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Motivation

• Large-scale 1 PFlop/s systems have arrived:
– #1: LANL Roadrunner with 129,600 processor cores
– #2: ORNL Jaguar with 150,152 processor cores

• Other large-scale systems exist
– LLNL @ 212,992, ANL @ 163,840, TACC @ 62,976

• The trend is toward even larger-scale systems

• Significant increase in component count and complexity

• Expected matching increase in failure frequency

• Checkpoint/restart is becoming less and less efficient



3 Managed by UT-Battelle
for the Department of Energy

Presented by



4 Managed by UT-Battelle
for the Department of Energy

Presented by



5 Managed by UT-Battelle
for the Department of Energy

Research and development activities

• Efficient redundancy strategies for HPC head/service nodes for 
high availability and high performance of critical services

• Reactive fault tolerance for HPC compute nodes utilizing the 
job pause approach and checkpoint placement adaptation

• Proactive fault tolerance using preemptive migration of 
computation away from compute nodes that are about to fail

• Reliability analysis for identifying pre-fault indicators, 
predicting failures, and modeling and monitoring reliability

• Holistic fault tolerance through combination of adaptive 
proactive and reactive fault tolerance mechanisms



6 Managed by UT-Battelle
for the Department of Energy

Symmetric active/active redundancy

• Many active head nodes

• Workload distribution

• Symmetric replication 
between head nodes

• Continuous service

• Always up to date

• No fail-over necessary

• No restore-over necessary

• Virtual synchrony model

• Complex algorithms

• Prototypes for Torque 
and Parallel Virtual File 
System metadata server

Active/active head nodes

Compute nodes
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Symmetric active/active Parallel Virtual 
File System metadata server

Writing throughput Reading throughput

Nodes Availability Est. annual downtime
1 98.58% 5d, 4h, 21m

2 99.97% 1h, 45m

3 99.9997% 1m, 30s
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• Operational nodes: Pause
– BLCR reuses existing 

processes
– LAM/MPI reuses existing 

connections
– Restore partial process state 

from checkpoint

• Failed nodes: Migrate
– Restart process on new node 

from checkpoint
– Reconnect with paused 

processes

• Scalable MPI membership 
management for low overhead

• Efficient, transparent, and 
automatic failure recovery

Reactive fault tolerance for HPC with 
LAM/MPI+BLCR job-pause mechanism
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LAM/MPI+BLCR job pause performance

• 3.4% overhead over job restart, but
– No LAM reboot overhead
– Transparent continuation of execution
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• No requeue penalty
• Less staging overhead
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Reactive vs. Proactive Fault Tolerance

• Reactive fault tolerance
– Keeps parallel applications alive through recovery 

from experienced failures
– Employed mechanisms react to failures
– Examples: Checkpoint/restart, message 

logging/replay

• Proactive fault tolerance
– Keeps parallel applications alive by avoiding 

failures through preventative measures
– Employed mechanisms anticipate failures
– Example: Preemptive migration



11 Managed by UT-Battelle
for the Department of Energy

Proactive Fault Tolerance using 
Preemptive Migration

• Relies on a feedback-loop control mechanism
– Application health is constantly monitored and analyzed
– Application is reallocated to improve its health and avoid failures
– Closed-loop control similar to dynamic load balancing

• Real-time control problem
– Need to act in time to avoid imminent failures

• No 100% coverage
– Not all failures can be anticipated, such as random bit flips
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Type 1 Feedback-Loop Control 
Architecture

• Alert-driven coverage
– Basic failures

• No evaluation of application 
health history or context
– Prone to false positives
– Prone to false negatives
– Prone to miss real-time 

window
– Prone to decrease 

application heath through 
migration

– No correlation of health 
context or history
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Type 2 Feedback-Loop Control 
Architecture

• Trend-driven coverage
– Basic failures
– Less false 

positives/negatives

• No evaluation of application 
reliability
– Prone to miss real-time 

window
– Prone to decrease 

application heath through 
migration

– No correlation of health 
context or history
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Type 3 Feedback-Loop Control 
Architecture

• Reliability-driven coverage
– Basic and correlated failures
– Less false 

positives/negatives
– Able to maintain real-time 

window
– Does not decrease 

application heath through 
migration

– Correlation of short-term 
health context and history

• No correlation of long-term 
health context or history
– Unable to match system and 

application reliability 
patterns
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Type 4 Feedback-Loop Control 
Architecture

• Reliability-driven coverage of 
failures and anomalies
– Basic and correlated failures, 

anomaly detection
– Less prone to false positives
– Less prone to false negatives
– Able to maintain real-time 

window
– Does not decrease 

application heath through 
migration

– Correlation of short and 
long-term health context & 
history
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VM-level Preemptive Migration using Xen

• Type 1 system setup
– Xen VMM on entire system
– Host OS for management
– Guest OS for computation
– Spare nodes without Guest OS
– System monitoring in Host OS
– Decentralized scheduler/load 

balancer using Ganglia

• Deteriorating node health
– Ganglia threshold trigger
– Migrate guest OS to spare
– Utilize Xen’s migration facility
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VM-level Migration Performance Impact

• Single node migration
– 0.5-5% longer run time

• Double node migration
– 2-8%  longer run time

• Migration duration
– Stop & copy : 13-14s
– Live : 14-24s

• Application downtime
– Stop & copy > Live

16-node Linux cluster at NCSU with 
dual core, dual-processor AMD Opteron

and Gigabit Ethernet
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Process-Level Preemptive Migration w/ 
BLCR

• Type 1 system setup
– LAM/MPI with Berkeley Lab 

Checkpoint/Restart (BLCR)
– Per-node health monitoring

• Baseboard management 
controller (BMC)

• Intelligent platform 
management interface (IPMI)

– New decentralized scheduler/ 
load balancer in LAM

– New process migration 
facility in BLCR (stop&copy
and live)

• Deteriorating node health
– Simple threshold trigger
– Migrate process to spare
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Process-Level Migration Performance 
Impact

• Single node migration 
overhead
– Stop & copy : 0.09-6 %
– Live : 0.08-2.98%

• Single node migration 
duration
– Stop & copy : 1.0-1.9s
– Live : 2.6-6.5s

• Application downtime
– Stop & copy > Live

• Node eviction time
– Stop & copy < Live

16-node Linux cluster at NCSU with dual 
core, dual-processor AMD Opteron and 

Gigabit Ethernet
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Simulation of Fault Tolerance Policies

• Evaluation of fault tolerance policies
– Reactive only
– Proactive only
– Reactive/proactive combination

• Evaluation of fault tolerance 
parameters

– Checkpoint interval
– Prediction accuracy

• Event-based simulation framework 
using actual HPC system logs

• Customizable simulated environment
– Number of active and spare nodes
– Checkpoint and migration overheads
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Combination of proactive and reactive 
fault tolerance: Simulation example
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• Best: Prediction accuracy >60% and 
checkpoint interval 16-32 hours

• Better than only proactive or only reactive
• Results for higher prediction accuracies 

and very low checkpoint intervals are 
worse than only proactive or only reactive

Number of processes 125

Active nodes / Spare nodes 125 / 12

Checkpoint overhead 50 min/checkpoint

Migration overhead 1 min/migration

Simulation based on ASCI White system logs
(nodes 1 – 125 and 500-512)
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Research in Reliability Modeling

• Type 3 system setup
– Monitoring of application and 

system health
– Recording of application and 

system health monitoring 
data

– Reliability analysis on 
recorded data

– Application mean-time to 
interrupt (AMTTI) estimation

• Type 4 system setup
– Additional recording of 

application interrupts
– Reliability analysis on recent 

and historical data
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Ongoing Work

• Development of a unified framework for Type 1-4
– Unified interfaces between components
– Extendable RAS engine core interfacing with

• Monitoring data aggregation/filtering component
• Job and resource management service
• Process/VM migration mechanism
• Online/offline reliability modeling

• Research in scalable monitoring data 
aggregation/filtering
– In-flight monitoring data aggregation/filtering
– Scalable, fault tolerant overlay reduction networks
– Fully distributed monitoring data processing (e.g. heat eq.)

• Finding the right metrics
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