
JCAS - IAA Simulation Efforts at
Oak Ridge National Laboratory

Christian Engelmann, Oak Ridge National Laboratory

Outline
  A look back

  JCAS motivation in 2002
  Cellular algorithms theory
  Accomplishments and limitations

  IAA simulation efforts at ORNL
  Motivation and goals
  Technical approach
  Closely related work (Pose/Charm++ by S. Kale et al.)
  External contribution (μπ/μsik by KP@ORNL)
  Future work
  Discussion points for breakout groups

2/27

A Look Back
  JCAS was developed in 2002-2004
  It was motivated by the IBM Blue Gene/L effort

  The already expected increase in scale to +100,000 cores
  The anticipated growth in scale over time to +1,000,000

  How to scale algorithms efficiently (Amdahl’s law)?
  How to deal with fault tolerance at extreme scale?
  The ORNL/IBM CRADA in cellular algorithms research

was formed to explore and demonstrate:
  Naturally fault-tolerant algorithms
  Scale invariant algorithms

3/27

Cellular Algorithms Theory
  Processes have only limited knowledge mostly about

other processes in their neighborhood
  Application is composed of local algorithms
  Less inter-process dependencies, e.g, not everyone needs

to know when a process dies
  Peer-to-peer communication with overlapping

neighborhoods promotes scalability
  MIT Media Lab. Research: Paintable Computing.

Neighbors List

Program Data

Program

4/27

MIT Research: Paintable Computing
  In the future, embedded

computers with a radio
device will get as small as
a paint pigment

  Supercomputers can be
easily assembled by just
painting a wall of
embedded computers

  Applications are driven by
cellular algorithms

5/27

MIT Research: Pushpin Computing
  100 embedded nodes
  1.25m x 1.25m pushpin

board provides power
  Initial applications:

  Distributed audio stream
storage

  Fault-tolerant holistic data
(image) storage

  Ongoing research:
  Sensor networks

6/27

Java Cellular Architecture Simulator (JCAS)
  Developed at ORNL in Java
  Native C and Fortran application support using JNI
  Runs as standalone or distributed application
  Lightweight framework simulates up to 1,000,000 lightweight

virtual processes on 9 real processors
  Standard and experimental network interconnects:

  Multi-dimensional mesh/torus
  Nearest/Random neighbors

  Message driven simulation without notion of time
  Not in real-time, no time-accurate discrete event simulation

  Primitive fault-tolerant MPI support
  No collectives, no MPI 2

7/27

Technical Approach
  Distributed set of discrete

event simulators with node-
local message queues

  Simulation of virtual MPI
processes for parallel app.

  Virtual processes run on real
hardware with virtual MPI

  No virtual process time
  Fault injection capability
  Interactive graphical user

interface as front-end
  TCP/IP servers as back-ends

Application

Virtual MPI

VP VP VP VP VP VP VP VP

DES

TCP

P

DES

TCP

P

DES

TCP

P

DES

TCP

P

8/27

Cell Cell

Implementation
  Every cell has its own code, memory and neighbors list
  Server hosts cells and initiates the context switch
  Cells communicate asynchronously using messages

Queue Server Thread Receiver Thread

Cell

Sender

Deliver

Send

Send

TCI/IP Network

Receive

9/27

Each dot is a task
executing an algorithm
that communicates only
to neighbor tasks in an
asynchronous fashion

Graphical User Interface allows to:
• Configure:

• Network topology
• Number of tasks

• Retrieve:
• Task-specific information

• Delete:
• Individual tasks
• All tasks within an entire region
• A percentage of tasks within a region

• Add:
• Individual tasks
• A percentage of tasks within a region

Targeted Applications/Algorithms
  Local information exchange algorithms:

  Mesh-free chaotic relaxation (Laplace/Poisson)
  Finite difference/element methods
  Dynamic adaptive refinement at runtime
  Asynchronous multi-grid methods
  Peer-to-peer diskless checkpointing

  Global information exchange algorithms:
  Global peer-to-peer broadcasts of values
  Global maximum/optimum search

  Applications:
  Locally self-consistent multiple scattering (LSMS) method
  Molecular dynamics simulation for computational biology

12/27

Limitations
  Simulator scalability

  Simulation capability is limited to simple algorithms with
~1,000,000 virtual processors on ~10 real processors

  Larger-scale simulations and/or running more complex codes
requires to scale the simulator to 100-1,000 real processors

  MPI virtualization
  Only a very basic (but fault tolerant) MPI layer is provided to

parallel applications running on the simulator

  Virtual time
  There is no simulation of virtual system time, resource

accounting and network interconnect timing (latency)

13/27

Other Related Research Efforts
  IBM Research:

  IBM Power PC processor emulation as a Linux process
  Slow and resource hungry (full OS per emulated node)

  Caltech:
  MPI trace file analysis for performance prediction

  UIUC (BigSim):
  Message driven simulation of low level machine API running

the Charm++ programming model
  Adaptive MPI running on top of Charm++
  Post-mortem mode for performance prediction
  Scalability and general performance issues
  Fixed to Blue Gene/L architecture

14/27

IAA Simulation Efforts at ORNL
  Investigate scalability, performance and fault tolerance of

algorithms at extreme scale through simulation
  Extending the JCAS simulation capabilities

  Simulating more processes (~10,000,000)
  Running more complex and resource-hungry algorithms
  Support for unmodified MPI applications

  Evaluation of algorithms at extreme scale
  Notion of global virtual time and virtual process clocks
  Accounting for resource usage, such as processor and network
  Gathering of scalability, performance & fault tolerance metrics
  Parameter studies at scale

15/27

Technical Approach
  Parallel discrete event

simulation (PDES) atop MPI
  Simulation of virtual MPI

processes for parallel app.
  Virtual processes run on real

hardware with virtual MPI
  Consistent virtual process

clock from PDES
  Virtual process clock can be

scaled by PDES via model
  Virtual interconnect latency

is set by PDES via model

Application

Virtual MPI

VP VP VP VP VP VP VP VP

PDES

MPI

P P P P

16/27

Needed JCAS Modifications*
1.  Port JCAS to C/C++ to improve scalability/performance
2.  Replace TCP/IP with (native) MPI communication
3.  Replace Distributed set of DESs with PDES

1.  Conservative, optimistic and time-warp synchronization

4.  Extend virtual MPI capabilities
1.  Asynchronous, collectives, process control (spawn), …

5.  Extend fault injection and notification mechanisms
1.  Injection based on failure distributions and application state

6.  Add simulated machine model (for network)
7.  Gather scalability, performance & fault tolerance metrics

* easy (days/weeks), difficult (weeks), challenge (months)
17/27

Leveraging Existing Work
  Drastic changes in JCAS are required
  Before we start, let’s try not to reinvent the wheel
  Some research has already been done in this area
  Existing PDES cores, e.g.:

  Pose by Sanjay Kale et al. (UIUC)
  μsik by Kalyan Perumalla (ORNL)‏

  Existing MPI virtualization layers, e.g.:
  Adaptive MPI by Sanjay Kale et al. (UIUC)
  μπ by Kalyan Perumalla (ORNL)‏

  Our recent work focused on identifying existing
solutions for integration & enhancement to replace JCAS

18/27

Pose Simulator and Adaptive MPI
  Pose was developed by Terry Wilmarth (UIUC)‏ for the

BigSim effort lead by Sanjay Kale (UIUC)
  PDES engine with conservative and optimistic synchroniza-

ion support (global virtual time)
  Runs atop Charm++ on many systems, e.g., BG/P, Cray XT

  Possible future work within ORNL’s IAA simulation effort
  Run MPI virtualization layer, e.g., Adaptive MPI, atop Prose
  Adaptive MPI runs atop Charm++ and has already full MPI

support and load balancing
  Pose and AMPI would need to overcome scaling challenges:

  A more lean implementation
  Time-warp synchronization

19/27

μπ (MUPI) Simulator Prototype
  Developed by Kalyan Perumalla (ORNL)‏ outside of IAA
  μπ (micro parallel performance investigator)

  PDES for MPI applications (MPI virtualization)
  Support for basic MPI communication primitives
  MPI application is executed on the real hardware
  Execution and communication timing can be adjusted according

to simulated machine description

  Based on μsik (micro simulator kernel)‏
  Scalable PDES engine with conservative, optimistic and time-

warp synchronization support (global virtual time)
  TCP- or MPI-connected simulation kernels
  Support for many systems, e.g., BG/L and Cray XT

20/27

How to Run an MPI Application on μπ* 
  Change MPI include and recompile

  #include <mpi.h> to #include <mupi.h>

  Add linker flag and relink
  -lmupi

  Execte MPI application (now μπ simulation)‏
  mpirun –np 4 myprog -np 32

runs myprog on 32 virtual cores,
simulated by μπ on 4 real cores

 * From µπ documentation
21/27

Current μπ Capabilities* 
  Support for FORTRAN and C applications
  FORTRAN applications can be object-only or source-

code
  C applications need source-code for all object code that

calls MPI

* From µπ documentation
22/27

Current μπ Capabilities* (continued) 
  Compiles and runs on several platforms

  Desktops
  Clusters
  Supercomputers

  Tested on
  Linux
  Mac OS X
  Windows (Native, as well as Cygwin)
  Cray XT4/XT5, Blue Gene

* From µπ documentation
23/27

Current μπ Status and Future Work
  μπ is a first, very early prototype

  Basic MPI communication support only
  No simulated machine model yet
  However, a big step in the right direction

  Possible future work within IAA
  Extend MPI communication support in μπ (collectives)
  Add fault injection and notification mechanisms
  Add simulated machine model (for network)

  Possible future integration with Sandia effort
  Execute models in μπ instead of MPI applications
  Input for models come from cycle-accurate simulations

24/27

Summary and Future Work
  JCAS can simulate up to 1,000,000 virtual processors on

10 real processors, but is limited in scale and usability
  ORNL’s IAA simulation efforts targets a new type of

simulator based on a scalable PDES engine that can
  Simulate more processes (~10,000,000)
  Run more complex and resource-hungry algorithms
  Support unmodified MPI applications
  Keep track of global virtual time and virtual process time
  Accounts for resource usage, such as processor and network
  Gathers of scalability, performance & fault tolerance metrics
  Perform parameter studies at scale

  Future work focuses on improving μπ to meet IAA goals
25/27

Discussion Points for Breakout Groups
  HPC simulation is a big area with various goals and approaches

  Architectural properties (processor, memory, network) and application
properties (scaling and fault tolerance)

  Time slice and discrete event simulation
  Machine cycle and programming model granularity
  Single-processor, multi-processor and extreme-scale simulation

  How can these efforts interface with each other to
  Avoid reinventing the wheel all over again (reuse of code !!!)
  Reuse (benefit from) each other’s results, e.g., simulators feed their

output into each other (small-to-large scale & back, free & commercial)

  What are the true challenges for simulation efforts in the HPC
community (apart from funding)?
  Scalable simulation cores, standard models and interfaces, …?

26/27

IAA Simulation Efforts at
Oak Ridge National Laboratory

Christian Engelmann, Oak Ridge National Laboratory

Questions?

