
concurrency to permit performance evaluation at this scale.
The research and development presented in this paper fo-
cuses on an alternative approach using lightweight simula-
tion of future extreme-scale HPC architectures to evaluate
algorithm performance at extreme scale. While simulation
approaches have been used in the past, they did not scale
to millions of concurrent threads with the needed amount
of accuracy. The presented prototype is able to provide
this capability using a lightweight parallel discrete event
simulation (PDES), such that a Message Passing Interface
(MPI) application can be executed at extreme scale and its
performance can be evaluated.

II. RELATED WORK

Discrete event simulation (DES) is a powerful tool for
investigating the behaviour of complex environments that
have entities interacting in discrete intermittency, such as in
computer systems, molecular dynamics, and military battle
fields. The operation of such systems is represented as a
chronological sequence of events, each marking a change of
system state at a specific simulated time. A DES allows to
stop, compress, expand, and reverse the virtual time of the
simulated state machine as it is separated from wall clock
time. Simulations of deterministic systems are repeatable.

A PDES [1], [2] is a parallel implementation of a DES.
It needs to maintain causality as transitions are executed
simultaneously. Common techniques include to execute the
simulation (1) in a conservative fashion that waits until all
parts are ahead of the next event’s virtual time, (2) in an
optimistic way that rolls back the entire simulation in case
of a causality violation, or (3) using a time warp algorithm
that rolls back only those transitions resulting in a causality
violation. A PDES also needs to deal with the trade-off
between scalability and fidelity as a reduction of simulation
accuracy can reduce the probability of causality violation.

The Java Cellular Architecture Simulator (JCAS) [3] was
initially developed by our team in 2001 and part of a
collaborative effort between IBM and ORNL to investigate
scalable and fault-tolerant scientific algorithms for HPC
systems with up to 100,000 processors, such as the IBM
Blue Gene/L system planned at that time. The first prototype
was able to run up to 5,000 virtual processes (VP) on a

http://www.nccs.gov/jaguar
http://www.exascale.org


Figure 1. DDES architecture of JCAS

single native processor (P) solving Laplace’s equation. An
improved variant ran up to 500,000 virtual processes on a
Linux cluster with 5 native processors (1 for visualization
and 4 for computation) solving Laplace’s equation and
the global maximum problem. Its design (see Figure 1)
relied on a distributed discrete event simulation (DDES) on
top of TCP/IP with a very basic virtual MPI. While this
solution was able to run algorithms at scale, it lacked certain
important features, such as time-accurate simulation, high
performance, support for running the simulator on atop MPI,
and a fully functional virtual MPI.

The BigSim [4], [5] project (see http://charm.cs.uiuc.
edu/research/bigsim) was initiated in 2001 by the IBM
Blue Gene/C project to study programming issues in large-
scale HPC systems. The BigSim Emulator is build atop
Charm++ and Adaptive MPI (AMPI) [6]. It is able to
run MPI applications in a highly oversubscribed fashion,
such that 100,000 virtual MPI processes are distributed over
2,000 native processors. The BigSim Emulator is meant
for application testing and debugging at scale. The BigSim
Simulator is a trace-driven PDES that models architectural
parameters of a HPC system. It is meant for identification
of performance bottlenecks, such as load imbalances, com-
munication contention and long critical paths. It supports
a variable-resolution processor model, ranging from simple
scale factors to interpolation based on performance counters.
For the network, it offers a simple latency model or a
detailed model of the entire communication fabric. While
the BigSim Emulator offers more functionality than JCAS,
it scales worse due to the Charm++/AMPI layer. The BigSim
Simulator uses a PDES to maintain accuracy, but does not
support running native applications.

Other trace-driven PDES solutions for investigating ap-
plication performance exist. For example, DIMEMAS [7]
processes traces from MPIDTrace and generates trace files
that are suitable for the two performance analysis tools,
PARAVER and Vampir.

µπ [8] (see Figure 2 and http://kalper.net/kp/software/
mupi) is a PDES-based system for predicting the perfor-
mance of parallel programs. It is currently under devel-

Figure 2. PDES architecture of µπ

opment and targets various methods for interfacing na-
tive applications with the virtual system created by the
PDES, such as source code, library and virtual machine
grafting. Initial support for MPI applications exists. The
strength of µπ is its reliance on the µsik PDES engine (see
http://kalper.net/kp/software/musik) that supports conserva-
tive and optimistic execution. An early prototype recently
ran on 216,000 cores of the Jaguar Cray XT5 at ORNL,
successfully simulating over 27 million virtual MPI ranks,
each virtual rank containing its own thread context, and all
ranks fully synchronized by virtual time. The µπ effort is
in parallel to the presented work, both focus on different
aspects of investigating the complexities of HPC application
performance at extreme scale using a PDES.

The Structural Simulation Toolkit (SST) (see http://www.
cs.sandia.gov/sst) is a modular PDES framework on top of
MPI for cycle-accurate simulation of novel compute-node
architectures, including processor, memory, and network.
It is currently under development and its primary goal is
to enable the co-design of HPC systems and applications.
While the SST scales only to a few number of nodes, its
value is in the capability to investigate the performance
features of future architectures in detail. It is also able
to generate application models for larger-scale simulations,
similar to the BigSim Emulator/Simulator combination. The
work presented in this paper aims at furthering a similar
synergy between small-scale cycle-accurate and large-scale
communication-accurate simulations.

The SST project as well as this work are part of the U.S.
Department of Energy’s Institute for Advanced Architecture
and Algorithms (IAA) (see http://www.csm.ornl.gov/iaa). It
was established in 2008 to facilitate the co-design of archi-
tectures and applications in order to create synergy in their
respective evolutions for closing the application-architecture
performance gap. The IAA currently targets the development
of architecture-aware algorithms and the supporting runtime
features needed by these algorithms to solve general sparse
linear systems common in many scientific applications. It
also focuses on evaluating the algorithmic impact of future
HPC system architecture choices.

http://charm.cs.uiuc.edu/research/bigsim
http://charm.cs.uiuc.edu/research/bigsim
http://kalper.net/kp/software/mupi
http://kalper.net/kp/software/mupi
http://kalper.net/kp/software/musik
http://www.cs.sandia.gov/sst
http://www.cs.sandia.gov/sst
http://www.csm.ornl.gov/iaa


III. TECHNICAL APPROACH

The research and development presented in this paper is
a follow-on effort to the JCAS project that aims at filling
the gap between the JCAS, the BigSim Emulator, and the
BigSim Simulator. It targets a new PDES-based simulation
toolkit that combines the efficiency of the JCAS design
for highly oversubscribed execution with the virtual MPI
(Charm++/AMPI) concept of the BigSim Emulator and the
PDES execution model of the BigSim Simulator. It further
incorporates certain design features of µπ. In addition, this
work is complementing the detailed hardware simulation
capabilities at small scale (of a few nodes) of the SST project
with more coarse grain simulation capabilities at extreme
scale (of millions of nodes).

The presented work aims at executing algorithms in a
PDES environment, such that their performance properties
and the impact of architectural features can be studied at
extreme-scale. The approach focuses on a software archi-
tecture similar to µπ (see Figure 2 in Section II). The
targeted design features a lightweight PDES layer that offers
a VP abstraction and a virtual MPI interface for highly
oversubscribed execution scenarios. Similar to our earlier
JCAS solution (see Section II) that was already able to run
500,000 VPs on 4+1 native processors, the goal is to enable
the execution of millions of virtual MPI ranks on several
orders of magnitude smaller HPC resources.

A PDES is employed to keep track of virtual time for
every VP and for every message sent between VPs. MPI
program execution time is correctly measured based on the
virtual time. Performance estimations at different execution
scales can be performed accurately despite the slowdown
caused by the oversubscription of workload. Furthermore, as
the PDES completely virtualizes time measurement, chang-
ing the network and processor performance models used
by the PDES for virtual time measurement, as exemplified
by the BigSim Simulator and the SST, allows to estimate
performance on future-generation architectures.

The work presented in this paper focuses on several re-
search and development challenges and demonstrates a first
prototype solving these challenges. The first challenge is the
design of a lightweight PDES that offers the needed features,
such as virtual time measurement and VP messaging, as
efficiently as possible. The second is the execution of a
large number of MPI ranks as parallel VPs with a minimum
performance overhead and without significant changes to
the original MPI program. The third challenge is the im-
plementation of a virtual MPI that provides low-overhead
VP messaging and takes advantage of the underlying native
MPI implementation when possible. The following section
details how these challenges were solved and describes the
implementation design of a prototype demonstrating the
solutions to these challenges.

Figure 3. Design of the implemented simulator

IV. IMPLEMENTATION

To enable transparent execution of MPI applications inside
a PDES, we have developed a simulator prototype that sits
between the MPI layer and the application as an interposition
library (see Figure 3). This implementation design provides
the most efficient way to deploy the PDES without requiring
significant changes to the original MPI application. The
simulator utilizes the MPI performance tool interface, PMPI,
to intercept MPI calls from the application and to hide all
PDES-related mechanisms. The simulator further provides
its own C/Fortran MPI application programming interface
(API), i.e., the simulator becomes the MPI layer of the
application while the native layer MPI is used by the
simulator via the PMPI API. The simulator is a native MPI
application (distributed as a library) that wraps another MPI
application into a virtual execution environment controlled
by a PDES. Using preprocessor directives, the simulator API
automatically renames the main entry function of a C MPI
application. For Fortran MPI applications, the simulator API
automatically changes the program <program name>
directive to subroutine sim_main. The simulator li-
brary provides its own C and Fortran main entry functions
and calls the renamed application’s main entry function or
subroutine during the PDES execution of a VP. Each native
MPI process contains a simulator instance that executes the
original MPI application within VPs utilizing a PDES for
control and coordination among simulator instances. A MPI
application is run in the simulator using the following steps:

1) Replace the C/Fortran MPI header file include direc-
tive with the C/Fortran simulator API header file.

2) Compile and link the MPI program with the simulator
library (and the original MPI library).

3) Run the MPI program: mpirun -np <native
np> <program> -sim-np <virtual np>

The simulator is implemented in a mixed C/C++ fash-
ion using two (pthread) threads per instance. One thread
constantly receives messages from the native MPI library
and processes them accordingly, e.g., queueing VP messages
for the PDES and reacting to certain control messages. The
other thread is part of the PDES and constantly dequeues



received VP messages. It switches into the context of the
message destination VP and processes the message accord-
ing to the current VP state and the message type/content.
It also sends virtual MPI messages in the context of the
executing VP to other VPs by locally queueing them or
by utilizing the native MPI library to send them to a
remote simulator instance. The decoupling of receiving/pre-
processing and processing/sending native MPI messages,
which contain control and VP messages, allows the PDES
to execute a significant number of VPs without being
synchronized by the native MPI library. However, this re-
quires multi-threading support in the native MPI library, i.e.,
the simulator calls MPI_Init_thread() and requires
MPI_THREAD_MULTIPLE.

The developed simulator is comprised of the following
three major components. The lightweight PDES performs
virtual time management and VP messaging. The VP man-
agement component supports the PDES with a mechanism
to easily switch between different VP contexts. The virtual
MPI provides seamless MPI communication capabilities to
applications running inside the simulator without the need
for extensive modifications. The design and implementation
details of these components are discussed in the following.

A. Parallel Discrete Event Simulator

In thread one of every simulator instance, the PDES
receives VP and control messages from the native MPI
and processes them accordingly. In thread two, the core
mechanism of the PDES separately dequeues every received
VP message, switches into the context of the message
destination VP, and processes the message according to the
current VP state and the message type/content. Utilizing
the virtual MPI component, the message processing may
involve sending messages to other local or remote VPs
and/or to the processing VP itself, e.g., for collective com-
munication operations. The PDES additionally needs to deal
with maintaining causality as multiple VPs are executed
simultaneously at different simulator instances.

1) Virtual Time Management: For every VP, the PDES
maintains a virtual time that is equivalent to the actual
execution time of the VP, scaled to the performance of a
virtual processor (and memory) as defined by the processor
model. Similar to advanced operating system support for
process-specific execution clocks, every time slice a VP
executes on the native system is measured, adjusted by the
processor model, and recorded. Execution of the rest of the
simulator (PDES and native communication) is excluded
from the time measurement. The current implementation
supports a basic scaling processor model that uses the actual
VP execution time and applies a scaling factor.

VP messages are transmitted internally by the PDES and
its components. The native message latency is not exposed
to the VPs. Instead, a network model calculates the virtual
latency for every VP message. The message delivery virtual

time to a VP depends on the virtual time of the source
VP when the message was sent and the calculated virtual
network latency. It may also depend on the virtual time of
the receiving VP, such as when the VP wants to receive
a message that has not been sent yet (wait time). The
implemented network model currently supports fixed la-
tency and bandwidth parameters, i.e., a central non-blocking
switch topology. A more complex network model supporting
different network architectures is under development.

2) Virtual Process Messaging: VPs communicate with
each other via virtual MPI messages that are encapsulated
in VP messages and routed by the simulator instances from
the source VP to the destination VP, which may reside at
different instances. As explained earlier, VP messages are
sent in the sending VP context through the virtual MPI com-
ponent by the PDES thread that executes VPs. A message
to a local VP is inserted into the local receive queue, which
contains all received messages in virtual receive time order.
A message to a remote VP is sent to the respective simulator
instance using the native MPI, and inserted into the local
receive queue by the receiving instance.

To bootstrap the simulation, each simulator instance in-
serts a special start message into its local receive queue
addressed to its first local VP. Upon executing the simu-
lation, the start message is received, re-adressed to the next
local VP in line, and re-inserted into the receive queue. The
simulated program’s main entry function is executed with
the appropriate command line argument parameters for every
received start message in the context of the addressed VP.
The bootstrap guarantees a virtual parallel execution, such
that, starting with the main entry function, program chunks
between message receives are serially executed separately
for every VP until program termination.

Similar to operating system support for multi-threading,
the simulator provides a yield capability to manually hand
over control to the PDES and to allow other VPs to progress.
The yield mechanism inserts a special yield message into
the local receive queue addressed to the calling VP with
the VP’s time stamp. Then the VP waits for the receive of
this message, which allows the PDES to process messages
with earlier time stamps. While the yield capability is
implemented and fully functional, it should be avoided and
only used explicitly if really needed by the program. It does
slow down the simulators execution, especially at large scale.

3) Maintaining Causality: Maintaining causality is typ-
ically the most difficult part of designing a PDES. The
simulation can deadlock or degrade in performance if imple-
mented without considering the causality and performance
characteristics of the simulated system. The MPI has certain
causality and performance features that are reflected in
the PDES design of the developed simulator. Considering
basic MPI functionality, potential sources of causality errors
are limited to MPI_ANY_SOURCE and MPI_Waitsome()
receives. All other MPI communication operations have a



strict deterministic execution semantics, e.g., MPI message
delivery order cannot be altered by the MPI layer, every MPI
message send requires a matching MPI message receive, and
collectives are synchronous operations.

In case of MPI_ANY_SOURCE, the message source is
unknown to the receiver and the first matching message
is received. The PDES needs to determine message order
by virtual time in order to deliver the first matching mes-
sage to the application. This requires to know all potential
matching messages at the receiving instance before making
the decision. As the number of potential matching messages
is unknown, the PDES needs to employ a synchronization
mechanism to assure causality. The current simulator imple-
mentation does not support MPI_ANY_SOURCE at this time
as the primary goal was to develop an initial prototype that
demonstrates the overall concept. An on-demand conserva-
tive synchronization mechanism with deadlock detection is
currently under development.

In case of MPI_Waitsome(), all receive requests com-
pleted at or before the virtual time of the calling VP
are returned. The PDES needs to determine the receive
completion status for all outstanding receives the VP is
waiting on for this particular MPI call that have the potential
to complete before making the decision. This can be easily
solved by internally waiting for the outstanding receives to
complete, re-queueing those that occur in the future of the
calling VP, and returning those that occur in the present or
past. Note that VP time is not advancing while the PDES
waits for the outstanding receives to complete.

B. Virtual Processes

To enable highly-oversubscribed operation, the simulator
is employing user-space threads for VPs, similar to the
prior JCAS solution (see Section II). In contrast to JCAS,
however, the developed solution supports user-space thread
stacks as well to allow each VP to execute a native program
in its own stack context. This has two consequences. First,
all stack variables are maintained separately for each VP.
Second, call stacks are maintained separately as well.

The implementation is based on using a single user-space
(pthread) stack frame for the PDES thread that executes the
VPs. This stack frame is split up to allow each VP to operate
in its own stack frame. A context switch between VPs is as
simple as saving and restoring stack and base pointer within
a dedicated context switch function. Since the function’s
return address is put on stack upon entering, a VP always
saves its call stack before switching over to another VP. As
this involves assembly instructions in the C/C++ code of the
simulator, the current implementation only supports Intel 32-
and 64-bit architectures (x86 and x86 64). This, however,
can be easily extended.

To initialize all VP stacks, the simulator switches to the
first local VP before receiving its start message. The context
switch function creates a copy of the current stack state for

each VP, thus assuring that each VP starts with the same
state as the first local VP before receiving its respective start
message. The initialization routine does take into account
that the stack may grow up or down, depending on the actual
execution architecture.

While this type of user-space thread support has tremen-
dous performance advantages, e.g., over using a system
(pthread) thread for each VP, it comes at the price of
loosing the memory protection offered by the hardware and
supported by the operating system. Users of the simulator
need to be aware of the risk of VP thread stack overflow
and resulting VP stack corruption. The simulator provides
a command line configuration option to set the VP stack
frame size to actual MPI program requirements.

C. Virtual MPI

The virtual MPI intercepts supported calls made by the
application to the MPI library and encapsulates each MPI
message in a VP message. In the following, supported C
and Fortran MPI calls are discussed in more detail.

The MPI_Init() and MPI_Finalize() functions
are empty as the virtual MPI component does not need to
be setup or teared down by the MPI program.
MPI_Comm_rank() and MPI_Comm_size() return

the corresponding virtual MPI rank and communicator
size. As the other MPI communicator operations are
currently not supported, all MPI calls are restricted to
MPI_COMM_WORLD at the moment. Ongoing work focuses
on full support for MPI groups and communicators.
MPI_Send() sends a MPI message encapsulated in a

VP message, utilizing the native MPI for non-local des-
tination VPs. All basic MPI data types are supported.
MPI_Isend() does the same, as VP time measurement
is not active during virtual MPI calls. It additionally sends
a request message to the calling VP, similar to the yield
capability, to allow for seamless processing of send requests
in conjunction with receive requests by MPI_Wait() and
MPI_Waitall().
MPI_Recv() receives a MPI message encapsulated in a

VP message. The first message in the PDES receive queue
is processed in the context of the destination VP. If it is not
addressed to the calling VP, a context switch is performed
to the destination VP. The calling VP receives control back
from the PDES once its message is first in the PDES receive
queue. Messages that are addressed to the VP, but do not
match the receive parameters (source and tag) may exist and
are temporarily cached until a matching message is received,
and re-queued once it is received. MPI_Irecv() just
sends a request message containing the receive parameters
to the calling VP in order to defer the actual receive to
MPI_Wait() and MPI_Waitall().
MPI_Sendrecv() executes an MPI_Send() and then

a MPI_Recv(). The potential for deadlock, as can be
experienced in native MPI implementations with this basic



blocking send/receive approach, does not exist as both
operations, sending and receiving messages, are decoupled
by threads and a receive queue.

The MPI_Wait() and MPI_Waitall() functions
wait for the request messages previously sent by the
respective MPI_Isend() and MPI_Irecv() calls.
MPI_Waitsome() implements the mechanism described
in Section IV-A3 for ignoring those requests that complete
in the future of the calling VP, and returning those that
complete in the present or past. The processing of receive
requests trigger the actual receive of the VP-encapsulated
MPI message.
MPI_Bcast() performs a broadcast of a VP-

encapsulated MPI message. The VP message is broadcast
by the root VP to all simulator instances using a point-to-
point broadcast via the native MPI. Local processing of
broadcasted VP messages is handled similar to the start
message by forwarding the message from one VP to the
next. The broadcast capability of the native MPI cannot be
used as it is a synchronous operation that interferes with
the asynchronous nature of the PDES. The local message
forwarding significantly reduces overhead, especially at
large scale.
MPI_Barrier() waits until all local VPs have reached

this call though a basic counter, and then sends a VP
message to VP 0 with the time stamp of the last local VP
entering the barrier. VP 0 waits for all local and remote VPs
and broadcasts a VP message with the time stamp of the last
global VP entering the barrier. MPI_Barrier() resumes
execution once this broadcast message is received.
MPI_Wtime() and MPI_Wtick() return the current

VP time and resolution according to the PDES virtual time
management.

V. EXPERIMENTAL RESULTS

We deployed the prototype on a four-node Linux cluster
for an initial evaluation. Each node has an Intel dual-core
2.13GHz processor and 2GB of memory. An additional
head node with the same configuration was used to avoid
interference. All five nodes are connected via Gigabit Eth-
ernet. The system is running the Ubuntu 8.04 64-bit Linux
distribution without swap and Open MPI 1.4.2 with multi-
threading support. The evaluated simulator implementation
is a redesigned and significantly enhanced version of a first
prototype that demonstrated the core mechanisms as part of
a recent Master’s thesis [9] by one of the co-authors.

For the first experiment, we created a micro benchmark
that performs one-way MPI message latency measurements
between two networked nodes in the cluster using a ping-
pong technique. Ten measurements were performed for
each metric at increasing payloads and 32kB stack per VP.
The virtual network parameters were set to 0µs/∞Gbps,
10µs/∞Gbps, 100µs/∞Gbps, 0µs/1Gbps, and 50µs/1Gbps.
The processor scaling factor was set to 1. The results (see

Figure 4. Comparison of native vs. virtual one-way MPI message latency

Figure 5. Scaling up the simple hello world MPI program to
1,048,576 VPs in the simulator on a four-node Linux cluster

Figure 4) clearly show that the fixed virtual network latency
and bandwidth remains uninfluenced by the native one-way
MPI message latency as it is controlled by the PDES. They
also show that the 50µs/1Gbps parameters closely model the
native MPI performance.

In a second experiment, we created a simple hello
world MPI program that prints out the MPI rank and
size (in MPI_COMM_WORLD) for each MPI process. Ten
measurements were performed for each metric at increasing
scales using one simulator instance on each of the 4 nodes
and 4kB stack per VP. The processor scaling factor was set
to 1. The results (see Figure 5) overwhelmingly demonstrate
the capability of the developed solution as it scales to
1,048,576 VPs, i.e., virtual MPI processes, on a 4-node
cluster. The simulation time remains constant at different
values for 4-512 VPs and 1,024-524,288. We attribute the
lower values at 4-512 VPs to operating system noise influ-
encing the time measurement, since the simulation time is
below 100µs and the simulator time is ≈1ms. The significant
increase of the simulator time to ≈100ms at 512 VPs is
likely related to output buffer issues as each of the 128
VPs/node is printing a line to the output. The simulator



Figure 6. Scaling up the computation-heavy π Monte Carlo MPI
application in the simulator on a four-node Linux cluster

execution time scales with the number of VPs. At 1,048,576
VPs, the simulation time increases by a magnitude, which is
likely caused by the fact that the system is running near its
resource limits (1GB memory/node allocated for VP stack
alone) with a noise-sensitive MPI program.

The next two experiments focused on scaling up real
MPI applications to demonstrate the evaluation capabilities
and performance properties of the developed solution. We
implemented two orthogonal benchmark MPI applications.
The first performs an estimation of π using a Monte Carlo
approach. It is a computation-heavy embarrassingly parallel
benchmark MPI application that performs communication
only at the end to gather the results of all worker tasks at
rank 0. The second solves the 1D heat equation in an iter-
ative fashion. It is a communication-heavy closely-coupled
benchmark MPI application that performs communication
between neighboring MPI ranks at each iteration.

Ten measurements were performed for each metric at
increasing scales using 32kB stack per VP, two simulator
instances per node (one per core) for the π calculation
(as it is computation-heavy), and one per node for the
heat equation solver (as it is communication-heavy). The
measurements were performed at increasing scales with
fixed total workload (strong scaling). The virtual network
parameters for the π calculation were set to 50µs/1Gbps. The
virtual network parameters for the 1D heat equation solver
were set to 0µs/∞Gbps and 50µs/1Gbps to demonstrate
the network scaling properties of the simulation and the
simulator. The processor scaling factor for the π calculation
was set to 1 and 0.5, i.e., twice as fast as the original
processor, demonstrate the processor scaling properties of
the simulation and the simulator. The processor scaling
factor for the 1D heat equation solver was set to 1.

The results for the π calculation (see Figure 6) clearly
show that without processor scaling (50µs/1Gbps/1×) the
simulation and the simulator have the same execution times
with 0% overhead and linear scaling as long as the number

Figure 7. Scaling up the communication-heavy heat equation MPI
application in the simulator on a four-node Linux cluster

of native cores equals the number of VPs. Once the number
of VPs exceeds the number of cores, the simulator time
remains constant and the simulation time continues to reflect
linear scaling. At 4096 VPs, the amount of work performed
by the program becomes much smaller than the amount of
work required for the last communication step executed by
the simulator and hidden to the program by the fixed 50µs
virtual network latency. The simulator starts scaling with
the increasing communication load. Figure 6 also shows
the impact of the processor scaling factor on the simula-
tion execution time (50µs/1Gbps/1× vs. 50µs/1Gbps/0.5×).
The processor scaling factor of 0.5 reduces the simulation
execution time to 50% of the original processor.

The 1D heat equation solver results (see Figure 7) show
a similar picture. Moving from 1 to 2 nodes simply demon-
strates the difference from using no MPI communication at
all to MPI communication between neighboring MPI ranks.
As this application is communication-heavy, the difference
between the simulator time, which includes the native com-
munication workload, and the simulation time, which only
includes the virtual communication workload, is clearly vis-
ible. Nevertheless, the simulation time shows linear scaling
for 2-1024 VPs for the 0µs/∞Gbps/1× network model
parameter set and the expected polynomial scaling for 2-
512 VPs for the 50µs/1Gbps/1× network model parameter
set. The simulator execution time remains constant in both
simulation scenarios due to the strong application scal-
ing. Starting with 1024 VPs, the communication workload
causes contention for the simulator and the virtual network
limits the scaling for the 50µs/1Gbps/1× simulation. The
0µs/∞Gbps/1× simulation faces a different scaling issue. At
2048 VPs, the initialization phase of the 1D heat equation
solver becomes a significant part of the overall simulation
execution time. Both simulation runs, 0µs/∞Gbps/1× and
50µs/1Gbps/1×, create different contention patterns at the
simulator as the global message order is defined by the
different network model parameter sets.



VI. CONCLUSIONS AND FUTURE WORK

We have implemented a new PDES-based simulation
toolkit that fills the gap between the JCAS, the BigSim
Emulator, and the BigSim Simulator by combining the
efficiency of the JCAS design for highly oversubscribed
execution with the virtual MPI (Charm++/AMPI) concept
of the BigSim Emulator and the PDES execution model
of the BigSim Simulator. This work is complements the
detailed hardware simulation capabilities of the SST project
with more coarse grain simulation capabilities at extreme
scale. The developed solution enables the investigation of
the complexities of algorithm performance at extreme scale
using lightweight simulation. Furthermore, as part of the
IAA effort, this solution is a first step toward evaluating the
algorithmic impact of future architecture choices to facilitate
the co-design of architectures and applications for closing
application-architecture performance gap.

Ongoing and future work targets: (1) a better processor
model with interpolation using performance counters, (2)
a conservative synchronization mechanism with deadlock
detection (for MPI_ANY_SOURCE receives), (3) a more
complex network model (with different topologies), and (4) a
more complete virtual MPI support (including communicator
and advanced collective communication operations).

ACKNOWLEDGMENT

This research is sponsored by the Office of Advanced
Scientific Computing Research; U.S. Department of Energy.
The work was performed at the Oak Ridge National Labora-
tory, which is managed by UT-Battelle, LLC under Contract
No. De-AC05-00OR22725. The United States Government
retains and the publisher, by accepting the article for pub-
lication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States
Government purposes.

REFERENCES

[1] R. M. Fujimoto, “Parallel discrete event simulation,” Commu-
nications of the ACM, vol. 33, no. 10, pp. 30–53, 1990.

[2] K. S. Perumalla, “Parallel and distributed simulation: Tradi-
tional techniques and recent advances,” in Proceedings of the
38th Winter Simulation Conference 2006. Monterey, CA,
USA: ACM Press, New York, NY, USA, 3-6, 2006, pp. 84–
95.

[3] C. Engelmann and G. A. Geist, “Super-scalable algorithms
for computing on 100,000 processors,” in Lecture Notes in
Computer Science: Proceedings of the 5th International Con-
ference on Computational Science (ICCS) 2005, Part I, vol.
3514. Atlanta, GA, USA: Springer Verlag, Berlin, Germany,
May 22-25, 2005, pp. 313–320.

[4] G. Zheng, G. Kakulapati, and L. V. Kale, “BigSim: A parallel
simulator for performance prediction of extremely large paral-
lel machines,” in Proceedings of the 18th IEEE International
Parallel and Distributed Processing Symposium (IPDPS) 2004.
Santa Fe, New Mexico: IEEE Computer Society, Apr. 26-30,
2004.

[5] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. V. Kale,
“Simulation-based performance prediction for large parallel
machines,” Concurrency and Computation: Practice and Ex-
perience, vol. 3, no. 2-3, pp. 183–207, 2005.

[6] L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth, and
G. Zheng, “Programming petascale applications with Charm++
and AMPI,” in Petascale Computing: Algorithms and Applica-
tions, D. Bader, Ed. CRC Press, Dec. 2007, pp. 421–441.

[7] S. Girona, J. Labarta, and R. M. Badia, “Validation of dimemas
communication model for MPI collective operations,” in Lec-
ture Notes in Computer Science: Proceedings of the 7th

European PVM/MPI Users‘ Group Meeting (EuroPVM/MPI)
2000, vol. 1908. Balatonfüred, Hungary: Springer Verlag,
Berlin, Germany, Sep. 10-13 2000, pp. 39–46.

[8] K. S. Perumalla, “µπ: A highly scalable and transparent
system for simulating MPI programs,” in Proceedings of the
3rdth International ICST Conference on Simulation Tools and
Techniques (SIMUTools) 2010. Malaga, Spain: ACM Press,
New York, NY, USA, Mar. 15-19, 2010.

[9] F. Lauer, “Simulation of advanced large-scale HPC archi-
tectures,” Master’s thesis, Department of Computer Science,
University of Reading, UK, Mar. 12, 2010.

http://www.cs.reading.ac.uk
http://www.reading.ac.uk

	Introduction
	Related Work
	Technical Approach
	Implementation
	Parallel Discrete Event Simulator
	Virtual Time Management
	Virtual Process Messaging
	Maintaining Causality

	Virtual Processes
	Virtual MPI

	Experimental Results
	Conclusions and Future Work
	References

