OAK
RIDGE

National Laboratory

JCAS - [AA Simulation Efforts at
Oak Ridge National Laboratory

Christian Engelmann, Oak Ridge National Laboratory



Outline

» A look back
JCAS motivation in 2002

Cellular algorithms theory
Accomplishments and limitations

» IAA simulation efforts at ORNL

Motivation and goals

Technical approach

Closely related work (Pose/Charm++ by S. Kale et al.)
External contribution (urt/psik by KP@ORNL)

Future work

Discussion points for breakout groups

2127



A Look Back

» JCAS was developed in 2002-2004
» It was motivated by the IBM Blue Gene/L effort

The already expected increase in scale to +100,000 cores
The anticipated growth in scale over time to +1,000,000

» How to scale algorithms efficiently (Amdahl’s law)?

» How to deal with fault tolerance at extreme scale?
» The ORNL/IBM CRADA in cellular algorlthms research
was formed to explore and demonstrate:
Naturally fault-tolerant algorithms
Scale invariant algorithms

3/27



Cellular Algorithms Theory

Processes have only limited knowledge mostly about
other processes in their neighborhood

Application is composed of local algorithms

Less inter-process dependencies, e.g, not everyone needs
to know when a process dies

Peer-to-peer communication with overlapping
neighborhoods promotes scalability

MIT Media Lab. Research: Paintable Computing.

4/27

Program

Program Data

Neighbors List




MIT Research: Paintable Computing

» In the future, embedded
computers with a radio
device will get as small as

a paint pigment ot

» Supercomputers can be | [
easily assembled by just IIB!EH,
painting a wall of
embedded computers

» Applications are driven by
cellular algorithms e

S

5127

(o0

-----------



MIT Research: Pushpin Computing

» 100 embedded nodes

» 1.25m x 1.25m pushpin
board provides power

» Initial applications:

Distributed audio stream
storage

Fault-tolerant holistic data
(image) storage
» Ongoing research:

Sensor networks

6/27



Java Cellular Architecture Simulator (JCAS)

Developed at ORNL in Java
Native C and Fortran application support using JNI
Runs as standalone or distributed application

vV VvV Vv V9

Lightweight framework simulates up to 1,000,000 lightweight
virtual processes on 9 real processors

» Standard and experimental network interconnects:
Multi-dimensional mesh/torus
Nearest/Random neighbors
» Message driven simulation without notion of time
Not in real-time, no time-accurate discrete event simulation
» Primitive fault-tolerant MPI support
No collectives, no MPI 2

7127



Technical Approach

» Distributed set of discrete
event simulators with node-
local message queues

» Simulation of virtual MPI Virtual MPI
processes for parallel app.

» Virtual processes run on real REV=ERVERRVENRVENRVEREVEREVES RV
hardware with virtual MPI

» No virtual process time

Application

C - DES DES BIN DES
» Fault injection capability

» Interactive graphical user
interface as front-end TCP TCP TCP TCP

» TCP/IP servers as back-ends

8/27



Implementation

» Every cell has its own code, memory and neighbors list
» Server hosts cells and initiates the context switch

» Cells communicate asynchronously using messages




ORNL JCAS - Laplace's Equation

Each dot is a task

executing an algorithm
that communicates only

to neighbor tasks in an

asynchronous fashion




System

Laplace (Java) Help

Graphical User Interface allows to:
* Configure:

* Network topology

* Number of tasks
*Retrieve:

* Task-specific information

*Delete:

* Individual tasks

* All tasks within an entire region

* A percentage of tasks within a region
« Add:

* Individual tasks

S8

] ¥

* A percentage of tasks within a region
':'-l::. :...:'.-"-'t'_'f;,'-,-':- ‘ FORRME ] S

s, =




Targeted Applications/Algorithms

» Local information exchange algorithms:
Mesh-free chaotic relaxation (Laplace/Poisson)
Finite difference/element methods
Dynamic adaptive refinement at runtime
Asynchronous multi-grid methods
Peer-to-peer diskless checkpointing

» Global information exchange algorithms:
Global peer-to-peer broadcasts of values
Global maximum/optimum search

» Applications:

Locally self-consistent multiple scattering (LSMS) method
Molecular dynamics simulation for computational biology

12127



Limitations

» Simulator scalability

Simulation capability is limited to simple algorithms with
~1,000,000 virtual processors on ~10 real processors

Larger-scale simulations and/or running more complex codes
requires to scale the simulator to 100-1,000 real processors

» MPI virtualization

Only a very basic (but fault tolerant) MPI layer is provided to
parallel applications running on the simulator

» Virtual time

There is no simulation of virtual system time, resource
accounting and network interconnect timing (latency)

13/27



Other Related Research Efforts
» IBM Research:

IBM Power PC processor emulation as a Linux process
Slow and resource hungry (full OS per emulated node)
» Caltech:

MPI trace file analysis for performance prediction
» UIUC (BigSim):
Message driven simulation of low level machine API running
the Charm++ programming model
Adaptive MPI running on top of Charm++
Post-mortem mode for performance prediction
Scalability and general performance issues
Fixed to Blue Gene/L architecture

14/27



[AA Simulation Efforts at ORNL

» Investigate scalability, performance and fault tolerance of
algorithms at extreme scale through simulation

» Extending the JCAS simulation capabilities
Simulating more processes (~10,000,000)
Running more complex and resource-hungry algorithms
Support for unmodified MPI applications

» Evaluation of algorithms at extreme scale
Notion of global virtual time and virtual process clocks
Accounting for resource usage, such as processor and network

Gathering of scalability, performance & fault tolerance metrics
Parameter studies at scale

15/27



Technical Approach

» Parallel discrete event
simulation (PDES) atop MPI

» Simulation of virtual MPI
processes for parallel app.

» Virtual processes run on real
hardware with virtual MPI VP | VP VP VP VP VP VP VP
» Consistent virtual process

clock from PDES

» Virtual process clock can be
scaled by PDES via model

» Virtual interconnect latency
is set by PDES via model

Application

Virtual MPI

16/27



Needed JCAS Modifications*

I. Port JCAS to C/C++ to improve scalability/performance
2. Replace TCP/IP with (native) MPl communication
3. Replace Distributed set of DESs with PDES

Conservative, optimistic and time-warp synchronization

4. Extend virtual MPI capabilities

Asynchronous, collectives, process control (spawn), ...

5. Extend fault injection and notification mechanisms

Injection based on failure distributions and application state
6. Add simulated machine model (for network)

7. Gather scalability, performance & fault tolerance metrics

* easy (days/weeks), difficult (weeks), challenge (months)
17127



Leveraging Existing Work

» Drastic changes in JCAS are required
» Before we start, let’s try not to reinvent the wheel
» Some research has already been done in this area

» Existing PDES cores, e.g.:
Pose by Sanjay Kale et al. (UIUC)
usik by Kalyan Perumalla (ORNL)

» Existing MPI virtualization layers, e.g.:
Adaptive MPI by Sanjay Kale et al. (UIUC)
urt by Kalyan Perumalla (ORNL)

» Our recent work focused on identifying existing
solutions for integration & enhancement to replace JCAS

18/27



Pose Simulator and Adaptive MPI

» Pose was developed by Terry Wilmarth (UIUC) for the
BigSim effort lead by Sanjay Kale (UIUC)
PDES engine with conservative and optimistic synchroniza-
ion support (global virtual time)
Runs atop Charm++ on many systems, e.g., BG/P, Cray XT

» Possible future work within ORNLs IAA simulation effort

Run MPI virtualization layer, e.g., Adaptive MPI, atop Prose

Adaptive MPI runs atop Charm++ and has already full MPI
support and load balancing
Pose and AMPI would need to overcome scaling challenges:

A more lean implementation

Time-warp synchronization

19/27



unt (MUPI) Simulator Prototype
» Developed by Kalyan Perumalla (ORNL) outside of IAA

» urt (micro parallel performance investigator)
PDES for MPI applications (MPI virtualization)
Support for basic MPl communication primitives
MPI application is executed on the real hardware

Execution and communication timing can be adjusted according
to simulated machine description

» Based on psik (micro simulator kernel)

Scalable PDES engine with conservative, optimistic and time-
warp synchronization support (global virtual time)

TCP- or MPIl-connected simulation kernels
Support for many systems, e.g., BG/L and Cray XT

20/27



How to Run an MPI Application on um*

» Change MPI include and recompile
#include <mpi.h> to #include <mupi.h>

» Add linker flag and relink
-Imupi

» Execte MPI application (now U 1T simulation)
mpirun —np 4 myprog -np 32

runs myprog on 32 virtual cores,
simulated by 1 on 4 real cores

* From pum documentation

21127



Current um Capabilities*

Support for FORTRAN and C applications

FORTRAN applications can be object-only or source-
code

C applications need source-code for all object code that
calls MPI

Application
Ca e

* From pm documentation

22/27



Current urmt Capabilities* (continued)

» Compiles and runs on several platforms
Desktops
Clusters
Supercomputers

» Tested on

Linux

Mac OS X
Windows (Native, as well as Cygwin)

Cray XT4/XT5, Blue Gene

* From pm documentation
23/27



Current um Status and Future Work

» urtis a first, very early prototype
Basic MPl communication support only
No simulated machine model yet
However, a big step in the right direction

» Possible future work within IAA
Extend MPl communication support in umt (collectives)
Add fault injection and notification mechanisms

Add simulated machine model (for network)

» Possible future integration with Sandia effort
Execute models in prt instead of MPI applications

Input for models come from cycle-accurate simulations

24127



Summary and Future Work

» JCAS can simulate up to 1,000,000 virtual processors on
|0 real processors, but is limited in scale and usability

» ORNLs IAA simulation efforts targets a new type of
simulator based on a scalable PDES engine that can

Simulate more processes (~10,000,000)
Run more complex and resource-hungry algorithms
Support unmodified MPI applications
Keep track of global virtual time and virtual process time
Accounts for resource usage, such as processor and network
Gathers of scalability, performance & fault tolerance metrics
Perform parameter studies at scale

» Future work focuses on improving umn to meet IAA goals
25/27



Discussion Points for Breakout Groups

» HPC simulation is a big area with various goals and approaches

Architectural properties (processor, memory, network) and application
properties (scaling and fault tolerance)

Time slice and discrete event simulation
Machine cycle and programming model granularity

Single-processor, multi-processor and extreme-scale simulation

» How can these efforts interface with each other to
Avoid reinventing the wheel all over again (reuse of code !!!)

Reuse (benefit from) each other’s results, e.g., simulators feed their
output into each other (small-to-large scale & back, free & commercial)

» What are the true challenges for simulation efforts in the HPC
community (apart from funding)?

Scalable simulation cores, standard models and interfaces, ...?

26/27



OAK
RIDGE

National Laboratory

Questions?

[AA Simulation Efforts at
Oak Ridge National Laboratory

Christian Engelmann, Oak Ridge National Laboratory



