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A Look Back 
  JCAS was developed in 2002-2004 
  It was motivated by the IBM Blue Gene/L effort 

  The already expected increase in scale to +100,000 cores 
  The anticipated growth in scale over time to +1,000,000  

  How to scale algorithms efficiently (Amdahl’s law)? 
  How to deal with fault tolerance at extreme scale? 
  The ORNL/IBM CRADA in cellular algorithms research 

was formed to explore and demonstrate: 
  Naturally fault-tolerant algorithms 
  Scale invariant algorithms 
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Cellular Algorithms Theory 
  Processes have only limited knowledge mostly about 

other processes in their neighborhood 
  Application is composed of local algorithms 
  Less inter-process dependencies, e.g, not everyone needs 

to know when a process dies 
  Peer-to-peer communication with overlapping 

neighborhoods promotes scalability 
  MIT Media Lab. Research: Paintable Computing. 
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MIT Research: Paintable Computing 
  In the future, embedded 

computers with a radio 
device will get as small as 
a paint pigment 

  Supercomputers can be 
easily assembled by just 
painting a wall of 
embedded computers 

  Applications are driven by 
cellular algorithms 
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MIT Research: Pushpin Computing 
  100 embedded nodes 
  1.25m x 1.25m pushpin 

board provides power 
  Initial applications: 

  Distributed audio stream 
storage 

  Fault-tolerant holistic data 
(image) storage 

  Ongoing research: 
  Sensor networks 
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Java Cellular Architecture Simulator (JCAS) 
  Developed at ORNL in Java 
  Native C and Fortran application support using JNI 
  Runs as standalone or distributed application 
  Lightweight framework simulates up to 1,000,000 lightweight 

virtual processes on 9 real processors 
  Standard and experimental network interconnects: 

  Multi-dimensional mesh/torus 
  Nearest/Random neighbors 

  Message driven simulation without notion of time 
  Not in real-time, no time-accurate discrete event simulation 

  Primitive fault-tolerant MPI support 
  No collectives, no MPI 2 
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Technical Approach 
  Distributed set of discrete 

event simulators with node-
local message queues 

  Simulation of virtual MPI 
processes for parallel app. 

  Virtual processes run on real 
hardware with virtual MPI 

  No virtual process time 
  Fault injection capability 
  Interactive graphical user 

interface as front-end 
  TCP/IP servers as back-ends 
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Cell Cell 

Implementation 
  Every cell has its own code, memory and neighbors list 
  Server hosts cells and initiates the context switch 
  Cells communicate asynchronously using messages 
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Each dot is a task 
executing an algorithm 
that communicates only 
to neighbor tasks in an 
asynchronous fashion 



Graphical User Interface allows to: 
• Configure: 

• Network topology 
• Number of tasks 

• Retrieve: 
• Task-specific information 

• Delete: 
• Individual tasks 
• All tasks within an entire region 
• A percentage of tasks within a region 

• Add: 
• Individual tasks 
• A percentage of tasks within a region 



Targeted Applications/Algorithms 
  Local information exchange algorithms: 

  Mesh-free chaotic relaxation (Laplace/Poisson) 
  Finite difference/element methods 
  Dynamic adaptive refinement at runtime 
  Asynchronous multi-grid methods 
  Peer-to-peer diskless checkpointing 

  Global information exchange algorithms: 
  Global peer-to-peer broadcasts of values 
  Global maximum/optimum search 

  Applications: 
  Locally self-consistent multiple scattering (LSMS) method 
  Molecular dynamics simulation for computational biology 
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Limitations 
  Simulator scalability 

  Simulation capability is limited to simple algorithms with 
~1,000,000 virtual processors on ~10 real processors 

  Larger-scale simulations and/or running more complex codes 
requires to scale the simulator to 100-1,000 real processors 

  MPI virtualization 
  Only a very basic (but fault tolerant) MPI layer is provided to 

parallel applications running on the simulator 

  Virtual time 
  There is no simulation of virtual system time, resource 

accounting and network interconnect timing (latency) 
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Other Related Research Efforts 
  IBM Research: 

  IBM Power PC processor emulation as a Linux process 
  Slow and resource hungry (full OS per emulated node) 

  Caltech: 
  MPI trace file analysis for performance prediction 

  UIUC (BigSim): 
  Message driven simulation of low level machine API running 

the Charm++ programming model 
  Adaptive MPI running on top of Charm++ 
  Post-mortem mode for performance prediction 
  Scalability and general performance issues 
  Fixed to Blue Gene/L architecture 

14/27 



IAA Simulation Efforts at ORNL 
  Investigate scalability, performance and fault tolerance of 

algorithms at extreme scale through simulation 
  Extending the JCAS simulation capabilities 

  Simulating more processes (~10,000,000) 
  Running more complex and resource-hungry algorithms 
  Support for unmodified MPI applications 

  Evaluation of algorithms at extreme scale 
  Notion of global virtual time and virtual process clocks 
  Accounting for resource usage, such as processor and network 
  Gathering of scalability, performance & fault tolerance metrics 
  Parameter studies at scale 
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Technical Approach 
  Parallel discrete event 

simulation (PDES) atop MPI 
  Simulation of virtual MPI 

processes for parallel app. 
  Virtual processes run on real 

hardware with virtual MPI 
  Consistent virtual process 

clock from PDES 
  Virtual process clock can be 

scaled by PDES via model 
  Virtual interconnect latency 

is set by PDES via model 
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Needed JCAS Modifications* 
1.  Port JCAS to C/C++ to improve scalability/performance 
2.  Replace TCP/IP with (native) MPI communication 
3.  Replace Distributed set of DESs with PDES 

1.  Conservative, optimistic and time-warp synchronization 

4.  Extend virtual MPI capabilities 
1.  Asynchronous, collectives, process control (spawn), … 

5.  Extend fault injection and notification mechanisms 
1.  Injection based on failure distributions and application state  

6.  Add simulated machine model (for network) 
7.  Gather scalability, performance & fault tolerance metrics 

* easy (days/weeks), difficult (weeks), challenge (months) 
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Leveraging Existing Work 
  Drastic changes in JCAS are required 
  Before we start, let’s try not to reinvent the wheel 
  Some research has already been done in this area 
  Existing PDES cores, e.g.: 

  Pose by Sanjay Kale et al. (UIUC) 
  μsik by Kalyan Perumalla (ORNL) 

  Existing MPI virtualization layers, e.g.: 
  Adaptive MPI by Sanjay Kale et al. (UIUC) 
  μπ by Kalyan Perumalla (ORNL) 

  Our recent work focused on identifying existing 
solutions for integration & enhancement to replace JCAS 
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Pose Simulator and Adaptive MPI 
  Pose was developed by Terry Wilmarth (UIUC) for the 

BigSim effort lead by Sanjay Kale (UIUC)  
  PDES engine with conservative and optimistic synchroniza- 

ion support (global virtual time) 
  Runs atop Charm++ on many systems, e.g., BG/P, Cray XT 

  Possible future work within ORNL’s IAA simulation effort 
  Run MPI virtualization layer, e.g., Adaptive MPI, atop Prose 
  Adaptive MPI runs atop Charm++ and has already full MPI 

support and load balancing 
  Pose and AMPI would need to overcome scaling challenges: 

  A more lean implementation 
  Time-warp synchronization 
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μπ (MUPI) Simulator Prototype 
  Developed by Kalyan Perumalla (ORNL) outside of IAA 
  μπ (micro parallel performance investigator) 

  PDES for MPI applications (MPI virtualization) 
  Support for basic MPI communication primitives 
  MPI application is executed on the real hardware 
  Execution and communication timing can be adjusted according 

to simulated machine description 

  Based on μsik (micro simulator kernel) 
  Scalable PDES engine with conservative, optimistic and time- 

warp synchronization support (global virtual time) 
  TCP- or MPI-connected simulation kernels 
  Support for many systems, e.g., BG/L and Cray XT 
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How to Run an MPI Application on μπ* 
  Change MPI include and recompile 

  #include <mpi.h>  to  #include <mupi.h> 

  Add linker flag and relink 
  -lmupi 

  Execte MPI application (now μπ simulation) 
  mpirun –np 4 myprog -np 32 

runs myprog on 32 virtual cores, 
simulated by μπ on 4 real cores 

 * From µπ documentation 
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Current μπ Capabilities* 
  Support for FORTRAN and C applications 
  FORTRAN applications can be object-only or source-

code 
  C applications need source-code for all object code that 

calls MPI 

* From µπ documentation 
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Current μπ Capabilities* (continued) 
  Compiles and runs on several platforms 

  Desktops 
  Clusters 
  Supercomputers 

  Tested on 
  Linux 
  Mac OS X 
  Windows (Native, as well as Cygwin) 
  Cray XT4/XT5, Blue Gene 

* From µπ documentation 
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Current μπ Status and Future Work 
  μπ is a first, very early prototype 

  Basic MPI communication support only 
  No simulated machine model yet 
  However, a big step in the right direction 

  Possible future work within IAA 
  Extend MPI communication support in μπ (collectives) 
  Add fault injection and notification mechanisms 
  Add simulated machine model (for network) 

  Possible future integration with Sandia effort 
  Execute models in μπ instead of MPI applications 
  Input for models come from cycle-accurate simulations 
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Summary and Future Work 
  JCAS can simulate up to 1,000,000 virtual processors on 

10 real processors, but is limited in scale and usability 
  ORNL’s IAA simulation efforts targets a new type of 

simulator based on a scalable PDES engine that can 
  Simulate more processes (~10,000,000) 
  Run more complex and resource-hungry algorithms 
  Support unmodified MPI applications 
  Keep track of global virtual time and virtual process time 
  Accounts for resource usage, such as processor and network 
  Gathers of scalability, performance & fault tolerance metrics 
  Perform parameter studies at scale 

  Future work focuses on improving μπ to meet IAA goals 
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Discussion Points for Breakout Groups 
  HPC simulation is a big area with various goals and approaches 

  Architectural properties (processor, memory, network) and application 
properties (scaling and fault tolerance) 

  Time slice and discrete event simulation 
  Machine cycle and programming model granularity 
  Single-processor, multi-processor and extreme-scale simulation 

  How can these efforts interface with each other to 
  Avoid reinventing the wheel all over again (reuse of code !!!) 
  Reuse (benefit from) each other’s results, e.g., simulators feed their 

output into each other (small-to-large scale & back, free & commercial) 

  What are the true challenges for simulation efforts in the HPC 
community (apart from funding)?  
  Scalable simulation cores, standard models and interfaces, …? 
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