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Motivation

e Large-scale 1 PFlop/s systems have arrived:
— #1. LANL Roadrunner with 129,600 processor cores
— #2: ORNL Jaguar with 150,152 processor cores

e Other large-scale systems exist
— LLNL @ 212,992, ANL @ 163,840, TACC @ 62,976

e The trend is toward larger-scale systems
e Significant increase in component count and complexity
e Expected matching increase in failure frequency

e Checkpoint/restart is becoming less and less efficient
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Reactive vs. Proactive Fault Tolerance

e Reactive fault tolerance

— Keeps parallel applications alive through recovery from
experienced failures

— Employed mechanisms react to failures
— Examples: Checkpoint/restart, message logging/replay

e Proactive fault tolerance

— Keeps parallel applications alive by avoiding failures through
preventative measures

— Employed mechanisms anticipate failures
— Example: Preemptive migration
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Proactive Fault Tolerance using Preemptive
Migration

e Relies on a feedback-loop control mechanism
— Application health is constantly monitored and analyzed
— Application is reallocated to improve its health and avoid failures
— Closed-loop control similar to dynamic load balancing

e Real-time control problem
— Need to act in time to avoid imminent failures

e No 100% coverage
— Not all failures can be anticipated, such as random bit flips

Resource Manager/ I Application
Runtime Environment ] Allocation

Application
Reallocation

-

Application
Health

Monitor/Filter/Analysis |-«

4/19



Type 1 Feedback-Loop Control Architecture

e Alert-driven coverage
— Basic failures

e No evaluation of application
health history or context

— Prone to false positives
— Prone to false negatives

— Prone to miss real-time
window

— Prone to decrease application
heath through migration

— No correlation of health
context or history
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Type 2 Feedback-Loop Control Architecture

e Trend-driven coverage
— Basic failures
— Less false positives/negatives

7.; Administrator

e No evaluation of application

reliability 2 3[§
— Prone to miss real-time sg ; g
window I - g e e T
— Prone to decrease application E
heath through migration Eviet e Sonsor i) Aplation roces
— No correlation of health ke Rhneir mmmg
A ~afl———— Monitor
context or history *oce LLEE  pan LG0T b e ;
e e < o
; Y

6/19



Type 3 Feedback-Loop Control Architecture

e Reliability-driven coverage
— Basic and correlated failures
— Less false positives/negatives

— Able to maintain real-time
window

— Does not decrease application |§ |§

heath through migration
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Type 4 Feedback-Loop Control Architecture

e Reliability-driven coverage of
failures and anomalies

— Basic and correlated failures,
anomaly detection

— Less prone to false positives
— Less prone to false negatives

— Able to maintain real-time
window

— Does not decrease application
heath through migration

— Correlation of short and long-
term health context & history
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VM-level Preemptive Migration using Xen

e Type 1 system setup
— Xen VMM on entire system
— Host OS for management
— Guest OS for computation

— Spare nodes without Guest
OS

— System monitoring in Host OS

— Decentralized scheduler/load
balancer using Ganglia

PFT
daemon /T
Ganglia )

Privileged VM

e Deteriorating node health
— Ganglia threshold trigger
— Migrate guest OS to spare
— Utilize Xen’s migration facility
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VM-level Migration Performance Impact

e Single node migration
— 0.5-5% longer run time

e Double node migration
— 2-8% longer run time

e Migration duration
— Stop & copy : 13-14s
— Live . 14-24s
e Application downtime
— Stop & copy > Live
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16-node Linux cluster at NCSU with dual core,
dual-processor AMD Opteron and Gigabit Ethernet
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Process-Level Preemptive Migration w/ BLCR

e Type 1 system setup

— LAM/MPI with Berkeley Lab
Checkpoint/Restart (BLCR)
— Per-node health monitoring

e Baseboard management
controller (BMC)

e Intelligent platform
management interface (IPMI)

— New decentralized scheduler/
load balancer in LAM

— New process migration facility
In BLCR (stop&copy and live)

e Deteriorating node health
— Simple threshold trigger
— Migrate process to spare
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Process-Level Migration Performance Impact

e Single node migration overhead -
— Stop & copy : 0.09-6 % 400 B e Mgraton A
— Live : 0.08-2.98% 350 B
e Single node migration duration “:::
— Stop & copy : 1.0-1.9s e
— Live . 2.6-6.5s 150
e Application downtime W T e w
— Stop & cCopy > Live 16-node Linux cluster at NCSU with dual core,

dual-processor AMD Opteron and Gigabit Ethernet
Node eviction time
— Stop & copy < Live

12/19



Simulation of Fault Tolerance Policies

Evaluation of fault tolerance policies
— Reactive only
— Proactive only

— Reactive/proactive combination @ v

Evaluation of fault tolerance parameters
— Checkpoint interval
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Combining Proactive & Reactive Approaches

e Best: Prediction accuracy >60%
and checkpoint interval 16-32h

e Better than only proactive or only
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Research in Reliability Modeling

e Type 3 system setup

— Monitoring of application and

system health

— Recording of application and
system health monitoring data

— Reliability analysis on
recorded data

— Application mean-time to
interrupt (AMTTI) estimation

e Type 4 system setup

— Additional recording of
application interrupts

— Reliability analysis on recent

and historical data
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Challenges Ahead

e Health monitoring
— ldentifying deteriorating applications and OS conditions
— Coverage of application failures: Bugs, resource exhaustion

e Reliability analysis
— Performability analysis to provide extended coverage

e Scalable data aggregation and processing
— Key to timeliness in the feedback control loop

e Need for standardized metrics and interfaces
— System MTTF/MTTR !'= Application MTTF/MTTR
— System availability !'= Application efficiency
— Monitoring and logging is system/vendor dependent
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Ongoing Work

e Development of a unified framework for Type 1-4
— Unified interfaces between components

— Extendable RAS engine core interfacing with
e Monitoring data aggregation/filtering component
e Job and resource management service
e Process/VM migration mechanism
e Online/offline reliability modeling

— Current Reading MSc student at ORNL (Antonina Litvinova)

e Research in scalable monitoring data aggregation/filtering
— In-flight monitoring data aggregation/filtering
— Scalable, fault tolerant overlay reduction networks
— Fully distributed monitoring data processing (e.g. heat eq.)

e Finding the right metrics
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Questions?
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