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Abstract. Diskless high-performance computing (HPC) systems utiliz-
ing networked storage have become popular in the last several years.
Removing disk drives significantly increases compute node reliability as
they are known to be a major source of failures. Furthermore, networked
storage solutions utilizing parallel I/O and replication are able to provide
increased scalability and availability. Reducing a compute node to proces-
sor(s), memory and network interface(s) greatly reduces its physical size,
which in turn allows for large-scale dense HPC solutions. However, one
major obstacle is the requirement by certain operating systems (OSs),
such as Linux, for a root file system. While one solution is to remove this
requirement from the OS, another is to share the root file system over
the networked storage. This paper evaluates three networked file system
solutions, NFSv4, Lustre and PVFS2, with respect to their performance,
scalability, and availability features for servicing a common root file sys-
tem in a diskless HPC configuration. Our findings indicate that Lustre is
a viable solution as it meets both, scaling and performance requirements.
However, certain availability issues regarding single points of failure and
control need to be considered.

1 Introduction

Scalability and availability are key issues that drastically affect system perfor-
mance and efficiency in large-scale high-performance computing (HPC) systems.
Many factors, such as shared networks, centralized servers, and compute node
design, can potentially limit system scalability and eventually affect system per-
formance. Other aspects, such as individual system component reliability as well
as single points of failure and control, can potentially limit system availability
and eventually affect system efficiency.

In view of recent HPC system architectures, a common design feature among
them is the adoption of diskless compute nodes to exploit high performance
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networked storage. Removing disk drives significantly increases compute node
reliability as they are known to be a major source of failures. Furthermore,
networked storage solutions utilizing parallel I/O and replication are able to
offer increased scalability and availability.

The diskless HPC system approach in essence extends traditional cluster
computing mechanisms to MPP systems by providing an illusion of a symmetric
multiprocessing (SMP) system without actually enforcing strong SMP semantics
at all parts of the operating system (OS). For example, the most prominent fea-
ture is a system-wide unified networked storage and file system with concurrent
and shared access.

However, diskless HPC systems have limitations. One major obstacle is the
requirement by certain OSs, such as Linux, for a common root file system. While
one solution is to remove this requirement from the OS and provide access to
a networked shared hierarchical storage and file system for applications only,
another is to share the root file system over the networked storage. This paper
focuses on the latter approach within diskless HPC systems. Three networked file
systems, Network File System version 4 (NFSv4) [1], Lustre [2, 3] and Parallel
Virtual Filesystem version 2 (PVFS2) [4], are evaluated for their performance,
scalability and availability when used for serving a common root file system.

This paper is organized as follows. First, we provide a background discussion
on networked file system technologies in HPC. Second, we detail the shared
root file system approach for diskless HPC systems. Third, we describe our
testbed hardware and software environment. Fourth, we present performance
and scalability test results for the three networked file system solutions. Fifth,
we discuss certain availability deficiencies regarding single points of failure and
control, and show how they can be addressed. Finally, this paper concludes with
a summary of the presented research.

2 Background and Motivation

The concept of a diskless system configuration utilizing a common root file sys-
tem in moderately scaled HPC systems has existed for a number of years [5].
Generally, diskless HPC systems improve system manageability by providing a
central facility for administration tasks, such as configuration and system backup
and restore. For instance, system upgrades and configuration rollbacks can be
easily achieved by maintaining multiple versions of the OS kernel and configura-
tion stored in a common location. Furthermore, software packages can be easily
deployed and removed by simply maintaining the shared root file system.

A diskless HPC system typically employs a read-only NFS-based root file
system. While this solution provides some benefits, it is severely limited by the
scalability of NFS servers [6]. Although the new NFSv4 [1] has shown the ability
to combine multiple file system operations into one request, it is still based on
a high-overhead protocol.

Besides NF'S, diskless HPC systems today also utilize high performance par-
allel storage and file system solutions, such as PVFS2, GPFS [7], TeraGrid [8, 9],



or Lustre, to provide a scalable I/O subsystem. These solutions provide tremen-
dous performance gains over NFS. Nonetheless, many diskless HPC distributions
continue to offer an NFS-based root file system within system partitions or across
the entire system. Parallel file systems are solely used for application data and
checkpointing.

High performance parallel file systems have not been used to provide root
file systems in the past due to perceived poor software stability and reliability.
For example, a fallacious perception is that these parallel file systems rely on a
complex stack of OS kernel modules and system utilities that is not part of a
Linux distribution. On the contrary, these parallel file systems are sufficiently
mature as to provide reliable and highly available storage without requiring
cumbersome OS kernel installations. As such, this makes their use for root file
systems feasible. Our work leverages high performance parallel file systems to
provide a common root file system in a diskless system configuration.

In the following, we provide a brief overview of two popular approaches for
implementing parallel file systems: object-based and block-based.

Object-based: In an object-based file system implementation, each file or
directory is treated as an object with some predefined attributes. Each attribute
can be assigned a value such as file type, file location, data stripes, ownership,
and permissions. An object storage device in turn allows users to specify where
to store the data blocks allocated to a file through a meta-data server (MDS) and
object storage targets (OSTs). A rich attribute set also allows users to specify
how many targets to stripe onto as well as the level of redundancy.

Panasas [10] and Lustre are two examples of object-based file system imple-
mentations. Panasas is a proprietary solution and has implemented the concept
of object-based file systems entirely in hardware. Using a lightweight client on
Linux, Panasas is able to provide highly scalable multi-protocol file servers, and
have implemented per-file level RAID. Lustre on the other hand is an open
source software solution. It runs on commodity hardware and uses MDSs for file
system metadata, i.e., inodes. Lustre’s design provides efficient division of labor
between computing and storage resources. Replicated, failover MDSs maintain
a transactional record of high-level file and file system changes. One or many
OSTs are responsible for actual file system I/O and for interfacing with physi-
cal storage devices. Consequently, Lustre achieves high I/O throughput through
enabling file operations to bypass the MDS completely and fully utilize the data
paths to all OSTs within a cluster. Additionally, Lustre supports strong file and
metadata locking semantics to maintain total coherency of the file systems even
under a high volume of concurrent accesses.

Block-based: In a block-based file system implementation, data blocks are
striped, in parallel, across multiple storage devices on multiple storage servers.
This is similar to network link aggregation in which the I/O is spread across
several network connections in parallel. Each packet traverses a different link
path. File systems using this approach place data blocks of files on more than
one server and more than one physical storage device. As the number of available
servers and storage devices increases, throughput can potentially increase as well



if sufficient network capacity is available to clients. When a client requests 1/0
operations, each sequential data block request can potentially go to (or come
from) an entirely different server or storage device. Consequently, there is a
linear increase in performance up to the total capacity of the network.

PVFS2 is an example of a block-based file system implementation. It uses
a lightweight server daemon process to provide simultaneous access to storage
devices from hundreds to thousands of clients. Each node in the cluster can
be a server, a client, or both. Since storage servers can also be clients, PVFS2
supports striping data across all available storage devices in a cluster.

In a nutshell, an object-based file system achieves scalability and performance
by striping data across dedicated storage devices, while a block-based file system
achieves the same benefit by aggregating data across available storage devices.

3 Architecture

The shared root file system approach for large-scale diskless HPC systems, such
as with 100,000 or more compute nodes, can only be achieved in a hierarchical
fashion to avoid exceeding the resources of meta data and storage servers. There
are generally three approaches: (1) partition-wide sharing across compute nodes,
(2) system-wide sharing across I/O service nodes, and (3) a combination of both
prior approaches. In all three, the same root file system is mounted over the
network by each node, while configuration specific directories, such as /etc, are
mounted over the network separately per node.

The first one does not offer a system-wide shared root file system. Instead,
it partitions the system into small enough parts, such that each partition has
its own shared root file system offered by a dedicated service node within the
partition. This approach requires a larger system management overhead as the
compute node root file system needs to be maintained within each partition.
However, today‘s HPC systems often employ I/O service nodes for providing
a hierarchical approach for application data and checkpointing storage. Each
partition has its own I/O node connected to a system-wide shared file system.
The functionality of I/O nodes may be extended to serve a partition-wide shared
root file system.

The second approach is similar to providing application data and checkpoint-
ing storage. The root file system for the compute notes is shared across the entire
system using I/O nodes within system partitions for I/O forwarding. The sys-
tem management overhead is minimized as the compute node root file system is
maintained system-wide. However, the I/0O forwarding is only alleviating certain
resource constraints, while the system-wide shared file system handles all read
and write requests to the root file system.

The third approach combines both prior ones by using the I/O nodes as a
write through cache. Since OS files are more read than written by compute nodes,
this solution may offer a scalable approach by significantly reducing the read
request load from a system-wide shared root file system. The system management



overhead is minimized as well, as the compute node root file system is maintained
system-wide.

This paper focuses on evaluating the performance, scalability and availability
of networked file systems serving a common root file system for (1) compute
nodes within a partition and (2) I/O nodes across the entire system. In both
cases, the number of client nodes for the common root file system is relatively
small compared to the overall compute node count.

4 Testbed

This section describes the hardware and software environment used in our per-
formance and scalability tests of shared root file system solutions. Since setup
and administration are a crucial part of system management and maintenance,
we are also considering documentation, configuration, and installation of each
tested file system. Particularly, we investigate the ease-of-use regarding installing
and upgrading as well as at monitoring runtime activity.

4.1 Hardware

The testbed system is a cluster of 30 nodes. Each node is equipped with a
2.6GHz Intel Xeon processor, 1 Gbyte RAM, and a 80 Gbytes Western Digital
IDE hard disk operating at 7200 RPM. The nodes are interconnected through a
100 Mbits/s Fast Ethernet switch.

4.2 Software

The system is configured with the Debian GNU/Linux version 3.1 OS distribu-
tion using the Linux kernel version 2.6.15.6. The kernel is configured with NFSv4
file system support. In addition to NFSv4, the Lustre 1.4.6.4 and PVFS2 ver-
sion 1.4.0 are installed. The NFSv4 file system uses a single storage server, but
is configured as a multi-threaded service. In contrast, the Lustre and PVFS2 file
systems are configured with 1 metadata server and 3 storage servers. All three
file systems are evaluated with up to 25 clients.

NFSv4 comes with the Linux OS and can be easily configured. Software
upgrades are fairly simple as NFSv4 is maintained via the OS distribution.

The installation of PVFS2 is straightforward. It requires compiling the pvfs-
kernel package against the currently running kernel source. The PVFS2 ar-
chitecture consists of clients, I/O servers, and a metadata server (MDS). The
PVFS2 users guide specifies the necessary installation and configuration steps
for each component. When upgrading the OS kernel, the pvfs-kernel package
needs to be recompiled.

Lustre utilizes a highly optimized and customized OS kernel as its entire
architecture resides in kernel-space. This can easily result in great challenges,
particularly with the required kernel patches. The availability of pre-patched
kernels is limited to systems with certain OS distributions (Red Hat Enterprise



Linux 4/5 or SUSE Linux Enterprise Server 9/10). The Lustre architecture con-
sists of clients, object storage target (OST) servers and a MDS. The OST servers
are configured in our system as one single Logical Object Volume (LOV). Lus-
tre is administered using only one command, lconf, which configures, starts
and stops each Lustre component using command line switches and a common
configuration file. However, some configuration details of Lustre components,
such as IP ports, cannot be changed despite offered configuration options. When
upgrading the OS kernel, the Lustre kernel patches need to be re-applied.

5 Evaluation

A series of tests were performed to determine the effect of using a NFSv4-,
PVFS2- or Lustre-based shared root file system. We used the Interleaved-Or-
Random (IOR) benchmark [11], which is a parallel program that performs con-
current writes and reads to/from a file using the POSIX and MPI-IO API, and
reports the achieved I/O bandwidth. The tests were performed using out-of-the-
box parameters, i.e., we did not tune each file system specifically to produce the
optimum performance. Our intent was to obtain baseline performance results for
each file system.

5.1 Performance

Figures 1-6 show the collected IOR performance results. For each test, we per-
formed the IOR read and write operations, decomposing a 128 Mbytes file to
the file system. Additionally, we varied the transfer block size from 8 Kbytes to
256 Kbytes. The reason for using a small transfer block size is to synthesize the
read/write of OS files, which often are small.

Using 8 Kbytes transfer block size, the aggregate write bandwidth for single
client (indicated as 1 PE in Figures) is approximately 90 Mbytes/s, 12 Mbytes/s,
and 51 MB/s for NFSv4, PVFS2, and Lustre, respectively. On the other hand,
the aggregate read bandwidth is 114 Mbytes/s, 14 Mbytes/s and 112 Mbytes/s
for NFSv4, PVFS2, and Lustre. Varying the transfer block size does not signifi-
cantly affect the overall read /write bandwidth for all file systems. It is interesting
to note that the Lustre read bandwidth for one node increases to 802 Mbytes/s
as the transfer block size reaches 128 Kbytes. This indicates that Lustre is able
to utilize the network more efficiently than NFSv4 and PVFS2 when the transfer
buffer is large.

Serving the test data to 25 clients over the Fast Ethernet with 8 Kbytes trans-
fer block attains a maximum write bandwidth of approximately 28 Mbytes/s, 34
Mbytes/s, and 30 Mbytes/s for NFSv4, PVFS2, and Lustre, respectively. The
overall attainable read bandwidth is 19 Mbytes/s, 4 Mbytes/s, and 246 Mbytes/s
for NFSv4, PVFS2, and Lustre, respectively.

Read operations are more crucial and frequent than write operations as OS
files are often write-protected. As such, the performance results show that Lustre
is suitable for serving a shared root file system especially when the number of
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nodes is large. NFSv4 is easier to set up than the other file systems, but it is
limited by performance.

5.2 Scalability

Each file system performs differently under various types of workloads. As the
number of clients reading or writing to a particular file system changes, the
performance of the file system can increase, remain the same, or decrease. In
this test, we evaluated how each networked file system would scale for various
numbers of clients. We used the IOR benchmark and changed the number of
clients (PEs) to perform scalability tests.

Figures 7 and 8 compare the scaling of the tested file systems. PVFS2 scaled
almost linearly for write operations as more nodes were added up to 25 nodes.
However, the performance of PVFS2 in general is not as good as Lustre or
NFSv4. Lustre performed slightly better than PVFS2 with bandwidth decreasing
from 53 Mbytes/s to 35 Mbytes/s as the number of clients increases. Although
NFSv4 was able to attain maximum bandwidth of 93 Mbytes/s for one client,
its performance deteriorates as the number of clients increases. In particular, the
NFSv4 bandwidth decreases to 28 Mbytes/s for nine nodes, but slightly improves
later on for 16 and 25 nodes reaching up to approximately 34 Mbytes/s for 25
nodes.

The read performance for NFSv4 on the other hand does not scale at all.
PVFS2 and Lustre read performance increases as the number of nodes increases
reaching 208 Mbytes/s and 249 Mbytes/s, respectively.

Three conclusions can be drawn from the performed scalability tests: First,
Lustre and PVFS2 scale reasonably well as the number of nodes increase. Second,
Lustre and PVFS2 do not perform well for small reads and writes as compared
to NFSv4. This is primary due to the fact that Lustre and PVFS2 are designed
for large data transfer. Third, NFSv4 write and read performance and scalability
is severely limited by its single server architecture design.

5.3 Availability

Overall HPC system availability has become more critical in the last few years
with the recent trend toward capability computing. Running scientific applica-
tions on the largest machines available for days, weeks, or even months at a time,
requires high-level reliability, availability, and serviceability (RAS). Capability
HPC machines are inherently large and complex interdependent systems. Due to
the parallel nature of scientific applications, individual compute nodes directly
depend on each other. Additionally, they also directly depend on service nodes
for system resource management, networked data storage, 1/0, etc..

Simple networked file systems, such as NFSv4, are a single point of failure
and control for the entire HPC system or partition they belong to as a service
outage severely disrupts system operation until repair. Parallel file system solu-
tions, such as PVFS and Lustre, typically consist of three major components:
clients, storage servers and a metadata server (MDS). While storage servers are
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able to provide high availability of stored data utilizing common data replication
techniques, such as striping across storage servers, the MDS is a single point of
failure and control for an entire parallel file system, and therefore for the entire
HPC system or partition it belongs to. In both cases, the vulnerable service
may be equipped with a replication technique utilizing multiple redundant ser-
vice nodes. A service-level replication mechanism is needed to assure consistent
replication.

The concept of using a shared storage device for saving service state is a
common technique for providing high availability, but it has its pitfalls. Service
state is saved on the shared storage device upon modification, while a standby
service node takes over in case of a failure of the active service node. The standby
monitors the health of the active service using a heartbeat mechanism and ini-
tiates the fail-over procedure. An extension of this technique uses a crosswise
active/standby redundancy strategy. In this case, both are active services and
additional standby services for each other. In both cases, the mean-time to re-
cover (MTTR) depends on the heartbeat interval, which may vary between a
few seconds and several minutes.

While the shared storage device is typically an expensive redundant array
of independent drives (RAID) and therefore highly available, it remains a single
point of failure and control. Furthermore, file system corruption on the shared
storage device due to failures occurring during write operations are not masked
unless a journaling file system is used and an incomplete backup state is dis-
carded, i.e., a commit protocol for saving backup state is used. Correctness and
quality of service are not guaranteed if no commit protocol is used. The require-
ment for a journaling file system impacts the fail-over procedure by adding a file
system check, which in-turn extends the MTTR.

The shared storage solution has become very popular with the heartbeat
program [12,13], which includes failure detection and automatic failover with
optional network address cloning feature. Recent enhancements include support
for file systems on a Distributed Replicated Block Device (DRBD) [14, 15], which
is essentially a storage mirroring solution that eliminates the single shared device
and replicates backup state to local storage of standby services. This measure is
primarily a cost reduction, since an expensive RAID system is no longer required.
However, the requirement for a journaling file system and commit protocol re-
main to guarantee correctness and quality of service, since the DRBD operates
at the block device level for storage devices and not at the file system level.

NFSv4, PVFS and Lustre do not have built-in high availability support.
However, high availability for the NFSv4 service and for the MDSs of PVFS
and Lustre can be provided by involving a secondary node and a shared storage
device in conjunction with the heartbeat program. In this case, the supported
high availability configurations are active/standby and crosswise active/standby.

A recent accomplishment [16,17] targeted the symmetric active/active repli-
cation model [18-20], which uses multiple redundant service nodes running in
virtual synchrony via a state-machine replication mechanism. In this model, ser-
vice node failures do not cause a fail-over to a backup and there is no disruption



of service or loss of service state. The size of the active service group is variable
at runtime, i.e., services may join, leave, or fail. Its membership is maintained
by a group communication system in a fault tolerant, adaptive fashion. As long
as one active service is alive, state is never lost, state changes can be performed,
and output is produced according to state changes.

The developed symmetric active/active solution for the MDS of PVFS per-
formed correctly and offered a remarkable performance with only 26ms latency
overhead for MDS writes and 300% of PVFS MDS baseline throughput for
MDS reads in a 4 service node system. While the incurred latency overhead
is caused by the total message ordering of the group communication system, the
throughput improvement is a result of a load balancing strategy for read requests
across the replicated MDS nodes. Assuming a mean-time to failure (MTTF) of
5,000 hours for a service node, the prototype improved service availability from
99.285% t0 99.995% in a two-node system, and to 99.99996% with three nodes.

6 Summary

In summary, multiple options are available for attaching storage to diskless HPC
systems or system partitions. For systems with very light I/O loads, a NFS-
based solution is probably sufficient. For heavier I/O loads, a parallel file system
is preferable. Additionally, parallel file systems can potentially offer the highest
performance and lowest overall cost for accesses to data storage. Considering
the cost/performance factor, community-supported solutions, such as PVFS2
and Lustre, are preferred options that can be used in a wide variety of storage
hardware.

Our work leverages parallel file systems for servicing a common root file
system in a diskless HPC configuration. In particular, we have shown that Lustre
is a viable solution for serving a root file system. However, we have also found
certain drawbacks of the tested file system solutions, especially in the area of
high availability.

The primary issue with NF'S is the single point of access to a storage server
resulting in a single point of failure and control. Additionally, NFS performance
is unable to grow to the volume of data that is necessary to support I/O inten-
sive applications on a large HPC system even with high performance network
technology. On the other hand, Lustre and PVFS2 remove the dependency on a
centralized monolithic solution. Furthermore, these parallel file systems are able
to meet the need of performance and scalability of modern HPC systems. Like
NFS, Lustre and PVFS2 lack of efficient out-of-the-box high availability sup-
port, i.e., efficient redundancy for metadata servers. However, we have shown
how recent advances in high availability technologies for HPC system services
are able to address this issue.

For future work, we would like to explore high-bandwidth/low-latency HPC
interconnects, such as InfiniBand, where sustained data rates of over 800 Mbytes/s
were reported. Additionally, the IETF NFSv4 working group has introduced
a parallel NFS (pNFS) [21] protocol extension derived from earlier work by



Panasas. It allows for object storage access to parallel data sources using out
of band metadata servers. pNFS has claimed to perform well under both light
and heavy loads. This potentially could provide a good solution to both, system
(single root file system) and application data files (scratch file system).

Additionally, we would like to explore other scalability factors such as boot-

ing. In particular, the system boot process is still dependent on a single server to
provide TETP services, which limits the number of nodes that can boot simul-
taneously. A possible solution is to replicate the TFTP service across multiple
servers.
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