@ Office of OAKRIDGENATIONALLABORATORY LOUISIANA TECH

ODHRHIYERSITY

4 Science MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

U.S. DEPARTMENT OF ENERGY Tennessee TeCh

E The University of Reading @ UNIVERSITY

On Programming Models for
Service-Level High Availability

__ Christian Engelmann’-?, Stephen L. Scott’,
Chokchai (Box) Leangsuksun3, Xubin (Ben) He*

1Oak Ridge National Laboratory, Oak Ridge, USA
2 The University of Reading, Reading, UK

3 Louisiana Tech University, Ruston, USA
4Tennessee Tech University, Cookeville, USA

April 12, 2007 On Programming Models for Service-Level High Availability 1/30

Talk Outline

Scientific high-end computing (HEC)
Availability deficiencies of today’s HEC systems
Projects and accomplishments overviews

High availability (HA) models for services
Developed prototypes overview

Existing limitations and most pressing issues
Generalization of HA programming models
Generic HA framework infrastructure

April 12, 2007 On Programming Models for Service-Level High Availability 2/30

Scientific High-End Computing (HEC)

Large-scale HPC systems.

o Tens-to-hundreds of thousands of processors.

o Current systems: IBM Blue Gene/L and Cray XT4

o Next-generation: petascale IBM Blue Gene and Cray XT

Computationally and data intensive applications.
2 10 TFLOP — 1PFLOP with 10 TB — 1 PB of data.

o Climate change, nuclear astrophysics, fusion energy,
materials sciences, biology, nanotechnology, ...

Capability vs. capacity computing

o Single jobs occupy large-scale high-performance computing
systems for weeks and months at a time.

April 12, 2007 On Programming Models for Service-Level High Availability 3/30

@Eﬂﬂc Projected Performance Development

SN SIS

10 FFlops
- #1
1 FFlops O #500
Scientific High-End Computing -8~ Sum
100 TRlops — #1 Trend
Line
— #5300 Trend
3 10 TFRlops L
= — Sum Trend
E 1 TFops Line
& 100 GFlops 445 "
I..
.I
10 GFlops ~0O
|
1 Gﬂnps-fﬁﬂiﬁpn
i
lII:":Ir'|'1FI|:|F:|3III|III|III|III|III|III|III|II|III|III|III|III
(L] L [~ (] — (L] L [~ (a7 — (L] L [~
(] (] (] (] = = = = (- —_ — — —
(a7 (a7 (n] (a7 = = = = = = = = =
hiny pe = = .l ol . oY (oY (oY [y 'y vl

12'11/2006 http:/'www top500.0m/

National Center for Computational Sciences

= 40,000 ft2 (3700 m2) computer center:
= 36-in (~1m) raised floor, 18 ft (5.5 m) deck-to-deck
= 12 MW of power with 4,800 t of redundant cooling
= High-ceiling area for visualization lab:
=35 MPixel PowerWall, Access Grid, etc.

= 2 systems in the Top 500 List of Supercomputer Sites:
= Jaguar: 107? Cray XT3, MPP with 12500 dual-core Processors = 119 TFlop.
= Phoenix: 327? Cray X1E, Vector with 1014 Processors = 18 TFlop.

At Forefront in Scientific Computing
and Simulation

Leading partnership in developing the National
Leadership Computing Facility
o Leadership-class scientific computing capability
o 100 TFlop/s in 2007 (recently installed)
0 250 TFlop/sin 2007/8 (commitment made)
o 1 PFlop/sin 2008/9 (proposed)

Attacking key computational challenges
o Climate change
o Nuclear astrophysics
o Fusion energy
o Materials sciences
o Biology

Providing access to computational resources through
high-speed networking (10Gbps)

Availability Measured by the Nines

see <http://info.nccs.gov/resources> for current status of HPC systems at Oak Ridge National Laboratory

O’s | Availability | Downtime/Year Examples

1 190.0% 36 days, 12 hours | Personal Computers

2 199.0% 87 hours, 36 min | Entry Level Business

3 199.9% 8 hours, 45.6 min | ISPs, Mainstream Business

4 199.99% 52 min, 33.6 sec | Data Centers

5 199.999% 5 min, 15.4 sec Banking, Medical

6 [99.9999% |31.5seconds Military Defense
Enterprise-class hardware + Stable Linux kernel = 5+
Substandard hardware + Good high availability package = 2-3
Today’s supercomputers =1-2
My desktop =1-2

April 12, 2007 On Programming Models for Service-Level High Availability 7/30

Typical HEC System Architecture

compute nodes 1/O nodes

file servers Typical failure causes:

* Overheating !!!

* Memory errors

* Network errors

= » Other hardware issues
— » Software bugs

Different scale requires

different solutions:

» Compute nodes (10,000+)

* Front-end, service, and
I/O nodes (50+)

ey ey e
%/ =, e

cantrol network service node front-end nodes

Image source: Moreira et al., “Designing a Highly-Scalable Operating System: The Blue Gene/L Story”
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Nov. 11-17, Tampa, FL, USA.

April 12, 2007 On Programming Models for Service-Level High Availability 8/30

‘ Single Head/Service Node Problem

= Single point of failure.

= Compute nodes sit idle while
head node is down.

« A=MTTF/(MTTF + MTTR)

= MTTF depends on head node
hardware/software quality.

= MTTR depends on the time it
takes to repair/replace node.

» MTTR=0=>A=1.00 (100%)
continuous availability.

April 12, 2007 On Programming Models for Service-Level High Availability 9/30

Projects Overview

Initial HA-OSCAR research in active/standby
technology for the batch job management system

Ongoing MOLAR research in active/standby,
asymmetric and symmetric active/active technology

Recent RAS LDRD research in symmetric
active/active technology

3-4 years of research and development in high
availability for high-performance computing system
services

April 12, 2007 On Programming Models for Service-Level High Availability 10/30

Accomplishments Overview

Investigated the overall background of HA
technologies in the context of HPC

o Detailed problem description

o Conceptual models

o Review of existing solutions

Developed different replication strategies for
providing high availability for HPC system services

o Active/standby
o Asymmetric active/active
o Symmetric active/active

Implemented several proof-of-concept prototypes

April 12, 2007 On Programming Models for Service-Level High Availability 11/30

Active /Standby with Shared Storage

‘ Acive/Standby Head Nodes with Shared Storage

Single active head node

Backup to shared storage
Simple checkpoint/restart
Fail-over to standby node

Possible corruption of backup
state when failing during
backup

Introduction of a new single
point of failure

Correctness and availability
are NOT ALWAYS guaranteed

= SLURM, meta data servers of

PVFS and Lustre

April 12, 2007 On Programming Models for Service-Level High Availability 12/30

Active /Standby Redundancy

| Acive/Standby Head Nodes |

= Single active head node
= Backup to standby node
= Simple checkpoint/restart
= Fail-over to standby node
= l|dle standby head node

= Rollback to backup

= Service interruption for fail-
over and restore-over

=» Torque on Cray XT
= HA-OSCAR prototype

April 12, 2007 On Programming Models for Service-Level High Availability 13/30

‘ Asymmetric Active/Active
Redundancy

‘ Asymmetric Active/Active Head Nodes ‘

= Many active head nodes
= Work load distribution

= Optional fail-over to standby
head node(s) (n+71 or n+m)

= No coordination between active
head nodes

= Service interruption for fail-over
and restore-over

= Loss of state w/o standby

= Limited use cases, such as
high-throughput computing

-» Prototype based on HA-OSCAR

‘ Compute

April 12, 2007 On Programming Models for Service-Level High Availability 14/30

‘ Symmetric Active/Active Redundancy

‘ Active/Active Head Nodes |

Compute Nodes

Many active head nodes
Work load distribution

Symmetric replication between
head nodes

Continuous service

Always up-to-date

No fail-over necessary

No restore-over necessary
Virtual synchrony model
Complex algorithms

JOSHUA prototype for Torque

April 12, 2007

On Programming Models for Service-Level High Availability 15/30

Developed Prototypes Overview (1/2)

Active/Standby HA-OSCAR
o High availability for Open PBS/TORQUE
o Integration with compute node checkpoint/restart

Asymmetric active/active HA-OSCAR
o High availability for Open PBS & SGE
o High throughput computing solution

Symmetric active/active JOSHUA
o High availability for PBS TORQUE
o Fully transparent replication

April 12, 2007 On Programming Models for Service-Level High Availability 16/30

Existing Limitations

The active/standby and asymmetric active/active technology
interrupts the service during fail-over

Generic n+1 or n+m asymmetric active/active configurations
have not been developed yet

The 2+1 asymmetric active/active configuration uses two
different service implementations

The developed symmetric active/active technology has certain
stability and performance issues

All developed prototypes use a customized high availability
environment

Missing interaction with compute node fault tolerance
mechanisms (except for HA-OSCAR for head node fail-over)

April 12, 2007 On Programming Models for Service-Level High Availability 17130

Most Pressing Issues

For production-type deployment
o Stability — guaranteed quality of service
o Performance — low replication overhead

o Interaction with compute node fault tolerance mechanisms
— e.g. procedure for failing PBS mom

=» Testing, enhancements, and staged deployment

For extending the developed technologies

o Portability — ability to apply technology to different services
o Ease-of-use — simplified service HA management (RAS)
=» Generic HA framework needed

April 12, 2007 On Programming Models for Service-Level High Availability 18/30

Next Step: Generic HA Framework

Generalization of HA programming models
o Active/Standby

o Asymmetric active/active

o Symmetric active/active

Enhancing the transparency of the HA infrastructure
o Minimum adaptation to the actual service protocol
o Virtualized communication layer for abstraction

- Portabillity
= Ease-of-use

April 12, 2007 On Programming Models for Service-Level High Availability 19/30

Failure Model

Fail-stop

o The service, its node, or its communication links, fail by
simply stopping.

o Failure detection mechanisms may be deployed to assure
fail-stop behavior in certain cases, such as for incomplete
or garbled messages.

Permanent failures

o Non-transient behavior assured by detection mechanisms
via node fencing.

o Recovery requires external intervention, such as repair or
replacement of the failed component.

Both assumptions match real-world properties.

April 12, 2007 On Programming Models for Service-Level High Availability 20/30

Communicating Process Generalization

Service .. Request Messages: Output Messages: Service ..
e 11 1.2 3,1 32
rp [l rp rp g wen . Op] p 7 Op ,Op y =us
D Service p D
Query Messages: Output Messages:
Wser] w12 o2V 81 ol L Nsery
D G G G Deterministic " 3,’1,1p0 3120
State Machine B1ER BT
Dependent Dependent
Services/Users Services/Users

* Most, if not all, HPC system services are deterministic
* Non-determinism introduced by random number generators or unsynchronized timers:
* Removal of the use of random number generators in HPC system services
* Synchronization of timers (clocks) between replicas is trivial:
* Closely coupled local area networks with low and constant latency
* Clock skew tolerable within certain boundaries (not real-time, not fully synchronous)

April 12, 2007 On Programming Models for Service-Level High Availability 21/30

‘ Active/Standby Generalization

Active Service

Service .. J Request Messages:

"A1, rA2 rAS;
[
Query Messages:

User .. QA1'11QA1’2, qun QA3'1,

nnection
Dependent Go nectio

J Fail-Over
Services/Users

* Warm-Standby:

Output Messages:
1,2 31 3,2

OA 1 OA sOA y mma
D Service A --
Output Messages:
1,21 <24,
0 , 0p 7 00,
JLBackup B A3,1,1A 0A3,1,2A
> Connection Dependent
. Fail-Over p
Service B Services/Users
Standby Service(s)

* Regular state updates from Active Service to Standby Service (push or pull)

* Hot-Standby

* On-change state updates from Active Service to Standby Service (push)

* Group communication style consistency required for state updates to multiple Standby Services
* Note: ARES Paper on extended Hot/Passive Replication semantics

April 12, 2007 On Programming Models for Service-Level High Availability 22/30

Asymmetric Active/Active Generalization

Service .. Request Messages: ACtive SErVice(s) o0t Messages: Service ..
rﬁ\1, rsz rcs, 0A1,1,0A1,2, 003,1 ,003,2’
: =) Service A =3
Query Messages: Output Messages:
User .. gc" a8, s ga%, ... ‘J|v o™, ou el agm User ..
Backup 3.1,1 31,2
Oa , Oa i
. 1 .
Dependent C;;i%c:gn C;;igcjgn Dependent
Services/Users Service a Services/Users

Optional Standby Service(s)

* Replication of service capability via multiple Active Services

* No replication of state among Active Services
* Mechanisms and semantics for optional Standby Services are the same as for Active/Standby

April 12, 2007 On Programming Models for Service-Level High Availability 23/30

Symmetric Active/Active Generalization

Service .. Request Messages: A\Ctive SEIVice(s) o0t Messages: Service ..
1 2. 3 1,1 1,2 31 3,2
rA,Ts e, ... OaA',0A",0c” ,0c’, ...
i =) Service A =5
Query Messages: O1u1t|:;'»ut I\:Ig?sagzeﬁ
1,1 1,2 2.1 3.1 an sy 1,
User P qC !qA 3 CIB QA y ne Virtual OC 3‘!1 ?A 3:128 ! User =
Synchrony Oa™ _#0a" "
Dependent Connection Connection Dependent
Services/Users fal-Ovar’ - Service B FalEChvan Services/Users
Load Balacing Load Balancing

<.

* Replication of service capability via multiple Active Services

* Replication of state among Active Services
* Virtual synchrony (active replication) model

April 12, 2007 On Programming Models for Service-Level High Availability 24/30

Comparison of Replication Methods

April 12, 2007

Model MTTR Latency Overhead
Warm-Standby T + T, + 1.+ T; 0
Hot-Standby Ti+1Tr+ T 204 B
Asymmetric Iy+1s+1.+1T,0or Qor
1+ Tf + 1 23}1,&:
Symmetric T, O(n)

T; = time between failure occurrence and detection
Ty = time between failure detection and fail-over

T, = time to recover from checkpoint to previous state
T, = time to reconfigure client/user connection

l4 p = communication latency between A and B

On Programming Models for Service-Level High Availability

25/30

MO dular HA Fram GWO rk 3 cheduler MPI ::::ri‘[:ﬁunlﬂe System 35l

\ &)

Virtual Synchrony

--

Pluggable component framework. | xgisd seias xsiad

i Mlemory i | Btate-Machine |

o Communication drivers. Replicsted | | Replicted || Disriuted

2 Group communication. e ‘ """"""""""""

o Virtual synchrony. " O
. B} Group Communication
o Applications.

Membership Failure Reliable Atomic
Management Detection e lticast Multicast

Interchangeable components.

Adaptation to application needs, m"f
such as level of consistency. o] [Famenami| anan m

Adaptation to system properties,
such as network and system scale. vt

NHetwork (Xthermnet, Byrinet, Xlaod, Infiniand, .3

April 12, 2007 On Programming Models for Service-Level High Availability 26/30

Current Prototype

Unique, flexible, dynamic, C-based component
framework: Adaptive Runtime Environment (ARTE)

Dynamic component loading/unloading on demand
XML as interface description language (IDL)

“Everything” is a component:

o Communication driver modules

o Group communication layer modules
o Virtual synchrony layer modules

April 12, 2007 On Programming Models for Service-Level High Availability 27/30

Future Work

Continued implementation of framework components
o Implementation of HA programming model components

Integration with existing prototypes
o For example, replacing Transis with the framework

Availability and reliability modeling
Testing and benchmarking

What about communication security/integrity?
o For client-server connections across administrative domains
o For distributed computing scenarios

April 12, 2007 On Programming Models for Service-Level High Availability 28/30

MOLAR: Adaptive Runtime Support for High-end
Computing Operating and Runtime Systems

= Addresses the challenges for operating and runtime systems to

run large applications efficiently on future ultra-scale high-end
computers.

= Part of the Forum to Address Scalable Technology for Runtime
and Operating Systems (FAST-0OS).

= MOLAR is a collaborative research effort (www.fastos.org/molar):

S P77 Office of
OAKRIDGE NATIONAL LABORATORY >4 Science
MANALLED DY UT-BATTELLE FLR THE DEFARTHMMENT OF LHLRLY
NC STATE UNIVERSITY QOHIO I'-%’f-“lfﬁg“ﬂ l'lfftl“-l__l_
SIATE Y Boleai

E The University of Reading C=FR Y 1HE SUPERCOMPUTER COMPANY

April 12, 2007 On Programming Models for Service-Level High Availability 29/30

@ Office of OAKRIDGENATIONALLABORATORY LOUISIANA TECH

ODHRHIYERSITY

4 Science MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

U.S. DEPARTMENT OF ENERGY Tennessee TeCh

E The University of Reading @ UNIVERSITY

On Programming Models for
Service-Level High Availability

__ Christian Engelmann’-?, Stephen L. Scott’,
Chokchai (Box) Leangsuksun3, Xubin (Ben) He*

1Oak Ridge National Laboratory, Oak Ridge, USA
2 The University of Reading, Reading, UK

3 Louisiana Tech University, Ruston, USA
4Tennessee Tech University, Cookeville, USA

April 12, 2007 On Programming Models for Service-Level High Availability 30/30

	On Programming Models for Service-Level High Availability
	Talk Outline
	Scientific High-End Computing (HEC)
	National Center for Computational Sciences
	At Forefront in Scientific Computing and Simulation
	Availability Measured by the Nines�see <http://info.nccs.gov/resources> for current status of HPC systems at Oak Ridge Nationa
	Typical HEC System Architecture
	Single Head/Service Node Problem
	Projects Overview
	Accomplishments Overview
	Active/Standby with Shared Storage
	Active/Standby Redundancy
	Asymmetric Active/Active Redundancy
	Symmetric Active/Active Redundancy
	Developed Prototypes Overview (1/2)
	Existing Limitations
	Most Pressing Issues
	Next Step: Generic HA Framework
	Failure Model
	Communicating Process Generalization
	Active/Standby Generalization
	Asymmetric Active/Active Generalization
	Symmetric Active/Active Generalization
	Comparison of Replication Methods
	Modular HA Framework
	Current Prototype
	Future Work
	MOLAR: Adaptive Runtime Support for High-end Computing Operating and Runtime Systems
	On Programming Models for Service-Level High Availability

