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A Look Back 
  JCAS was developed in 2002-2004 
  It was motivated by the IBM Blue Gene/L effort 

  The already expected increase in scale to +100,000 cores 
  The anticipated growth in scale over time to +1,000,000  

  How to scale algorithms efficiently (Amdahl’s law)? 
  How to deal with fault tolerance at extreme scale? 
  The ORNL/IBM CRADA in cellular algorithms research 

was formed to explore and demonstrate: 
  Naturally fault-tolerant algorithms 
  Scale invariant algorithms 
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Cellular Algorithms Theory 
  Processes have only limited knowledge mostly about 

other processes in their neighborhood 
  Application is composed of local algorithms 
  Less inter-process dependencies, e.g, not everyone needs 

to know when a process dies 
  Peer-to-peer communication with overlapping 

neighborhoods promotes scalability 
  MIT Media Lab. Research: Paintable Computing. 
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MIT Research: Paintable Computing 
  In the future, embedded 

computers with a radio 
device will get as small as 
a paint pigment 

  Supercomputers can be 
easily assembled by just 
painting a wall of 
embedded computers 

  Applications are driven by 
cellular algorithms 
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MIT Research: Pushpin Computing 
  100 embedded nodes 
  1.25m x 1.25m pushpin 

board provides power 
  Initial applications: 

  Distributed audio stream 
storage 

  Fault-tolerant holistic data 
(image) storage 

  Ongoing research: 
  Sensor networks 
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Java Cellular Architecture Simulator (JCAS) 
  Developed at ORNL in Java 
  Native C and Fortran application support using JNI 
  Runs as standalone or distributed application 
  Lightweight framework simulates up to 1,000,000 lightweight 

virtual processes on 9 real processors 
  Standard and experimental network interconnects: 

  Multi-dimensional mesh/torus 
  Nearest/Random neighbors 

  Message driven simulation without notion of time 
  Not in real-time, no time-accurate discrete event simulation 

  Primitive fault-tolerant MPI support 
  No collectives, no MPI 2 
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Technical Approach 
  Distributed set of discrete 

event simulators with node-
local message queues 

  Simulation of virtual MPI 
processes for parallel app. 

  Virtual processes run on real 
hardware with virtual MPI 

  No virtual process time 
  Fault injection capability 
  Interactive graphical user 

interface as front-end 
  TCP/IP servers as back-ends 
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Cell Cell 

Implementation 
  Every cell has its own code, memory and neighbors list 
  Server hosts cells and initiates the context switch 
  Cells communicate asynchronously using messages 

Queue Server Thread Receiver Thread 
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Each dot is a task 
executing an algorithm 
that communicates only 
to neighbor tasks in an 
asynchronous fashion 



Graphical User Interface allows to: 
• Configure: 

• Network topology 
• Number of tasks 

• Retrieve: 
• Task-specific information 

• Delete: 
• Individual tasks 
• All tasks within an entire region 
• A percentage of tasks within a region 

• Add: 
• Individual tasks 
• A percentage of tasks within a region 



Targeted Applications/Algorithms 
  Local information exchange algorithms: 

  Mesh-free chaotic relaxation (Laplace/Poisson) 
  Finite difference/element methods 
  Dynamic adaptive refinement at runtime 
  Asynchronous multi-grid methods 
  Peer-to-peer diskless checkpointing 

  Global information exchange algorithms: 
  Global peer-to-peer broadcasts of values 
  Global maximum/optimum search 

  Applications: 
  Locally self-consistent multiple scattering (LSMS) method 
  Molecular dynamics simulation for computational biology 
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Limitations 
  Simulator scalability 

  Simulation capability is limited to simple algorithms with 
~1,000,000 virtual processors on ~10 real processors 

  Larger-scale simulations and/or running more complex codes 
requires to scale the simulator to 100-1,000 real processors 

  MPI virtualization 
  Only a very basic (but fault tolerant) MPI layer is provided to 

parallel applications running on the simulator 

  Virtual time 
  There is no simulation of virtual system time, resource 

accounting and network interconnect timing (latency) 
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Other Related Research Efforts 
  IBM Research: 

  IBM Power PC processor emulation as a Linux process 
  Slow and resource hungry (full OS per emulated node) 

  Caltech: 
  MPI trace file analysis for performance prediction 

  UIUC (BigSim): 
  Message driven simulation of low level machine API running 

the Charm++ programming model 
  Adaptive MPI running on top of Charm++ 
  Post-mortem mode for performance prediction 
  Scalability and general performance issues 
  Fixed to Blue Gene/L architecture 

14/27 



IAA Simulation Efforts at ORNL 
  Investigate scalability, performance and fault tolerance of 

algorithms at extreme scale through simulation 
  Extending the JCAS simulation capabilities 

  Simulating more processes (~10,000,000) 
  Running more complex and resource-hungry algorithms 
  Support for unmodified MPI applications 

  Evaluation of algorithms at extreme scale 
  Notion of global virtual time and virtual process clocks 
  Accounting for resource usage, such as processor and network 
  Gathering of scalability, performance & fault tolerance metrics 
  Parameter studies at scale 
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Technical Approach 
  Parallel discrete event 

simulation (PDES) atop MPI 
  Simulation of virtual MPI 

processes for parallel app. 
  Virtual processes run on real 

hardware with virtual MPI 
  Consistent virtual process 

clock from PDES 
  Virtual process clock can be 

scaled by PDES via model 
  Virtual interconnect latency 

is set by PDES via model 
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Needed JCAS Modifications* 
1.  Port JCAS to C/C++ to improve scalability/performance 
2.  Replace TCP/IP with (native) MPI communication 
3.  Replace Distributed set of DESs with PDES 

1.  Conservative, optimistic and time-warp synchronization 

4.  Extend virtual MPI capabilities 
1.  Asynchronous, collectives, process control (spawn), … 

5.  Extend fault injection and notification mechanisms 
1.  Injection based on failure distributions and application state  

6.  Add simulated machine model (for network) 
7.  Gather scalability, performance & fault tolerance metrics 

* easy (days/weeks), difficult (weeks), challenge (months) 
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Leveraging Existing Work 
  Drastic changes in JCAS are required 
  Before we start, let’s try not to reinvent the wheel 
  Some research has already been done in this area 
  Existing PDES cores, e.g.: 

  Pose by Sanjay Kale et al. (UIUC) 
  μsik by Kalyan Perumalla (ORNL)‏ 

  Existing MPI virtualization layers, e.g.: 
  Adaptive MPI by Sanjay Kale et al. (UIUC) 
  μπ by Kalyan Perumalla (ORNL)‏ 

  Our recent work focused on identifying existing 
solutions for integration & enhancement to replace JCAS 
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Pose Simulator and Adaptive MPI 
  Pose was developed by Terry Wilmarth (UIUC)‏ for the 

BigSim effort lead by Sanjay Kale (UIUC)  
  PDES engine with conservative and optimistic synchroniza- 

ion support (global virtual time) 
  Runs atop Charm++ on many systems, e.g., BG/P, Cray XT 

  Possible future work within ORNL’s IAA simulation effort 
  Run MPI virtualization layer, e.g., Adaptive MPI, atop Prose 
  Adaptive MPI runs atop Charm++ and has already full MPI 

support and load balancing 
  Pose and AMPI would need to overcome scaling challenges: 

  A more lean implementation 
  Time-warp synchronization 
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μπ (MUPI) Simulator Prototype 
  Developed by Kalyan Perumalla (ORNL)‏ outside of IAA 
  μπ (micro parallel performance investigator) 

  PDES for MPI applications (MPI virtualization) 
  Support for basic MPI communication primitives 
  MPI application is executed on the real hardware 
  Execution and communication timing can be adjusted according 

to simulated machine description 

  Based on μsik (micro simulator kernel)‏ 
  Scalable PDES engine with conservative, optimistic and time- 

warp synchronization support (global virtual time) 
  TCP- or MPI-connected simulation kernels 
  Support for many systems, e.g., BG/L and Cray XT 
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How to Run an MPI Application on μπ* 
  Change MPI include and recompile 

  #include <mpi.h>  to  #include <mupi.h> 

  Add linker flag and relink 
  -lmupi 

  Execte MPI application (now μπ simulation)‏ 
  mpirun –np 4 myprog -np 32 

runs myprog on 32 virtual cores, 
simulated by μπ on 4 real cores 

 * From µπ documentation 
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Current μπ Capabilities* 
  Support for FORTRAN and C applications 
  FORTRAN applications can be object-only or source-

code 
  C applications need source-code for all object code that 

calls MPI 

* From µπ documentation 
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Current μπ Capabilities* (continued) 
  Compiles and runs on several platforms 

  Desktops 
  Clusters 
  Supercomputers 

  Tested on 
  Linux 
  Mac OS X 
  Windows (Native, as well as Cygwin) 
  Cray XT4/XT5, Blue Gene 

* From µπ documentation 
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Current μπ Status and Future Work 
  μπ is a first, very early prototype 

  Basic MPI communication support only 
  No simulated machine model yet 
  However, a big step in the right direction 

  Possible future work within IAA 
  Extend MPI communication support in μπ (collectives) 
  Add fault injection and notification mechanisms 
  Add simulated machine model (for network) 

  Possible future integration with Sandia effort 
  Execute models in μπ instead of MPI applications 
  Input for models come from cycle-accurate simulations 
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Summary and Future Work 
  JCAS can simulate up to 1,000,000 virtual processors on 

10 real processors, but is limited in scale and usability 
  ORNL’s IAA simulation efforts targets a new type of 

simulator based on a scalable PDES engine that can 
  Simulate more processes (~10,000,000) 
  Run more complex and resource-hungry algorithms 
  Support unmodified MPI applications 
  Keep track of global virtual time and virtual process time 
  Accounts for resource usage, such as processor and network 
  Gathers of scalability, performance & fault tolerance metrics 
  Perform parameter studies at scale 

  Future work focuses on improving μπ to meet IAA goals 
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Discussion Points for Breakout Groups 
  HPC simulation is a big area with various goals and approaches 

  Architectural properties (processor, memory, network) and application 
properties (scaling and fault tolerance) 

  Time slice and discrete event simulation 
  Machine cycle and programming model granularity 
  Single-processor, multi-processor and extreme-scale simulation 

  How can these efforts interface with each other to 
  Avoid reinventing the wheel all over again (reuse of code !!!) 
  Reuse (benefit from) each other’s results, e.g., simulators feed their 

output into each other (small-to-large scale & back, free & commercial) 

  What are the true challenges for simulation efforts in the HPC 
community (apart from funding)?  
  Scalable simulation cores, standard models and interfaces, …? 
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