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Motivation

e Large-scale 1 PFlop/s systems have arrived:
— #1. LANL Roadrunner with 129,600 processor cores
— #2: ORNL Jaguar with 150,152 processor cores

e Other large-scale systems exist
— LLNL @ 212,992, ANL @ 163,840, TACC @ 62,976

e The trend is toward even larger-scale systems
e Significant increase in component count and complexity
e Expected matching increase in failure frequency

e Checkpoint/restart is becoming less and less efficient
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Summary of Application Reliability as Measured from
System Data Across 21 Los Alamos Platforms (2006)
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J. T. Daly. Methodology and metrics for quantifying application throughpirt. In Proceedings of the Nuclear
Explosives Code Developers Conference (NECDC] 2006, Los Alamos, NM, USA, Oct. 23-27, 2006.
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Research and development activities

e Efficient redundancy strateqgies for HPC head/service nodes for
high availability and high performance of critical services

e Reactive fault tolerance for HPC compute nodes utilizing the
job pause approach and checkpoint placement adaptation

e Proactive fault tolerance using preemptive migration of
computation away from compute nodes that are about to fail

e Reliability analysis for identifying pre-fault indicators,
predicting failures, and modeling and monitoring reliability

e Holistic fault tolerance through combination of adaptive
proactive and reactive fault tolerance mechanisms
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Symmetric active/active redundancy

Active/active head nodes

Compute nodes
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Many active head nodes
Workload distribution

Symmetric replication
between head nodes

Continuous service
Always up to date

No fail-over necessary

No restore-over necessary
Virtual synchrony model
Complex algorithms

Prototypes for Torque
and Parallel Virtual File
System metadata server



Symmetric active/active Parallel Virtual
File System metadata server
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Availability Est. annual downtime

98.58% 5d. 4h, 21m

99.97% 1h, 45m
99.9997% 1m, 30s
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Reactive fault tolerance for HPC with
LAM/MPI+BLCR job-pause mechanism
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e Operational nodes: Pause

— BLCR reuses existing
processes

— LAM/MPI reuses existing
connections

— Restore partial process state
from checkpoint

e Failed nodes: Migrate

— Restart process on new node
from checkpoint

— Reconnect with paused
processes

e Scalable MPI membership
management for low overhead

=) Efficient, transparent, and
automatic failure recovery



LAM/MPI+BLCR job pause performance

B Job pause and migrate [ ] LAMreboot [ Job restart
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e 3.4% overhead over job restart, but e NO requeue penalty
— No LAM reboot overhead e Less staging overhead

— Transparent continuation of execution
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Reactive vs. Proactive Fault Tolerance

e Reactive fault tolerance

— Keeps parallel applications alive through recovery
from experienced failures

— Employed mechanisms react to failures
— Examples: Checkpoint/restart, message
logging/replay
e Proactive fault tolerance

— Keeps parallel applications alive by avoiding
faillures through preventative measures

— Employed mechanisms anticipate failures
— Example: Preemptive migration
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Proactive Fault Tolerance using
Preemptive Migration

e Relies on a feedback-loop control mechanism
— Application health is constantly monitored and analyzed
— Application is reallocated to improve its health and avoid failures
— Closed-loop control similar to dynamic load balancing

e Real-time control problem
— Need to act in time to avoid imminent failures

e No 100% coverage
— Not all failures can be anticipated, such as random bit flips

Application Resource Manager/ Application -
Realiocation Runtime Environment Allocation

Application
Health

Monitor/Filter/Analysis
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Type 1 Feedback-Loop Control
Architecture

e Alert-driven coverage
— Basic failures

e No evaluation of application 3 Adminietator
health history or context
— Prone to false positives i
: = 'I

— Prone to false negatives — n-ﬁ;a,,age, S S Uit

— Prone to miss real-time g
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migration ; +

— No correlation of health
context or history
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Type 2 Feedback-Loop Control

Architecture

e Trend-driven coverage
— Basic failures
— Less false
positives/negatives

e No evaluation of application
reliability
— Prone to miss real-time
window

— Prone to decrease
application heath through
migration

— No correlation of health
context or history

13 Managed by UT-Battelle
for the Department of Energy

,{— Administrator

iy

Evict Resource ie
m.l > Manager

Application

Runtime Alfocation

Environment

1k

Sensor =
+ﬂ > Monitor

Ssnsor
Dats

Monitor

48

i

Application Process

ﬁ

Application Process
Heealth

Sensor i Appiicalion Frocess
' - . Date m ' Health I
i

|
L



Type 3 Feedback-Loop Control
Architecture

e Reliability-driven coverage
— Basic and correlated failures

— Less false
positives/negatives £ Administrator

— Able to maintain real-time i
window
Resource Runtime wn‘m
— Does not decrease Manager ST

application heath through
migration

— Correlation of short-term
health context and history

Hommr

WMMM

e No correlation of long-term
health context or history

— Unable to match system and
application reliability
patterns
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Type 4 Feedback-Loop Control

Architecture

e Reliability-driven coverage of
faillures and anomalies

— Basic and correlated failures,
anomaly detection

— Less prone to false positives
— Less prone to false negatives

— Able to maintain real-time
window

— Does not decrease
application heath through
migration

— Correlation of short and
long-term health context &
history
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VM-level Preemptive Migration using Xen

e Type 1 system setup (" FFT )
— Xen VMM on entire system CSemen , =

’ Gangﬁa)

Privileged VM

— Host OS for management
— Guest OS for computation
— Spare nodes without Guest OS

— System monitoring in Host OS
— Decentralized scheduler/load
balancer using Ganglia

e Deteriorating node health E;

Privileged VM

— Ganglia threshold trigger
— Migrate guest OS to spare
— Utilize Xen’s migration facility

1
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VM-level Migration Performance Impact

e Single node migration
— 0.5-5% longer run time

B Without Migration
B One Migration
O Two Migration

Seconds
—
a
(=]

e Double node migration
— 2-8% longer run time

e Migration duration . L. BN
— Stop & copy : 13-14s 16-node Linux cluster at NCSU with
: _ dual core, dual-processor AMD Opteron
— Live 1 14-24s and Gigabit Ethernet

e Application downtime
— Stop & copy > Live
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Process-Level Preemptive Migration w/
BLCR

e Type 1 system setup

— LAM/MPI with Berkeley Lab
Checkpoint/Restart (BLCR)

— Per-node health monitoring

e Baseboard management
controller (BMC)

e Intelligent platform
management interface (IPMI)

— New decentralized scheduler/
load balancer in LAM

— New process migration
facility in BLCR (stop&copy
and live)

e Deteriorating node health
— Simple threshold trigger
— Migrate process to spare
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Process-Level Migration Performance
Impact

e Single node migration
overhead 5 o s conr
— Stop & copy : 0.09-6 % £ 300
— Live © 0.08-2.98%

e Single node migration il IF SN &
duration S

16-node Linux cluster at NCSU with dual

— Stop & copy : 1.0-1.9s core, dual-processor AMD Opteron and
_ Live © 2 6-6.55 Gigabit Ethernet

e Application downtime
— Stop & copy > Live

e Node eviction time
— Stop & copy < Live
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Simulation of Fault Tolerance Policies

e Evaluation of fault tolerance policies
— Reactive only
— Proactive only
— Reactive/proactive combination

Global Schema

e FEvaluation of fault tolerance
parameters

— Checkpoint interval
— Prediction accuracy

SR Failure
Event

e Event-based simulation framework
using actual HPC system logs

e Customizable simulated environment
— Number of active and spare nodes
— Checkpoint and migration overheads
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Combination of proactive and reactive
fault tolerance: Simulation example

e Best: Prediction accuracy >60% and
checkpoint interval 16-32 hours

e Better than only proactive or only reactive

e Results for higher prediction accuracies
and very low checkpoint intervals are
worse than only proactive or only reactive
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Execution overhead for various checkpoint intervals and
different prediction accuracy
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Research in Reliability Modeling

e Type 3 system setup

— Monitoring of application and
system health

— Recording of application and
system health monitoring
data

— Reliability analysis on
recorded data

— Application mean-time to
interrupt (AMTTI) estimation

e Type 4 system setup

— Additional recording of
application interrupts

— Reliability analysis on recent
and historical data
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Ongoing Work

e Development of a unified framework for Type 1-4
— Unified interfaces between components

— Extendable RAS engine core interfacing with
e Monitoring data aggregation/filtering component
e Job and resource management service
e Process/VM migration mechanism
e Online/offline reliability modeling

e Research in scalable monitoring data
aggregation/filtering

— In-flight monitoring data aggregation/filtering
— Scalable, fault tolerant overlay reduction networks
— Fully distributed monitoring data processing (e.g. heat eq.)

e Finding the right metrics
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Contacts regarding HPC RAS research

Stephen L. Scott

Computer Science Research Group
Computer Science and Mathematics Division
(865) 574-3144

scottsl@ornl.gov

Christian Engelmann

Computer Science Research Group

Computer Science and Mathematics Division
(865) 574-3132
engelmannc@ornl.gov

www.fastos.org/ras
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