

OAK RIDGE NATIONAL LABORATORY LOUISIANA TEC

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

👼 The University of Reading

Transparent Symmetric Active/Active Replication for Service-Level High Availability

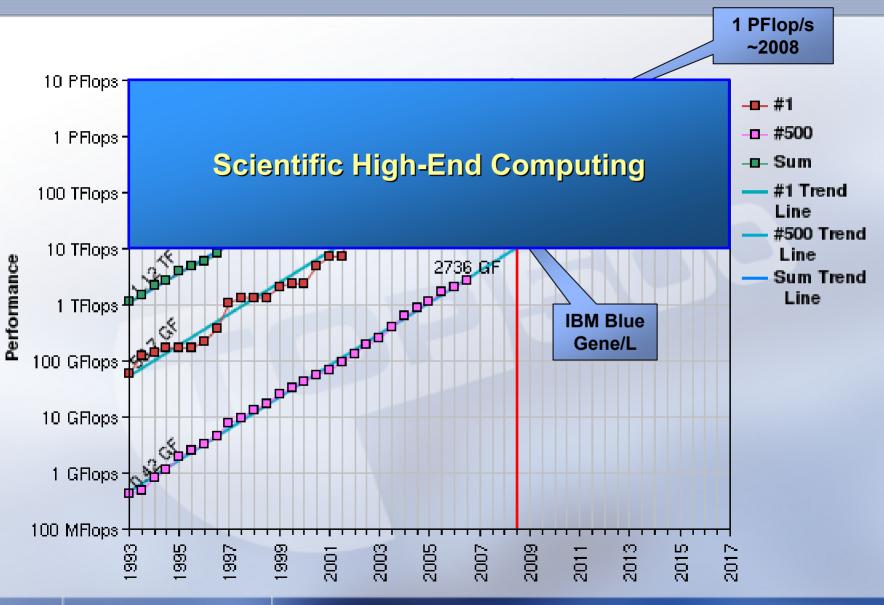
Christian Engelmann^{1,2}, Stephen L. Scott¹, Chokchai (Box) Leangsuksun³, Xubin (Ben) He⁴

¹Oak Ridge National Laboratory, Oak Ridge, USA

- ² The University of Reading, Reading, UK
- ³Louisiana Tech University, Ruston, USA
- ⁴Tennessee Tech University, Cookeville, USA

Talk Outline

- Scientific high-end computing (HEC)
- Availability deficiencies of today's HEC systems
- Projects and accomplishments overviews
- High availability (HA) models for services
- Developed prototypes overview
- Existing limitations and most pressing issues
- Enhancing the transparency of the HA infrastructure
- Generic HA framework infrastructure


Scientific High-End Computing (HEC)

Large-scale HPC systems.

- Tens-to-hundreds of thousands of processors.
- Current systems: IBM Blue Gene/L and Cray XT4
- Next-generation: petascale IBM Blue Gene and Cray XT
- Computationally and data intensive applications.
 - 10 TFLOP 1PFLOP with 10 TB 1 PB of data.
 - Climate change, nuclear astrophysics, fusion energy, materials sciences, biology, nanotechnology, ...
- Capability vs. capacity computing
 - Single jobs occupy large-scale high-performance computing systems for weeks and months at a time.

Projected Performance Development

12/11/2006

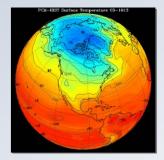
http://www.top500.org/

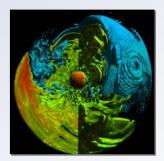
National Center for Computational Sciences

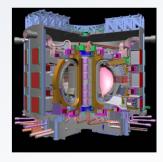
- 40,000 ft² (3700 m²) computer center:
 - 36-in (~1m) raised floor, 18 ft (5.5 m) deck-to-deck
 - 12 MW of power with 4,800 t of redundant cooling
 - High-ceiling area for visualization lab:
 - **35 MPixel PowerWall, Access Grid, etc.**

18 TFlop.

⇒

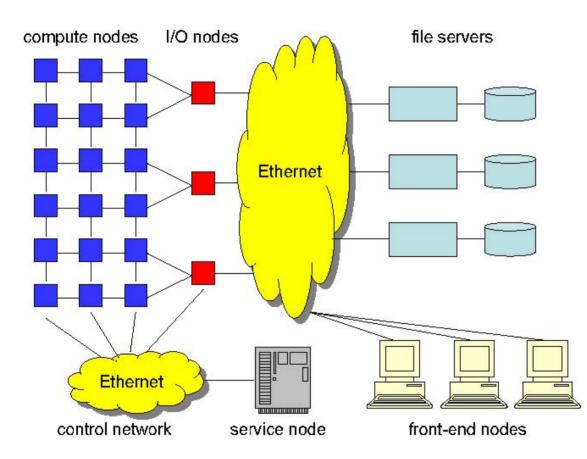

- 2 systems in the Top 500 List of Supercomputer Sites:
 - Jaguar: 10? Cray XT3, MPP with 11508 dual-core Processors ⇒ 119 TFlop.
 - Phoenix: 32? Cray X1E, Vector with 1014 Processors




At Forefront in Scientific Computing and Simulation

- Leading partnership in developing the National Leadership Computing Facility
 - Leadership-class scientific computing capability
 - □ 100 TFlop/s in 2007 (recently installed)
 - 250 TFlop/s in 2007/8 (commitment made)
 - 1 PFlop/s in 2008/9 (proposed)
- Attacking key computational challenges
 - Climate change
 - Nuclear astrophysics
 - Fusion energy
 - Materials sciences
 - Biology

 Providing access to computational resources through high-speed networking (10Gbps)


Availability Measured by the Nines

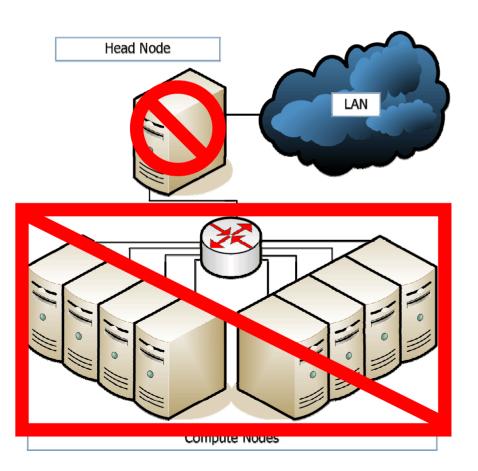
see <http://info.nccs.gov/resources> for current HPC system status at Oak Ridge National Laboratory

9's	Availability	Downtime/Year	Examples
1	90.0%	36 days, 12 hours	Personal Computers
2	99.0%	87 hours, 36 min	Entry Level Business
3	99.9%	8 hours, 45.6 min	ISPs, Mainstream Business
4	99.99%	52 min, 33.6 sec	Data Centers
5	99.999%	5 min, 15.4 sec Banking, Medical	
6	99.9999%	31.5 seconds	Military Defense

- Enterprise-class hardware + Stable Linux kernel = 5+
- Substandard hardware + Good high availability package = 2-3
- Today's supercomputers = 1-2
- My desktop = 1-2

Typical HEC System Architecture

Typical failure causes:


- Overheating !!!
- Memory errors
- Network errors
- Other hardware issues
- Software bugs

Different scale requires different solutions:

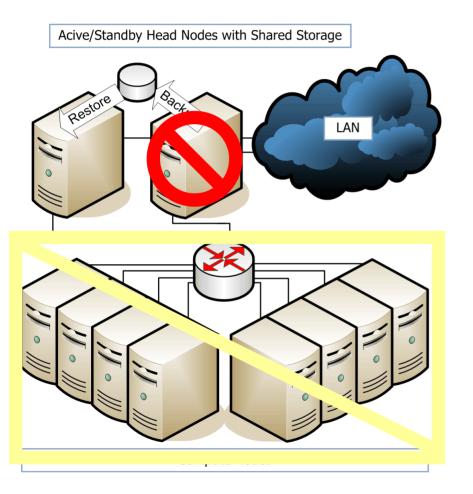
- Compute nodes (10,000+)
- Front-end, service, and I/O nodes (50+)

Image source: Moreira et al., "Designing a Highly-Scalable Operating System: The Blue Gene/L Story" Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Nov. 11-17, Tampa, FL, USA.

Single Head/Service Node Problem

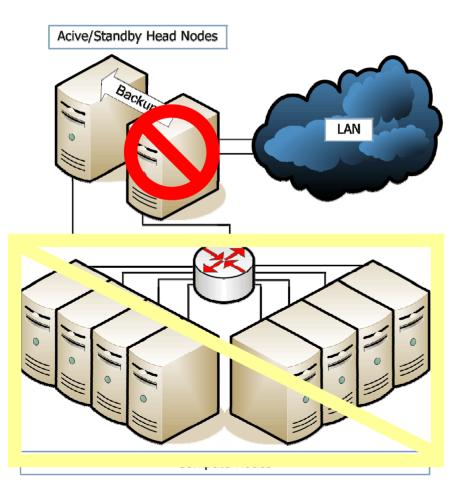
- Single point of failure.
- Compute nodes sit idle while head node is down.
- A = MTTF / (MTTF + MTTR)
- MTTF depends on head node hardware/software quality.
- MTTR depends on the time it takes to repair/replace node.
- > MTTR = 0 \rightarrow A = 1.00 (100%) continuous availability.

Projects Overview

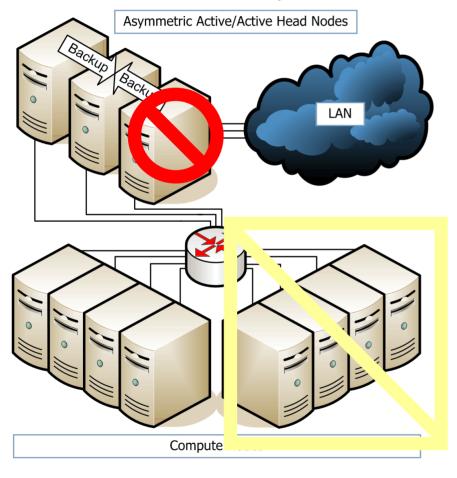

- Initial HA-OSCAR research in active/standby technology for the batch job management system
- Ongoing MOLAR research in active/standby, asymmetric and symmetric active/active technology
- Recent RAS LDRD research in symmetric active/active technology
- 3-4 years of research and development in high availability for high-performance computing system services

Accomplishments Overview

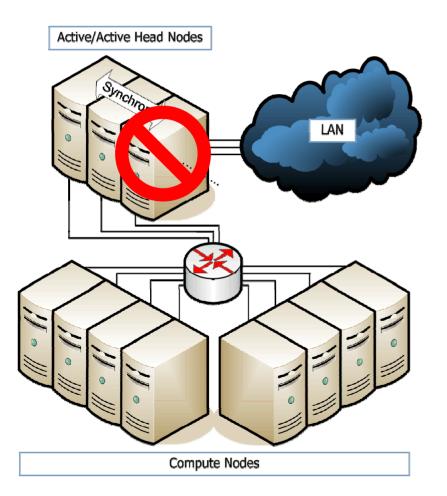
- Investigated the overall background of HA technologies in the context of HPC
 - Detailed problem description
 - Conceptual models
 - Review of existing solutions
- Developed different replication strategies for providing high availability for HPC system services
 - Active/standby
 - Asymmetric active/active
 - Symmetric active/active


Implemented several proof-of-concept prototypes

Active/Standby with Shared Storage


- Single active head node
- Backup to shared storage
- Simple checkpoint/restart
- Fail-over to standby node
- Possible corruption of backup state when failing during backup
- Introduction of a new single point of failure
- Correctness and availability are NOT ALWAYS guaranteed
- SLURM, meta data servers of PVFS and Lustre

Active/Standby Redundancy


- Single active head node
- Backup to standby node
- Simple checkpoint/restart
- Fail-over to standby node
- Idle standby head node
- Rollback to backup
- Service interruption for failover and restore-over
- Torque on Cray XT
- HA-OSCAR prototype

Asymmetric Active/Active Redundancy

- Many active head nodes
- Work load distribution
- Optional fail-over to standby head node(s) (n+1 or n+m)
- No coordination between active head nodes
- Service interruption for fail-over and restore-over
- Loss of state w/o standby
- Limited use cases, such as high-throughput computing
- Prototype based on HA-OSCAR

Symmetric Active/Active Redundancy

- Many active head nodes
- Work load distribution
- Symmetric replication between head nodes
- Continuous service
- Always up-to-date
- No fail-over necessary
- No restore-over necessary
- Virtual synchrony model
- Complex algorithms
- JOSHUA prototype for Torque

Developed Prototypes Overview (1/2)

- Active/Standby HA-OSCAR
 - High availability for Open PBS/TORQUE
 - Integration with compute node checkpoint/restart
- Asymmetric active/active HA-OSCAR
 - High availability for Open PBS & SGE
 - High throughput computing solution
- Symmetric active/active JOSHUA
 - High availability for PBS TORQUE
 - Fully transparent replication

Existing Limitations/Most Pressing Issues

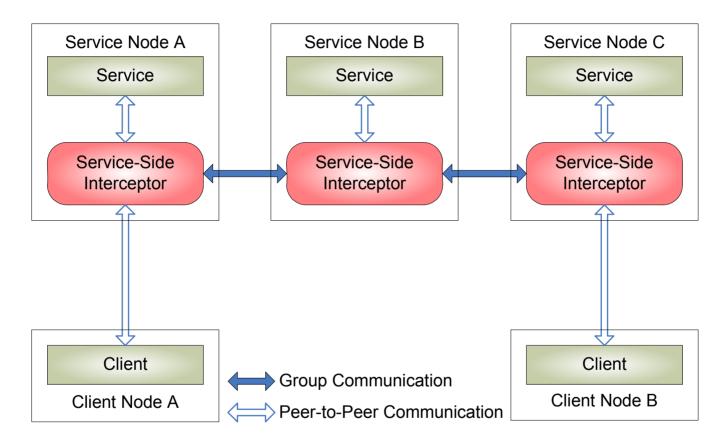
- For production-type deployment
 - Stability guaranteed quality of service
 - Performance low replication overhead
 - Interaction with compute node fault tolerance mechanisms
 e.g. procedure for failing PBS mom
 - → Testing, enhancements, and staged deployment
- For extending the developed technologies
 - Portability ability to apply technology to different services
 - Ease-of-use simplified service HA management (RAS)
 - → Generic HA framework needed

Next Step: Generic HA Framework

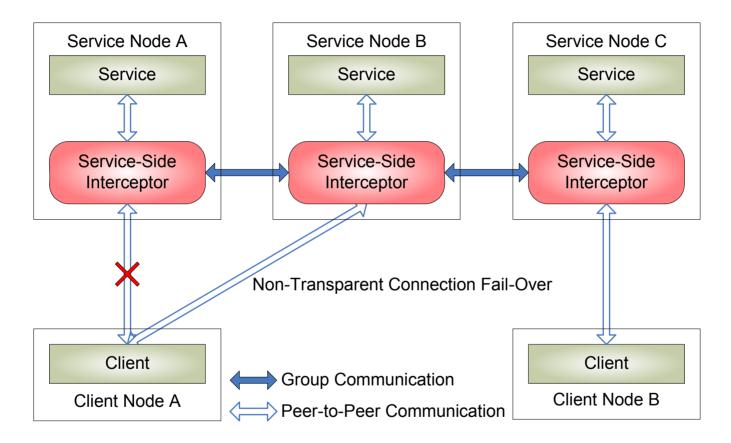
- Generalization of HA programming models
 - Active/Standby
 - Asymmetric active/active
 - Symmetric active/active
- Enhancing the transparency of the HA infrastructure
 - Minimum adaptation to the actual service protocol
 - Virtualized communication layer for abstraction
- → Portability

→ Ease-of-use

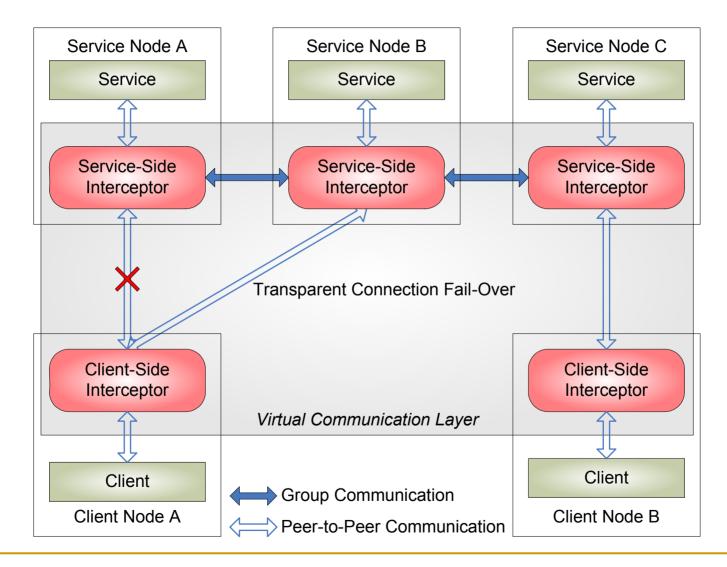
Failure Model


Fail-stop

- The service, its node, or its communication links, fail by simply stopping.
- Failure detection mechanisms may be deployed to assure fail-stop behavior in certain cases, such as for incomplete or garbled messages.


Permanent failures

- Non-transient behavior assured by detection mechanisms via node fencing.
- Recovery requires external intervention, such as repair or replacement of the failed component.
- Both assumptions match real-world properties.

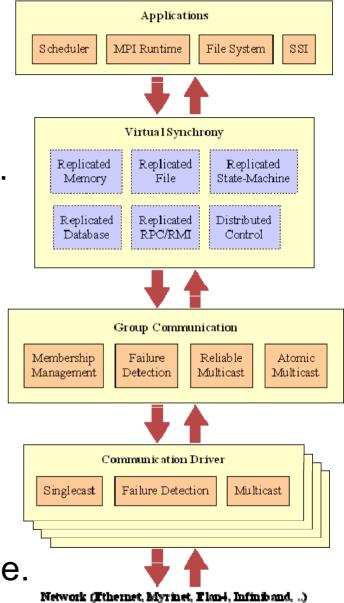

Symmetric Active/Active Replication

Non-Transparent Connection Fail-Over

Transparent Connection Fail-Over

Interceptors in the Communication Path: What about Performance?

Payload	Without	With Service	With Both		
	Interceptors	Interceptor	Interceptors		
100 B	149.9µs	150.6µs/ +0.5%	178.4µs/+19.0%		
1 <i>KB</i>	284.3µs	314.6µs/+10.7%	346.7µs/+21.9%		
10 KB	1.9 <i>ms</i>	$1.9ms/\pm0.0\%$	2.0ms/ +5.3%		
100 <i>KB</i>	22.3ms	22.5 <i>ms</i> / +0.8%	22.7ms/ +1.8%		
Tabl	e 1. Ping-l	Pong Latency C	omparison		
Payload	Without	With Service	With Both		
12020	Interceptors	Interceptor	Interceptors		
100 B	667 <i>KBps</i>	664 <i>KBps</i> /-0.4%	561KBps/-15.9%		
1 <i>KB</i>	3.5MBps	3.2MBps/-8.6%	2.9MBps/-17.1%		
10 <i>KB</i>	5.3MBps	5.2MBps/-1.9%	5.0MBps/ -5.7%		
100 <i>KB</i>	4.5 MB ps	4.4MBps/-2.2%	4.4MBps/ -2.2%		


Table 2. Ping-Pong Bandwidth Comparison

Test Results from a 100 Mbit/s LAN Environment

Modular HA Framework

Pluggable component framework.

- Communication drivers.
- Group communication.
- Virtual synchrony.
- Applications.
- Interchangeable components.
- Adaptation to application needs, such as level of consistency.
- Adaptation to system properties, such as network and system scale.

Current Prototype

- Unique, flexible, dynamic, C-based component framework: Adaptive Runtime Environment (ARTE)
- Dynamic component loading/unloading on demand
- XML as interface description language (IDL)
- "Everything" is a component:
 - Communication driver modules
 - Group communication layer modules
 - Virtual synchrony layer modules

Future Work

- Continued implementation of framework components
 - Implementation of HA programming model components
- Integration with existing prototypes
 - □ For example, replacing Transis with the framework
- Availability and reliability modeling
- Testing and benchmarking
- What about communication security/integrity?
 - For client-server connections across administrative domains
 - For distributed computing scenarios

How does this relate to Global and Peer-to-Peer Computing

- All presented concepts and prototypes are applicable to any service-oriented architectures (SOAs).
- All prototypes are designed for local area replication, but can be easily used for wide area replication.
- Introduced latency overhead for local area replication protocols are negligible in the wide area context.
- Stateful Grid service replication:
 - Replication of Grid services to meet QoS/SLA guarantees.
- Stateful P2P service replication:
 - Replication of P2P support services for high availability, e.g., for directory servers and brokers.

MOLAR: Adaptive Runtime Support for High-end Computing Operating and Runtime Systems

- Addresses the challenges for operating and runtime systems to run large applications efficiently on future ultra-scale high-end computers.
- Part of the Forum to Address Scalable Technology for Runtime and Operating Systems (FAST-OS).
- MOLAR is a collaborative research effort (<u>www.fastos.org/molar</u>):

OAK RIDGE NATIONAL LABORATORY LOUISIANA TEC

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

👼 The University of Reading

Transparent Symmetric Active/Active Replication for Service-Level High Availability

Christian Engelmann^{1,2}, Stephen L. Scott¹, Chokchai (Box) Leangsuksun³, Xubin (Ben) He⁴

¹Oak Ridge National Laboratory, Oak Ridge, USA

- ² The University of Reading, Reading, UK
- ³Louisiana Tech University, Ruston, USA
- ⁴Tennessee Tech University, Cookeville, USA