Proactive Fault Tolerance Using
Preemptive Migration

Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Motivation

e Large-scale 1 PFlop/s systems have arrived:
— #1. LANL Roadrunner with 129,600 processor cores
— #2: ORNL Jaguar with 150,152 processor cores

e Other large-scale systems exist
— LLNL @ 212,992, ANL @ 163,840, TACC @ 62,976

e The trend is toward larger-scale systems
e Significant increase in component count and complexity
e Expected matching increase in failure frequency

e Checkpoint/restart is becoming less and less efficient

2/19

Reactive vs. Proactive Fault Tolerance

e Reactive fault tolerance

— Keeps parallel applications alive through recovery from
experienced failures

— Employed mechanisms react to failures
— Examples: Checkpoint/restart, message logging/replay

e Proactive fault tolerance

— Keeps parallel applications alive by avoiding failures through
preventative measures

— Employed mechanisms anticipate failures
— Example: Preemptive migration

3/19

Proactive Fault Tolerance using Preemptive
Migration

e Relies on a feedback-loop control mechanism
— Application health is constantly monitored and analyzed
— Application is reallocated to improve its health and avoid failures
— Closed-loop control similar to dynamic load balancing

e Real-time control problem
— Need to act in time to avoid imminent failures

e No 100% coverage
— Not all failures can be anticipated, such as random bit flips

Resource Manager/ I Application
Runtime Environment] Allocation

Application
Reallocation

-

Application
Health

Monitor/Filter/Analysis |-«

4/19

Type 1 Feedback-Loop Control Architecture

e Alert-driven coverage
— Basic failures

e No evaluation of application
health history or context

— Prone to false positives
— Prone to false negatives

— Prone to miss real-time
window

— Prone to decrease application
heath through migration

— No correlation of health
context or history

7; Admlnlstrator

S ¢St

Resource Migrate Runtime Allocation
Manager > Environment .

A

iAppllcaﬂon Process g
Health 5
TR _‘Appﬂcaﬂon Proceas| 8

'

WIOTTitor

R
1

e o T 1L

i

5/19

Type 2 Feedback-Loop Control Architecture

e Trend-driven coverage
— Basic failures
— Less false positives/negatives

7.; Administrator

e No evaluation of application

reliability 2 3[§
— Prone to miss real-time sg ; g
window I - g e e T
— Prone to decrease application E
heath through migration Eviet e Sonsor i) Aplation roces
— No correlation of health ke Rhneir mmmg
A ~afl———— Monitor
context or history *oce LLEE pan LG0T b e ;
e e < o
; Y

6/19

Type 3 Feedback-Loop Control Architecture

e Reliability-driven coverage
— Basic and correlated failures
— Less false positives/negatives

— Able to maintain real-time
window

— Does not decrease application |§ |§

heath through migration

7; Administrator

Appiication
) Resource | Migrate | Runtime
— Correlation of short-term anager [Procees | Environment| -1 >

health context and history E

Sensor Monitor Application Process|
e No correlation of long-term pos Y s wh':,,”_"m,i
health context or history Cece Heass §

ey, Monitor AM-PWI

— Unable to match system and D oS

application reliability patterns

7/19

Type 4 Feedback-Loop Control Architecture

e Reliability-driven coverage of
failures and anomalies

— Basic and correlated failures,
anomaly detection

— Less prone to false positives
— Less prone to false negatives

— Able to maintain real-time
window

— Does not decrease application
heath through migration

— Correlation of short and long-
term health context & history

History < Admini strator

i il

Resource Runtime Alfocation
Manager m Environment L

|

8/19

VM-level Preemptive Migration using Xen

e Type 1 system setup
— Xen VMM on entire system
— Host OS for management
— Guest OS for computation

— Spare nodes without Guest
OS

— System monitoring in Host OS

— Decentralized scheduler/load
balancer using Ganglia

PFT
daemon /T
Ganglia)

Privileged VM

e Deteriorating node health
— Ganglia threshold trigger
— Migrate guest OS to spare
— Utilize Xen’s migration facility

9/19

VM-level Migration Performance Impact

e Single node migration
— 0.5-5% longer run time

e Double node migration
— 2-8% longer run time

e Migration duration
— Stop & copy : 13-14s
— Live . 14-24s
e Application downtime
— Stop & copy > Live

B Without Migration
B One Migration
O Two Migration

e

Seconds
—
a
[=]

100

16-node Linux cluster at NCSU with dual core,
dual-processor AMD Opteron and Gigabit Ethernet

10/19

Process-Level Preemptive Migration w/ BLCR

e Type 1 system setup

— LAM/MPI with Berkeley Lab
Checkpoint/Restart (BLCR)
— Per-node health monitoring

e Baseboard management
controller (BMC)

e Intelligent platform
management interface (IPMI)

— New decentralized scheduler/
load balancer in LAM

— New process migration facility
In BLCR (stop© and live)

e Deteriorating node health
— Simple threshold trigger
— Migrate process to spare

11/19

Process-Level Migration Performance Impact

e Single node migration overhead -
— Stop & copy : 0.09-6 % 400 B e Mgraton A
— Live : 0.08-2.98% 350 B
e Single node migration duration “:::
— Stop & copy : 1.0-1.9s e
— Live . 2.6-6.5s 150
e Application downtime W T e w
— Stop & cCopy > Live 16-node Linux cluster at NCSU with dual core,

dual-processor AMD Opteron and Gigabit Ethernet
Node eviction time
— Stop & copy < Live

12/19

Simulation of Fault Tolerance Policies

Evaluation of fault tolerance policies
— Reactive only
— Proactive only

— Reactive/proactive combination @ v

Evaluation of fault tolerance parameters
— Checkpoint interval

| App Schema
— Prediction accurac P .
y Node Schema S
. . . FT Policies / /'
Event-based simulation framework using q

actual HPC system logs Failure Logs

Events
Customizable simulated environment

— Number of active and spare nodes
— Checkpoint and migration overheads

Comp{etioh \

of
Applicatio

Select FT
P

Parameters
Global Schema

olicy
1

|

Application
Overhead
Results

Failure
Event

13/19

Combining Proactive & Reactive Approaches

e Best: Prediction accuracy >60%
and checkpoint interval 16-32h

e Better than only proactive or only

Execution overhead for various checkpoint

reactive intervals and different prediction accuracy
 Results for higher accuracies %
and very low intervals are worse 80 90-100
than only proactive or only Wl
reactive B § m60-70
L 50 5 | msoso
G g = 40-50
Number of processes | 125 (3 & | o340
20 ¥ | m20-30
Active/Spare nodes 125/12 10 m10-20
L0 m0-10

Checkpoint overhead 50min

-]
Migration overhead 1 min et acct sy Checlpoint Interval (h)

Simulation based on ASCI White system logs
(nodes 1-125 and 500-512)

14/19

Research in Reliability Modeling

e Type 3 system setup

— Monitoring of application and

system health

— Recording of application and
system health monitoring data

— Reliability analysis on
recorded data

— Application mean-time to
interrupt (AMTTI) estimation

e Type 4 system setup

— Additional recording of
application interrupts

— Reliability analysis on recent

and historical data

-~

-~

Extract RAS Information P Monitor/Report J
System Application l
Apply Reliability Models /‘ ' || RAS Repository J

AMTTI j
m L] L] L L] T L] T T L T L T 1
180} N\ -
100,000 hrs
160 . .
\\ AMTTI of Single Node

__140 .
£ 420 \ -

= [u

= 100

E gof \10.000hrs

< 60) A

40} \.\
\-
20 .1,000 hrs “'-——-___
oL —tme—i=e 2 1 S==3 P = N
* Gt Ab g o
) .&@,@@«@@ ﬁ*‘b G"'\re‘ﬂp

System Scale (Number of Nodes)

15/19

Challenges Ahead

e Health monitoring
— ldentifying deteriorating applications and OS conditions
— Coverage of application failures: Bugs, resource exhaustion

e Reliability analysis
— Performability analysis to provide extended coverage

e Scalable data aggregation and processing
— Key to timeliness in the feedback control loop

e Need for standardized metrics and interfaces
— System MTTF/MTTR !'= Application MTTF/MTTR
— System availability !'= Application efficiency
— Monitoring and logging is system/vendor dependent

16/19

Ongoing Work

e Development of a unified framework for Type 1-4
— Unified interfaces between components

— Extendable RAS engine core interfacing with
e Monitoring data aggregation/filtering component
e Job and resource management service
e Process/VM migration mechanism
e Online/offline reliability modeling

— Current Reading MSc student at ORNL (Antonina Litvinova)

e Research in scalable monitoring data aggregation/filtering
— In-flight monitoring data aggregation/filtering
— Scalable, fault tolerant overlay reduction networks
— Fully distributed monitoring data processing (e.g. heat eq.)

e Finding the right metrics

17/19

Acknowledgements

e Investigators at Oak Ridge National Laboratory:

—Stephen L. Scott [Lead PI], Christian Engelmann, Geoffroy Vallee,
Thomas Naughton, Anand Tikotekar, George Ostrouchov

Investigators at Louisiana Tech University:

—Chokchai (Box) Leangsuksun [Lead PI], Nichamon Naksinehaboon,
Raja Nassar, Mihaela Paun

Investigators at North Carolina State University:

—Frank Mueller [Lead PI], Chao Wang, Arun Nagarajan, Jyothish
Varma

Funding sources:
—U.S. Department of Energy, Office of Science, FASTOS Program

. DEFARTMENT OF ENE. RGY

'Office of OAK iLg &
(/ o), Fo T 3:TIne ol NC STATE UNIVERSITY [sl

18/19

Questions?

	Proactive Fault Tolerance Using Preemptive Migration
	Motivation
	Reactive vs. Proactive Fault Tolerance
	Proactive Fault Tolerance using Preemptive Migration
	Type 1 Feedback-Loop Control Architecture
	Type 2 Feedback-Loop Control Architecture
	Type 3 Feedback-Loop Control Architecture
	Type 4 Feedback-Loop Control Architecture
	VM-level Preemptive Migration using Xen
	VM-level Migration Performance Impact
	Process-Level Preemptive Migration w/ BLCR
	Process-Level Migration Performance Impact
	Simulation of Fault Tolerance Policies
	Combining Proactive & Reactive Approaches
	Research in Reliability Modeling
	Challenges Ahead
	Ongoing Work
	Acknowledgements
	Questions?

