
Symmetric Active/Active Replication for Dependent Services∗

C. Engelmann1,2, S. L. Scott1, C. Leangsuksun3, and X. He4

1Computer Science and Mathematics Division, Oak Ridge National Laboratory, USA
2Department of Computer Science, The University of Reading, UK
3Computer Science Department, Louisiana Tech University, USA

4Department of Electrical and Computer Engineering, Tennessee Technological University, USA
engelmannc@ornl.gov, scottsl@ornl.gov, box@latech.edu, hexb@tntech.edu

Abstract

During the last several years, we have established the
symmetric active/active replication model for service-
level high availability and implemented several proof-
of-concept prototypes. One major deficiency of our
model is its inability to deal with dependent services,
since its original architecture is based on the client-
service model. This paper extends our model to depen-
dent services using its already existing mechanisms and
features. The presented concept is based on the idea
that a service may also be a client of another service,
and multiple services may be clients of each other. A
high-level abstraction is used to illustrate dependencies
between clients and services, and to decompose depen-
dencies between services into respective client-service
dependencies. This abstraction may be used for provid-
ing high availability in distributed computing systems
with complex service-oriented architectures.

1. Introduction

During the last several years, our teams at Oak
Ridge National Laboratory, Louisiana Tech University,
and Tennessee Technological University have estab-
lished the symmetric active/active replication model for
service-level high availability and implemented several
proof-of-concept prototypes [9, 10, 11, 12, 13, 14, 15,
16, 28, 29, 30, 33]. The overall goal was to pro-
vide high availability for critical system services in

∗This research was sponsored by the Office of Advanced Scien-
tific Computing Research; U.S. Department of Energy. The work was
performed in part at Oak Ridge National Laboratory (ORNL), which
is managed by UT-Battelle, LLC under Contract No. DE-AC05-
00OR22725. The research performed at Tennessee Tech University
was partially supported by the U.S. National Science Foundation un-
der Grant Nos. CNS-0617528 and CNS-0720617.

closely-coupled extreme-scale high-performance com-
puting (HPC) systems [5, 19, 21, 20, 26], such as for the
metadata service of a parallel file system [29] or for the
parallel job management service [33]. Such services are
typically the “Achilles heel” of a HPC system as they
represent single points of failure and control, rendering
the entire system useless for the time of repair.

The symmetric active/active replication model [13]
allows to provide high availability for any type of client-
service scenario using the well known state-machine
replication concept [22, 32] using a group communi-
cation system [2, 6] for totally ordered and reliably
delivered messages in a virtual synchronous service
group [27]. Our past work has shown that implemen-
tations are correct, can be quite efficient, and have a
practical value in the field [29, 33].

With this paper, we address one important limita-
tion of our symmetric active/active replication model.
While client-service scenarios are quite common, the
parallel and distributed computing world is moving
toward more complex service-oriented architectures
(SOAs) [17]. Today, dependent services cannot only
be found in distributed computing scenarios, but also
within closely-coupled parallel HPC systems [8].

The Lustre cluster file system [3, 4], for example,
employs a metadata service (MDS) as well as object
storage services (OSSs). While file system drivers on
compute nodes communicate in a client-service fashion
with these services, MDS and OSSs communicate with
each other in a service-to-service fashion incompatible
with the current client-service architecture of our sym-
metric active/active replication model.

In fact, our previous proof-of-concept prototype for
the symmetric active/active parallel job management
solution, JOSHUA [33], showed exactly this deficiency,
as the job management service on the head node of a
HPC system and the parallel job start and process mon-



itoring service on the compute nodes depend on each
other to function correctly.

Up until now, our symmetric active/active replica-
tion model did not clearly address dependent services.
This paper extends the symmetric active/active replica-
tion model to dependent services using its already ex-
isting mechanisms and features. The presented concept
is based on the idea that a service may also be a client
of another service, and multiple services may be clients
of each other.

This paper is organized as follows. First, the ex-
isting transparent symmetric active/active replication
model for client-service scenarios is briefly explained
including its two different implementation methods, in-
ternal and external replication. Second, the transpar-
ent symmetric active/active replication model for client-
service scenarios is generalized and applied to scenarios
with dependent services. Third, implementation details
are given for scenarios with dependent services as well
as some initial test results. Fourth, related work is ex-
amined. Lastly, the presented work is briefly summa-
rized and future work is outlined.

2. Client-Service Scenarios

Our existing transparent symmetric active/active
replication model for client-service scenarios [16], is
based on the concept of state-machine replication [22,
32] by guaranteeing the same initial states and a lin-
ear history of state transitions for all service replicas,
i.e., virtual synchrony [27]. This requires total order
and reliable delivery of all incoming request messages,
typically provided by a process group communication
system [2, 6] that also assures correct group member-
ship. Output messages produced by service replicas is
unified either by simply ignoring duplicated messages
or by using the group communication system for a dis-
tributed mutual exclusion. Based on our observations in
the application area, we assume that services are deter-
ministic and fail by simply stopping.

In order to hide the complexity of the underlying
communication layer and consistency mechanisms, and
to improve portability, our transparent symmetric ac-
tive/active replication model separates the replication
infrastructure from client and service implementations.
This separation can be performed either internally by
modifying client and service implementation itself or
externally by wrapping them into a transparent virtually
synchronous environment [16].

Internal replication (Figure 1) utilizes adaptor mod-
ules within clients and services in order to allow for
better adaptation resulting in improved performance.
This model allows each active service to accept request

Virtual Communication Layer

Client Client

Service Service Service

Service-Side
Adapter

Service-Side
Adapter

Service-Side
Adapter

Client-Side
Adapter

Client-Side
Adapter

Service Node A Service Node B Service Node C

Group Communication

Peer-to-Peer Communication

Transparent Connection Fail-Over

Client Node A Client Node B

Figure 1. Semi-Transparent Internal Symmetric
Active/Active Replication Implementation for
Client/Service Scenarios

messages individually, while using the group commu-
nication system internally for all state changes. Client-
and service-side adapters form a virtual communication
layer (VCL), such that client-service connection fail-
overs and group communication services are transpar-
ently performed by the adapters.

Virtual Communication Layer

Service Service Service

Service-Side
Interceptor

Service-Side
Interceptor

Service-Side
Interceptor

Client-Side
Interceptor

Client-Side
Interceptor

Client Client

Service Node A Service Node B Service Node C

Group Communication

Peer-to-Peer Communication

Transparent Connection Fail-Over

Client Node A Client Node B

Figure 2. Transparent External Symmetric
Active/Active Replication Implementation for
Client/Service Scenarios

In contrast, external replication (Figure 2) utilizes
separate interceptor processes in order to allow for bet-
ter portability resulting in improved ease-of-use. In this
model, interceptor processes imitate client and service
behavior, such that clients operate as they communicate
to a local service and services act as they communicate
to a local client. The entire replication infrastructure is
hidden in the VCL by the interceptor processes, where
client-service connection fail-overs and group commu-
nication services are transparently performed.



The trade-off between both models is performance
vs. portability and ease of use. The utilization of in-
ternal adapters requires modification of existing code,
which may result in a rather extensive implementation
effort if source code is available at all. However, inter-
nal adapters allow direct adaptation for improved per-
formance, e.g., to the locking and communication char-
acteristics of the Parallel Virtual File System (PVFS)
metadata service (MDS) [29].

The introduction of external interceptor processes
in the communication path clearly degrades perfor-
mance, while it allows to provide replication for legacy
or complex services, such as the parallel job and re-
source management service TORQUE [33], without the
need to touch client or service implementations.

As previously mentioned, the existing transpar-
ent symmetric active/active replication model addresses
client-service scenarios only. In the following, it is ex-
tended to scenarios with dependent services.

3. Dependent Services

Two networked services depend on each other,
when one service is a client of the other service or when
both services are clients of each other. More than two
services may depend on each other through a composi-
tion of such service-to-service dependencies.

We previously introduced the example of the Lustre
cluster file system architecture [3, 4] with its metadata
service (MDS) and object storage services (OSSs). In
this scenario, MDS and OSSs are not only services for
the file system driver client on the compute nodes of a
HPC system, but also clients for each other. Assuming
n compute, 1 MDS and m OSS nodes, this architecture
consists of a n to 1 dependency for file system driver
and MDS, a n to m dependency for file system driver
and OSSs, a m to 1 dependency for OSSs and MDS,
and a 1 to m dependency for MDS and OSSs.

In order to deal with such dependencies between
services, we propose to extend the existing transpar-
ent symmetric active/active replication model by us-
ing its already existing mechanisms and features for
client-service systems. While each interdependency be-
tween two services is decomposed into two respective
orthogonal client-service dependencies, services utilize
client-side adapters/interceptors for communication to
services they depend on.

A high-level abstraction of the existing transpar-
ent symmetric active/active replication model is needed
to illustrate dependencies between clients and services,
and to decompose dependencies between services into
respective client-service dependencies. With the help
of the recently introduced virtual communication layer

Figure 3. Transparent Symmetric Active/Active
Replication for Client/Service Scenarios

(VCL) that hides the replication infrastructure as much
as possible [16], the model can be simplified into five
components: nodes, clients, services, VCLs, and con-
nections (Figure 3). This high-level abstraction is in-
dependent of the implementation method (internal or
external), while it clearly identifies clients, services,
replicas, client-service dependencies, and decomposed
service-to-service dependencies.

In this abstraction, a node represents some specific
state. Each node may host one service and multiple
clients, where clients on a node that hosts a service be-
long to that service. Each VCL belongs to one group
of replicated services and their clients. Any client or
service may belong to only one VCL.

The notion of node in this abstraction may not di-
rectly fit to real-world applications as a single physical
service node may host multiple services, like the head
node in a HPC system. This may be noted in the ab-
straction by using a node for each service that runs in-
dependently on a physical node. Services that do de-
pend on each other and run on the same physical node
are considered as a one service as they are replicated as
a single state machine.

Service-independent clients may be noted by using
a node for each client. Independent clients may not be
grouped together on a node in the abstraction, even if
they reside on the same physical node.

For the respective VCL they are connected to,
clients utilize their client-side adaptor/interceptor and
services utilize their service-side adaptor/interceptor.
However, client-side adapters/interceptors that belong
to a replicated service need to deal with the replicated
output produced by this service either directly using the
earlier mentioned distributed mutual exclusion, or indi-
rectly by ignoring duplicated messages in the service-



side adapters/interceptors. In both cases, the client-side
adapters/interceptors of a replicated service form a sin-
gle virtual client in the VCL layer, thus allowing client-
side adapters/interceptors of clients or of non-replicated
services to connect to the same VCL.

Based on this high-level abstraction, a variety of
distributed computing scenarios may be expressed to
demonstrate the application of the transparent symmet-
ric active/active replication model in more complex sce-
narios with dependent services.

Figure 4. Transparent Symmetric Active/Active
Replication for Client/Client+Service/Service
Scenarios

Figure 4 depicts a scenario with a group of clients
(client nodes 1-3) accessing a replicated service group
(service nodes 1A-C), which itself relies on another
replicated service group (service nodes 2X-Z). The ser-
vice nodes 1A-C provide a replicated service to client
nodes 1-3, while they are clients for service nodes 2X-
Z. Each of the two VCLs performs the necessary repli-
cation mechanisms for its replicated service.

We previously mentioned our earlier work on
providing symmetric active/active replication support
for the parallel job and resource management service
TORQUE [33]. While we provided symmetric ac-
tive/active replication support the TORQUE service
process running on HPC system head nodes that is used
for parallel job scheduling and system resource man-
agement, one of the major deficiencies of this solution
was the inability to survive a failure of the TORQUE
service process running on HPC system compute nodes
that is used for parallel job startup, control and moni-
toring. This issue was due to the fact that both services
depend on each other.

The scenario depicted in Figure 4 solves this issue
as services 1A-C represent the replicated TORQUE ser-
vice process running on HPC system head nodes and
services 2X-Z represent the replicated TORQUE ser-
vice process running on HPC system compute nodes.
Both TORQUE services can be fully and transparently
replicated by using serial VCLs to hide the replication
infrastructure from both services.

Figure 5. Transparent Symmetric Active/Active
Replication for Client/2 Services Scenarios

Figure 5 shows a group of clients (client nodes
1-3) communicating with two different replicated ser-
vice groups (service nodes 1A-B and 2Y-Z). The client
nodes 1-3 host two clients, each for a different VCL be-
longing to a different replicated service group.

Figure 6. Transparent Symmetric Active/Active
Replication for Service/Service Scenarios

Figure 6 illustrates a scenario with two interdepen-
dent replicated service groups. The service nodes 1A-
B provide a replicated service and are clients of 2Y-Z,
while the service nodes 2Y-Z provide a replicated ser-
vice and are clients of 1A-B.

The introduced high-level abstraction may be used
to guide the implementation of transparent symmet-
ric active/active replication solutions in real-world dis-
tributed computing systems with complex service-
oriented architectures (SOAs).



Figure 7. Transparent Symmetric Active/Active
Replication for the Lustre cluster file system

Going back to the Lustre cluster file system exam-
ple, Figure 7 illustrates the Lustre architecture using this
high-level abstraction. This example uses 3 file system
driver clients (client nodes 1-3), a replicated MDS ser-
vice group (MDS nodes W-X), and one replicated OSS
service group (OSS nodes Y-Z). This architecture is a
combination of a group of clients communicating with
two different replicated service groups (Figure 5) and
two interdependent replicated service groups (Figure 6).
Since Lustre supports many clients and several OSSs,
the depicted example may be extended with respective
components if needed.

4. Intitial Results

While this paper is mainly intended to present the
concept of transparent symmetric active/active replica-
tion in distributed computing scenarios with dependent
services, we also want to address several questions re-
garding performance of the presented concept.

As mentioned before, our past work has shown that
implementations are correct, can be quite efficient, and
have a practical value in the field [29, 33]. The always
questioned overhead introduced by the process group
communication system has been previously tested and
discussed [30], and can be classified between low and
negligible in small replicated service groups with 2-4
services. The overhead introduced by the external repli-
cation method using interceptor processes has been pre-
viously evaluated as well [16], and can be classified as
acceptable in application scenarios that are generally
not communication latency sensitive.

This paper introduces two new basic implementa-
tion configurations: (1) multiple serial VCLs, i.e., nodes
with a service and one or more clients (Figure 4), and
(2) multiple parallel VCLs, i.e., nodes with multiple
clients (Figure 5). Service-to-service scenarios (Fig-
ure 6) are a combination of both.

Multiple parallel VCLs may interfere with each
other if the process group communication traffic is
routed through the same network, i.e., via the same net-
work switch. Since this interference is highly applica-
tion dependent (bandwidth usage, collisions, network
quality of service), a generic performance evaluation
does not make much sense. Furthermore, a separation
of process group communication traffic for additional
performance may be implemented using a separate net-
work between replicated service nodes.

Multiple serial VCLs interfere with each other by
adding latency in a request/response scenario com-
monly used in distributed computing systems in the
form of remote procedure calls (RPCs).

Reiterating the Lustre cluster file system example,
the file system driver client on the compute nodes com-
municates with the MDS, which in turn communicates
with OSSs. This scenario can be observed when delet-
ing a file, where the MDS deletes the file record and
notifies the OSSs to delete the file object before return-
ing a response back to the file system driver client that
initiated the file deletion request.

Since Lustre is a high-performance cluster file sys-
tem and its MDS request/response latency a major per-
formance measure, we performed initial tests with a
generic client/service/service architecture to measure
the performance impact of using interceptor processes
in a serial VCL configuration.

We performed two test series using (1) a single ser-
vice and (2) two serial services, each with and without
interceptor processes, i.e., VCLs, between client and
service 1, and service 1 and service 2 (Figure 4). The
tests were performed in a 1Gbps TCP/IP LAN environ-
ment using the 64-bit Fedora Core 5 Linux distribution
on Intel Pentium D nodes with 2GB RAM. We con-
ducted round trip request/response latency and band-
width measurements with various payloads for both re-
quest and response messages.

Services 1 2
Interceptors 0 2 0 2 4

100B (ms/%) 0.10 0.19/189 0.20 0.27/133 0.37/180
1KB (ms/%) 0.16 0.24/152 0.32 0.38/121 0.47/148
10KB (ms/%) 0.35 0.45/128 0.70 0.78/110 0.88/125
100KB (ms/%) 2.21 2.40/107 3.86 4.25/110 4.72/122
1MB (ms/%) 17.2 24.0/140 34.4 40.8/119 47.7/139

Table 1. Request/Response Latency Compari-
son with Various Payloads and Scenarios

The request/response latency comparison (Table 1)
clearly shows the increasing performance impact of
adding interceptor processes into the communication
path. The penalty can be as high as 89% in the single



client-service scenario, and 80% in a serial VCL con-
figuration of 2 services. The highest impact can be ob-
served with small messages.

Services 1 2
Interceptors 0 2 0 2 4

100B (MBps/%) 0.99 0.52/53 0.49 0.37/75 0.27/56
1KB (MBps/%) 6.28 4.15/66 3.17 2.62/83 2.15/68
10KB (MBps/%) 28.3 22.0/78 14.2 12.8/90 11.4/80
100KB (MBps/%) 45.2 41.7/92 25.9 23.6/91 21.2/82
1MB (MBps/%) 58.0 41.7/72 29.0 24.5/85 21.0/72

Table 2. Request/Response Bandwidth Com-
parison with Various Payloads and Scenarios

The bandwidth comparison (Table 2) also clearly
shows the increasing impact of adding interceptor pro-
cesses into the communication path. The penalty can be
as high as 47% in the single client-service scenario, and
46% in a serial VCL configuration of 2 services. Simi-
lar to the latency impact, the highest bandwidth impact
is with small messages.

There are two factors that influence this perfor-
mance impact: (1) latency added by the interceptor pro-
cesses, and (2) local traffic (and respective congestion)
added by the interceptor processes. Both are due to the
fact that the interceptor processes cause network traffic
to go twice through the TCP/IP stack of the operating
system, once to send/receive to/from the network and
once to send/receive to/from its client or service.

Similar to our previous performance evaluation
of the overhead introduced by the external replication
method using interceptor processes [16], latency sensi-
tive scenarios should rather rely on internal replication
using adapters. In scenarios where portability or ease-
of-use are more important, external replication using in-
terceptor processes should be employed.

5. Related Work

A substantial amount of evaluation of related re-
search and development efforts can be found in our ear-
lier papers on symmetric active/active replication [9, 10,
11, 12, 13, 14, 15, 16, 28, 29, 30, 33].

Most notably, there is a plethora of past work on
process group communication algorithms and systems
focusing on semantics, correctness, efficiency, adapt-
ability, and programming models. A taxonomy and sur-
vey can be found in the following two papers [2, 6].

Our work on symmetric active/active replication
was primarily motivated by previous research and de-
velopment efforts in process group communication sys-
tems and its missing application to critical system ser-
vices in HPC environments. The virtual communication

layer utilizes an improved variant [30] of the Transis
group communication system [7].

Other related work is in process group communi-
cation toolkits, like Spread [1], which aim to provide
highly tuned application-level multicast, group commu-
nication, and point to point support for distributed appli-
cations. Some solutions, like Cactus [18], offer a frame-
work for supporting customizable dynamic fine-grain
Quality of Service (QoS) attributes related to depend-
ability, real time, and security in distributed systems.

Depending on the actual use-case requirements, all
of these solutions may be used internally by the virtual
communication layer (VCL) of our transparent sym-
metric active/active replication model. The VCL pro-
vides an abstraction for transparently replicating a de-
terministic service with fail-stop behavior by utilizing a
process group communication toolkit to perform state-
machine replication with virtual synchrony.

Our approach also relates to the Object Group Pat-
tern [24], which offers programming model support for
replicated objects using a group communication system
with virtual synchrony. In this design pattern, objects
are constructed as state machines and replicated using
totally ordered and reliably multicast state changes. The
Object Group Pattern also provides the necessary hooks
for copying object state, which is needed for joining
group members. In our work on transparent symmetric
active/active replication for already existing critical ser-
vices, the interface to copy service state is still a service-
proprietary implementation.

Orbix+Isis and Electra are follow-on research
projects [23] that focus on extending high availability
support to CORBA using object request brokers (ORBs)
on top of virtual synchrony toolkits.

Related work also includes recent research in low-
overhead solutions for practical Byzantine fault toler-
ance for networked services [25, 31], where the fail-
stop requirement is not assumed and incorrect, arbitrary
service behavior is detected.

6. Conclusion

With this paper, we have addressed one impor-
tant limitation of our existing transparent symmetric ac-
tive/active replication model for providing service-level
high availability. Its deficiency, the inability to deal with
dependent services, has been resolved by extending the
model using its already existing mechanisms and fea-
tures to allow services to be clients of other services,
and services to be clients of each other.

By using a high-level abstraction, dependencies
between clients and services, and decompositions of
service-to-service dependencies into respective orthog-



onal client-service dependencies can be mapped onto
an infrastructure consisting of multiple symmetric ac-
tive/active replication subsystems. Each subsystem
utilizes the recently introduced virtual communication
layer (VCL) to hide the replication infrastructure for a
specific service group as much as possible.

This presented concept is able to transparently pro-
vide high availability in distributed computing systems
with complex service-oriented architectures, such as for
the critical middleware and system service infrastruc-
ture within modern HPC systems [9, 8].

Planned work focuses on implementing the concept
with specific services in the field.

This paper already contains initial results from the
ongoing application of the presented concept to the Lus-
tre cluster file system in terms of design of the replica-
tion infrastructure and of its individual subsystems. It
has to be noted that Lustre is a very special case, as its
clients and services reside in the Linux kernel space,
while complex internal distributed locking as well as
partial recovery mechanisms are employed.

We also hope that the presented concept is picked
up by the service-oriented architecture (SOA) commu-
nity for providing service-level high availability with
strong consistency semantics in critical SOA infrastruc-
tures, such as for Web services.

References

[1] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and
J. Stanton. The Spread toolkit: Architecture and perfor-
mance. Technical Report CNDS-2004-1, Johns Hopkins
University, Center for Networking and Distributed Sys-
tems, Baltimore, MD, USA, 2004.

[2] G. V. Chockler, I. Keidar, and R. Vitenberg. Group
communication specifications: A comprehensive study.
ACM Computing Surveys (CSUR), 33(4):427–469,
2001. ACM Press, New York, NY, USA.

[3] Cluster File Systems, Inc., Boulder, CO, USA. Lustre
Cluster File System, 2007. http://www.lustre.org.

[4] Cluster File Systems, Inc., Boulder, CO, USA. Lus-
tre Cluster File System Architecture Whitepaper, 2007.
http://www.lustre.org/docs/whitepaper.pdf.

[5] Cray Inc., Seattle, WA, USA. Cray XT4 Computing
Platform Documentation, 2007. http://www.cray.com/
products/xt4.

[6] X. Défago, A. Schiper, and P. Urbán. Total order
broadcast and multicast algorithms: Taxonomy and sur-
vey. ACM Computing Surveys (CSUR), 36(4):372–421,
2004. ACM Press, New York, NY, USA.

[7] D. Dolev and D. Malki. The Transis approach to high
availability cluster communication. Communications of
the ACM, 39(4):64–70, 1996. ACM Press, New York,
NY, USA.

[8] C. Engelmann, H. H. Ong, and S. L. Scott. Middleware
in modern high performance computing system architec-
tures. In Lecture Notes in Computer Science: Proceed-
ings of the 7th International Conference on Computa-
tional Science (ICCS) 2007, Part II, volume 4488, pages
784–791, Beijing, China, May 27-30, 2007. Springer
Verlag, Berlin, Germany.

[9] C. Engelmann and S. L. Scott. Concepts for high avail-
ability in scientific high-end computing. In Proceed-
ings of the High Availability and Performance Workshop
(HAPCW) 2005, in conjunction with the Los Alamos
Computer Science Institute (LACSI) Symposium 2005,
Santa Fe, NM, USA, Oct. 11, 2005.

[10] C. Engelmann and S. L. Scott. High availability for
ultra-scale high-end scientific computing. In Proceed-
ings of the 2nd International Workshop on Operating
Systems, Programming Environments and Management
Tools for High-Performance Computing on Clusters
(COSET-2) 2005, in conjunction with the 19th ACM In-
ternational Conference on Supercomputing (ICS) 2005,
Cambridge, MA, USA, June 19, 2005.

[11] C. Engelmann, S. L. Scott, and G. A. Geist. High avail-
ability through distributed control. In Proceedings of the
High Availability and Performance Workshop (HAPCW)
2004, in conjunction with the Los Alamos Computer Sci-
ence Institute (LACSI) Symposium 2004, Santa Fe, NM,
USA, Oct. 12, 2004.

[12] C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He.
Active/active replication for highly available HPC sys-
tem services. In Proceedings of the 1st International
Conference on Availability, Reliability and Security
(ARES) 2006, pages 639–645, Vienna, Austria, Apr. 20-
22, 2006. IEEE Computer Society.

[13] C. Engelmann, S. L. Scott, C. Leangsuksun, and
X. He. Symmetric active/active high availability for
high-performance computing system services. Journal
of Computers (JCP), 1(8):43–54, 2006. Academy Pub-
lisher, Oulu, Finland.

[14] C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He.
Towards high availability for high-performance comput-
ing system services: Accomplishments and limitations.
In Proceedings of the High Availability and Performance
Workshop (HAPCW) 2006, in conjunction with the Los
Alamos Computer Science Institute (LACSI) Symposium
2006, Santa Fe, NM, USA, Oct. 17, 2006.

[15] C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He.
On programming models for service-level high avail-
ability. In Proceedings of the 2nd International Con-
ference on Availability, Reliability and Security (ARES)
2007, pages 999–1006, Vienna, Austria, Apr. 10-13,
2007. IEEE Computer Society.

[16] C. Engelmann, S. L. Scott, C. Leangsuksun, and
X. He. Transparent symmetric active/active replication
for service-level high availability. In Proceedings of the
7th IEEE International Symposium on Cluster Comput-
ing and the Grid (CCGrid) 2007, pages 755–760, Rio
de Janeiro, Brazil, May 14-17, 2007. IEEE Computer
Society.



[17] T. Erl. Service-Oriented Architecture: Concepts, Tech-
nology, and Design. Prentice Hall PTR, Upper Saddle
River, NJ, USA, Aug. 2005.

[18] M. A. Hiltunen and R. D. Schlichting. The Cactus ap-
proach to building configurable middleware services. In
Proceedings of International SRDS Workshop on De-
pendable System Middleware and Group Communica-
tion (DSMGC) 2000, Nuernberg, Germany, Oct. 16-18,
2000.

[19] IBM Corporation, Armonk, NY, USA. IBM Blue
Gene Computing Platform Documentation, 2007.
http://www-03.ibm.com/servers/deepcomputing/
bluegene.html.

[20] IBM Corporation, Armonk, NY, USA. MareNos-
trum eServer Computing Platform Documentation,
2007. http://www.ibm.com/servers/eserver/linux/power/
marenostrum.

[21] S. M. Kelly and R. Brightwell. Software architecture of
the light weight kernel, Catamount. In Proceedings of
47th Cray User Group (CUG) Conference 2005, Albu-
querque, NM, USA, May 16-19, 2005.

[22] L. Lamport. Using time instead of timeout for
fault-tolerant distributed systems. ACM Transactions
on Programming Languages and Systems (TOPLAS),
6(2):254–280, 1984. ACM Press, New York, NY, USA.

[23] S. Landis and S. Maffeis. Building reliable distributed
systems with CORBA. Theory and Practice of Object
Systems, 3(1):31–43, 1997. Wiley InterScience, John
Wiley & Sons, Inc., Hoboken, NJ, USA.

[24] S. Maffeis. The object group design pattern. In Pro-
ceedings of 2nd USENIX Conference on Object-Oriented
Technologies (COOTS) 1996, page 12, Toronto, ON,
Canada, June 17-21, 1996. USENIX Association,
Berkeley, CA, USA.

[25] M. G. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rou-
vellou, and P. Narasimhan. Thema: Byzantine-fault-
tolerant middleware for web-service applications. In
Proceedings of the 24th IEEE Symposium on Reliable
Distributed Systems (SRDS) 2005, pages 131–142, Or-
lando, FL, USA, Oct. 26-28, 2005. IEEE Computer So-
ciety.

[26] J. Moreira, M. Brutman, n. José Casta T. Engelsiepen,
M. Giampapa, T. Gooding, R. Haskin, T. Inglett,
D. Lieber, P. McCarthy, M. Mundy, J. Parker, and
B. Wallenfelt. Designing a highly-scalable operating
system: The Blue Gene/L story. In Proceedings of Inter-
national Conference on High Performance Computing,
Networking, Storage and Analysis (SC) 2006, page 118,
Tampa, FL, USA, Nov. 11-17, 2006. ACM Press, New
York, NY, USA.

[27] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A.
Agarwal. Extended virtual synchrony. In Proceedings of
the 14th IEEE International Conference on Distributed
Computing Systems (ICDCS) 1994, pages 56–65, Poz-
nan, Poland, June 21-24, 1994. IEEE Computer Society.

[28] D. I. Okunbor, C. Engelmann, and S. L. Scott. Explor-
ing process groups for reliability, availability and ser-
viceability of terascale computing systems. In Proceed-

ings of the 2nd International Conference on Computer
Science and Information Systems 2006, Athens, Greece,
June 19-21, 2006.

[29] L. Ou, C. Engelmann, X. He, X. Chen, and S. L.
Scott. Symmetric active/active metadata service for
highly available cluster storage systems. In Proceedings
of the 19th IASTED International Conference on Par-
allel and Distributed Computing and Systems (PDCS)
2007, Cambridge, MA, USA, Nov. 19-21, 2007. ACTA
Press, Calgary, AB, Canada.

[30] L. Ou, X. He, C. Engelmann, and S. L. Scott. A fast de-
livery protocol for total order broadcasting. In Proceed-
ings of the 16th IEEE International Conference on Com-
puter Communications and Networks (ICCCN) 2007,
Honolulu, HI, USA, Aug. 13-16, 2007. IEEE Computer
Society.

[31] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using
abstraction to improve fault tolerance. volume 35, pages
15–28, 2001. ACM Press, New York, NY, USA.

[32] F. B. Schneider. Implementing fault-tolerant services us-
ing the state machine approach: A tutorial. ACM Com-
puting Surveys (CSUR), 22(4):299–319, 1990. ACM
Press, New York, NY, USA.

[33] K. Uhlemann, C. Engelmann, and S. L. Scott. JOSHUA:
Symmetric active/active replication for highly available
HPC job and resource management. In Proceedings of
the 8th IEEE International Conference on Cluster Com-
puting (Cluster) 2006, Barcelona, Spain, Sept. 25-28,
2006. IEEE Computer Society.


