
Proactive Fault Tolerance Using
Preemptive Migration

Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory

2/19

Motivation

• Large-scale 1 PFlop/s systems have arrived:
− #1: LANL Roadrunner with 129,600 processor cores
− #2: ORNL Jaguar with 150,152 processor cores

• Other large-scale systems exist
− LLNL @ 212,992, ANL @ 163,840, TACC @ 62,976

• The trend is toward larger-scale systems

• Significant increase in component count and complexity

• Expected matching increase in failure frequency

• Checkpoint/restart is becoming less and less efficient

3/19

Reactive vs. Proactive Fault Tolerance

• Reactive fault tolerance
− Keeps parallel applications alive through recovery from

experienced failures
− Employed mechanisms react to failures
− Examples: Checkpoint/restart, message logging/replay

• Proactive fault tolerance
− Keeps parallel applications alive by avoiding failures through

preventative measures
− Employed mechanisms anticipate failures
− Example: Preemptive migration

4/19

Proactive Fault Tolerance using Preemptive
Migration

• Relies on a feedback-loop control mechanism
− Application health is constantly monitored and analyzed
− Application is reallocated to improve its health and avoid failures
− Closed-loop control similar to dynamic load balancing

• Real-time control problem
− Need to act in time to avoid imminent failures

• No 100% coverage
− Not all failures can be anticipated, such as random bit flips

5/19

Type 1 Feedback-Loop Control Architecture

• Alert-driven coverage
− Basic failures

• No evaluation of application
health history or context
− Prone to false positives
− Prone to false negatives
− Prone to miss real-time

window
− Prone to decrease application

heath through migration
− No correlation of health

context or history

6/19

Type 2 Feedback-Loop Control Architecture

• Trend-driven coverage
− Basic failures
− Less false positives/negatives

• No evaluation of application
reliability
− Prone to miss real-time

window
− Prone to decrease application

heath through migration
− No correlation of health

context or history

7/19

Type 3 Feedback-Loop Control Architecture

• Reliability-driven coverage
− Basic and correlated failures
− Less false positives/negatives
− Able to maintain real-time

window
− Does not decrease application

heath through migration
− Correlation of short-term

health context and history

• No correlation of long-term
health context or history
− Unable to match system and

application reliability patterns

8/19

Type 4 Feedback-Loop Control Architecture

• Reliability-driven coverage of
failures and anomalies
− Basic and correlated failures,

anomaly detection
− Less prone to false positives
− Less prone to false negatives
− Able to maintain real-time

window
− Does not decrease application

heath through migration
− Correlation of short and long-

term health context & history

9/19

VM-level Preemptive Migration using Xen

• Type 1 system setup
− Xen VMM on entire system
− Host OS for management
− Guest OS for computation
− Spare nodes without Guest

OS
− System monitoring in Host OS
− Decentralized scheduler/load

balancer using Ganglia

• Deteriorating node health
− Ganglia threshold trigger
− Migrate guest OS to spare
− Utilize Xen’s migration facility

10/19

VM-level Migration Performance Impact

• Single node migration
− 0.5-5% longer run time

• Double node migration
− 2-8% longer run time

• Migration duration
− Stop & copy : 13-14s
− Live : 14-24s

• Application downtime
− Stop & copy > Live

16-node Linux cluster at NCSU with dual core,
dual-processor AMD Opteron and Gigabit Ethernet

11/19

Process-Level Preemptive Migration w/ BLCR

• Type 1 system setup
− LAM/MPI with Berkeley Lab

Checkpoint/Restart (BLCR)
− Per-node health monitoring

• Baseboard management
controller (BMC)

• Intelligent platform
management interface (IPMI)

− New decentralized scheduler/
load balancer in LAM

− New process migration facility
in BLCR (stop© and live)

• Deteriorating node health
− Simple threshold trigger
− Migrate process to spare

12/19

Process-Level Migration Performance Impact

• Single node migration overhead
− Stop & copy : 0.09-6 %
− Live : 0.08-2.98%

• Single node migration duration
− Stop & copy : 1.0-1.9s
− Live : 2.6-6.5s

• Application downtime
− Stop & copy > Live

• Node eviction time
− Stop & copy < Live

16-node Linux cluster at NCSU with dual core,
dual-processor AMD Opteron and Gigabit Ethernet

13/19

Simulation of Fault Tolerance Policies

• Evaluation of fault tolerance policies
− Reactive only
− Proactive only
− Reactive/proactive combination

• Evaluation of fault tolerance parameters
− Checkpoint interval
− Prediction accuracy

• Event-based simulation framework using
actual HPC system logs

• Customizable simulated environment
− Number of active and spare nodes
− Checkpoint and migration overheads

14/19

Combining Proactive & Reactive Approaches

• Best: Prediction accuracy >60%
and checkpoint interval 16-32h

• Better than only proactive or only
reactive

• Results for higher accuracies
and very low intervals are worse
than only proactive or only
reactive

Number of processes 125

Active/Spare nodes 125/12

Checkpoint overhead 50min

Migration overhead 1 min

Simulation based on ASCI White system logs
(nodes 1-125 and 500-512)

15/19

Research in Reliability Modeling

• Type 3 system setup
− Monitoring of application and

system health
− Recording of application and

system health monitoring data
− Reliability analysis on

recorded data
− Application mean-time to

interrupt (AMTTI) estimation

• Type 4 system setup
− Additional recording of

application interrupts
− Reliability analysis on recent

and historical data

16/19

Challenges Ahead

• Health monitoring
− Identifying deteriorating applications and OS conditions
− Coverage of application failures: Bugs, resource exhaustion

• Reliability analysis
− Performability analysis to provide extended coverage

• Scalable data aggregation and processing
− Key to timeliness in the feedback control loop

• Need for standardized metrics and interfaces
− System MTTF/MTTR != Application MTTF/MTTR
− System availability != Application efficiency
− Monitoring and logging is system/vendor dependent

17/19

Ongoing Work

• Development of a unified framework for Type 1-4
− Unified interfaces between components
− Extendable RAS engine core interfacing with

• Monitoring data aggregation/filtering component
• Job and resource management service
• Process/VM migration mechanism
• Online/offline reliability modeling

− Current Reading MSc student at ORNL (Antonina Litvinova)

• Research in scalable monitoring data aggregation/filtering
− In-flight monitoring data aggregation/filtering
− Scalable, fault tolerant overlay reduction networks
− Fully distributed monitoring data processing (e.g. heat eq.)

• Finding the right metrics

18/19

Acknowledgements

• Investigators at Oak Ridge National Laboratory:
−Stephen L. Scott [Lead PI], Christian Engelmann, Geoffroy Vallée,

Thomas Naughton, Anand Tikotekar, George Ostrouchov
• Investigators at Louisiana Tech University:

−Chokchai (Box) Leangsuksun [Lead PI], Nichamon Naksinehaboon,
Raja Nassar, Mihaela Paun

• Investigators at North Carolina State University:
−Frank Mueller [Lead PI], Chao Wang, Arun Nagarajan, Jyothish

Varma
• Funding sources:

−U.S. Department of Energy, Office of Science, FASTOS Program

Questions?

	Proactive Fault Tolerance Using Preemptive Migration
	Motivation
	Reactive vs. Proactive Fault Tolerance
	Proactive Fault Tolerance using Preemptive Migration
	Type 1 Feedback-Loop Control Architecture
	Type 2 Feedback-Loop Control Architecture
	Type 3 Feedback-Loop Control Architecture
	Type 4 Feedback-Loop Control Architecture
	VM-level Preemptive Migration using Xen
	VM-level Migration Performance Impact
	Process-Level Preemptive Migration w/ BLCR
	Process-Level Migration Performance Impact
	Simulation of Fault Tolerance Policies
	Combining Proactive & Reactive Approaches
	Research in Reliability Modeling
	Challenges Ahead
	Ongoing Work
	Acknowledgements
	Questions?

