
JCAS - IAA Simulation Efforts at
Oak Ridge National Laboratory

Christian Engelmann, Oak Ridge National Laboratory

Outline
  A look back

  JCAS motivation in 2002
  Cellular algorithms theory
  Accomplishments and limitations

  IAA simulation efforts at ORNL
  Motivation and goals
  Technical approach
  Closely related work (Pose/Charm++ by S. Kale et al.)
  External contribution (μπ/μsik by KP@ORNL)
  Future work
  Discussion points for breakout groups

2/27

A Look Back
  JCAS was developed in 2002-2004
  It was motivated by the IBM Blue Gene/L effort

  The already expected increase in scale to +100,000 cores
  The anticipated growth in scale over time to +1,000,000

  How to scale algorithms efficiently (Amdahl’s law)?
  How to deal with fault tolerance at extreme scale?
  The ORNL/IBM CRADA in cellular algorithms research

was formed to explore and demonstrate:
  Naturally fault-tolerant algorithms
  Scale invariant algorithms

3/27

Cellular Algorithms Theory
  Processes have only limited knowledge mostly about

other processes in their neighborhood
  Application is composed of local algorithms
  Less inter-process dependencies, e.g, not everyone needs

to know when a process dies
  Peer-to-peer communication with overlapping

neighborhoods promotes scalability
  MIT Media Lab. Research: Paintable Computing.

Neighbors List

Program Data

Program

4/27

MIT Research: Paintable Computing
  In the future, embedded

computers with a radio
device will get as small as
a paint pigment

  Supercomputers can be
easily assembled by just
painting a wall of
embedded computers

  Applications are driven by
cellular algorithms

5/27

MIT Research: Pushpin Computing
  100 embedded nodes
  1.25m x 1.25m pushpin

board provides power
  Initial applications:

  Distributed audio stream
storage

  Fault-tolerant holistic data
(image) storage

  Ongoing research:
  Sensor networks

6/27

Java Cellular Architecture Simulator (JCAS)
  Developed at ORNL in Java
  Native C and Fortran application support using JNI
  Runs as standalone or distributed application
  Lightweight framework simulates up to 1,000,000 lightweight

virtual processes on 9 real processors
  Standard and experimental network interconnects:

  Multi-dimensional mesh/torus
  Nearest/Random neighbors

  Message driven simulation without notion of time
  Not in real-time, no time-accurate discrete event simulation

  Primitive fault-tolerant MPI support
  No collectives, no MPI 2

7/27

Technical Approach
  Distributed set of discrete

event simulators with node-
local message queues

  Simulation of virtual MPI
processes for parallel app.

  Virtual processes run on real
hardware with virtual MPI

  No virtual process time
  Fault injection capability
  Interactive graphical user

interface as front-end
  TCP/IP servers as back-ends

Application

Virtual MPI

VP VP VP VP VP VP VP VP

DES

TCP

P

DES

TCP

P

DES

TCP

P

DES

TCP

P

8/27

Cell Cell

Implementation
  Every cell has its own code, memory and neighbors list
  Server hosts cells and initiates the context switch
  Cells communicate asynchronously using messages

Queue Server Thread Receiver Thread

Cell

Sender

Deliver

Send

Send

TCI/IP Network

Receive

9/27

Each dot is a task
executing an algorithm
that communicates only
to neighbor tasks in an
asynchronous fashion

Graphical User Interface allows to:
• Configure:

• Network topology
• Number of tasks

• Retrieve:
• Task-specific information

• Delete:
• Individual tasks
• All tasks within an entire region
• A percentage of tasks within a region

• Add:
• Individual tasks
• A percentage of tasks within a region

Targeted Applications/Algorithms
  Local information exchange algorithms:

  Mesh-free chaotic relaxation (Laplace/Poisson)
  Finite difference/element methods
  Dynamic adaptive refinement at runtime
  Asynchronous multi-grid methods
  Peer-to-peer diskless checkpointing

  Global information exchange algorithms:
  Global peer-to-peer broadcasts of values
  Global maximum/optimum search

  Applications:
  Locally self-consistent multiple scattering (LSMS) method
  Molecular dynamics simulation for computational biology

12/27

Limitations
  Simulator scalability

  Simulation capability is limited to simple algorithms with
~1,000,000 virtual processors on ~10 real processors

  Larger-scale simulations and/or running more complex codes
requires to scale the simulator to 100-1,000 real processors

  MPI virtualization
  Only a very basic (but fault tolerant) MPI layer is provided to

parallel applications running on the simulator

  Virtual time
  There is no simulation of virtual system time, resource

accounting and network interconnect timing (latency)

13/27

Other Related Research Efforts
  IBM Research:

  IBM Power PC processor emulation as a Linux process
  Slow and resource hungry (full OS per emulated node)

  Caltech:
  MPI trace file analysis for performance prediction

  UIUC (BigSim):
  Message driven simulation of low level machine API running

the Charm++ programming model
  Adaptive MPI running on top of Charm++
  Post-mortem mode for performance prediction
  Scalability and general performance issues
  Fixed to Blue Gene/L architecture

14/27

IAA Simulation Efforts at ORNL
  Investigate scalability, performance and fault tolerance of

algorithms at extreme scale through simulation
  Extending the JCAS simulation capabilities

  Simulating more processes (~10,000,000)
  Running more complex and resource-hungry algorithms
  Support for unmodified MPI applications

  Evaluation of algorithms at extreme scale
  Notion of global virtual time and virtual process clocks
  Accounting for resource usage, such as processor and network
  Gathering of scalability, performance & fault tolerance metrics
  Parameter studies at scale

15/27

Technical Approach
  Parallel discrete event

simulation (PDES) atop MPI
  Simulation of virtual MPI

processes for parallel app.
  Virtual processes run on real

hardware with virtual MPI
  Consistent virtual process

clock from PDES
  Virtual process clock can be

scaled by PDES via model
  Virtual interconnect latency

is set by PDES via model

Application

Virtual MPI

VP VP VP VP VP VP VP VP

PDES

MPI

P P P P

16/27

Needed JCAS Modifications*
1.  Port JCAS to C/C++ to improve scalability/performance
2.  Replace TCP/IP with (native) MPI communication
3.  Replace Distributed set of DESs with PDES

1.  Conservative, optimistic and time-warp synchronization

4.  Extend virtual MPI capabilities
1.  Asynchronous, collectives, process control (spawn), …

5.  Extend fault injection and notification mechanisms
1.  Injection based on failure distributions and application state

6.  Add simulated machine model (for network)
7.  Gather scalability, performance & fault tolerance metrics

* easy (days/weeks), difficult (weeks), challenge (months)
17/27

Leveraging Existing Work
  Drastic changes in JCAS are required
  Before we start, let’s try not to reinvent the wheel
  Some research has already been done in this area
  Existing PDES cores, e.g.:

  Pose by Sanjay Kale et al. (UIUC)
  μsik by Kalyan Perumalla (ORNL)

  Existing MPI virtualization layers, e.g.:
  Adaptive MPI by Sanjay Kale et al. (UIUC)
  μπ by Kalyan Perumalla (ORNL)

  Our recent work focused on identifying existing
solutions for integration & enhancement to replace JCAS

18/27

Pose Simulator and Adaptive MPI
  Pose was developed by Terry Wilmarth (UIUC) for the

BigSim effort lead by Sanjay Kale (UIUC)
  PDES engine with conservative and optimistic synchroniza-

ion support (global virtual time)
  Runs atop Charm++ on many systems, e.g., BG/P, Cray XT

  Possible future work within ORNL’s IAA simulation effort
  Run MPI virtualization layer, e.g., Adaptive MPI, atop Prose
  Adaptive MPI runs atop Charm++ and has already full MPI

support and load balancing
  Pose and AMPI would need to overcome scaling challenges:

  A more lean implementation
  Time-warp synchronization

19/27

μπ (MUPI) Simulator Prototype
  Developed by Kalyan Perumalla (ORNL) outside of IAA
  μπ (micro parallel performance investigator)

  PDES for MPI applications (MPI virtualization)
  Support for basic MPI communication primitives
  MPI application is executed on the real hardware
  Execution and communication timing can be adjusted according

to simulated machine description

  Based on μsik (micro simulator kernel)
  Scalable PDES engine with conservative, optimistic and time-

warp synchronization support (global virtual time)
  TCP- or MPI-connected simulation kernels
  Support for many systems, e.g., BG/L and Cray XT

20/27

How to Run an MPI Application on μπ* 
  Change MPI include and recompile

  #include <mpi.h> to #include <mupi.h>

  Add linker flag and relink
  -lmupi

  Execte MPI application (now μπ simulation)
  mpirun –np 4 myprog -np 32

runs myprog on 32 virtual cores,
simulated by μπ on 4 real cores

 * From µπ documentation
21/27

Current μπ Capabilities* 
  Support for FORTRAN and C applications
  FORTRAN applications can be object-only or source-

code
  C applications need source-code for all object code that

calls MPI

* From µπ documentation
22/27

Current μπ Capabilities* (continued) 
  Compiles and runs on several platforms

  Desktops
  Clusters
  Supercomputers

  Tested on
  Linux
  Mac OS X
  Windows (Native, as well as Cygwin)
  Cray XT4/XT5, Blue Gene

* From µπ documentation
23/27

Current μπ Status and Future Work
  μπ is a first, very early prototype

  Basic MPI communication support only
  No simulated machine model yet
  However, a big step in the right direction

  Possible future work within IAA
  Extend MPI communication support in μπ (collectives)
  Add fault injection and notification mechanisms
  Add simulated machine model (for network)

  Possible future integration with Sandia effort
  Execute models in μπ instead of MPI applications
  Input for models come from cycle-accurate simulations

24/27

Summary and Future Work
  JCAS can simulate up to 1,000,000 virtual processors on

10 real processors, but is limited in scale and usability
  ORNL’s IAA simulation efforts targets a new type of

simulator based on a scalable PDES engine that can
  Simulate more processes (~10,000,000)
  Run more complex and resource-hungry algorithms
  Support unmodified MPI applications
  Keep track of global virtual time and virtual process time
  Accounts for resource usage, such as processor and network
  Gathers of scalability, performance & fault tolerance metrics
  Perform parameter studies at scale

  Future work focuses on improving μπ to meet IAA goals
25/27

Discussion Points for Breakout Groups
  HPC simulation is a big area with various goals and approaches

  Architectural properties (processor, memory, network) and application
properties (scaling and fault tolerance)

  Time slice and discrete event simulation
  Machine cycle and programming model granularity
  Single-processor, multi-processor and extreme-scale simulation

  How can these efforts interface with each other to
  Avoid reinventing the wheel all over again (reuse of code !!!)
  Reuse (benefit from) each other’s results, e.g., simulators feed their

output into each other (small-to-large scale & back, free & commercial)

  What are the true challenges for simulation efforts in the HPC
community (apart from funding)?
  Scalable simulation cores, standard models and interfaces, …?

26/27

IAA Simulation Efforts at
Oak Ridge National Laboratory

Christian Engelmann, Oak Ridge National Laboratory

Questions?

