
April 12, 2007 On Programming Models for Service-Level High Availability 1/30

On Programming Models for 
Service-Level High Availability

Christian Engelmann1,2, Stephen L. Scott1,
Chokchai (Box) Leangsuksun3, Xubin (Ben) He4

1 Oak Ridge National Laboratory, Oak Ridge, USA
2 The University of Reading, Reading, UK
3 Louisiana Tech University, Ruston, USA
4 Tennessee Tech University, Cookeville, USA



April 12, 2007 On Programming Models for Service-Level High Availability 2/30

Talk Outline

! Scientific high-end computing (HEC)
! Availability deficiencies of today�s HEC systems
! Projects and accomplishments overviews
! High availability (HA) models for services
! Developed prototypes overview
! Existing limitations and most pressing issues
! Generalization of HA programming models
! Generic HA framework infrastructure



April 12, 2007 On Programming Models for Service-Level High Availability 3/30

Scientific High-End Computing (HEC)

! Large-scale HPC systems.
" Tens-to-hundreds of thousands of processors.
" Current systems: IBM Blue Gene/L and Cray XT4
" Next-generation: petascale IBM Blue Gene and Cray XT

! Computationally and data intensive applications.
" 10 TFLOP � 1PFLOP with 10 TB � 1 PB of data.
" Climate change, nuclear astrophysics, fusion energy, 

materials sciences, biology, nanotechnology, �
! Capability vs. capacity computing

" Single jobs occupy large-scale high-performance computing 
systems for weeks and months at a time.



April 12, 2007 On Programming Models for Service-Level High Availability 4/30

1 PFlop/s
~2008

IBM Blue 
Gene/L

Scientific HighScientific High--End ComputingEnd Computing



April 12, 2007 On Programming Models for Service-Level High Availability 5/30

National Center for Computational SciencesNational Center for Computational Sciences

! 40,000 ft2 (3700 m2) computer center:
! 36-in (~1m) raised floor, 18 ft (5.5 m) deck-to-deck
! 12 MW of power with 4,800 t of redundant cooling
! High-ceiling area for visualization lab:

!35 MPixel PowerWall, Access Grid, etc.

! 2 systems in the Top 500 List of Supercomputer Sites:
! Jaguar: 10? Cray XT3, MPP with 12500 dual-core Processors# 119 TFlop.
! Phoenix: 32? Cray X1E, Vector with   1014 Processors # 18 TFlop.



April 12, 2007 On Programming Models for Service-Level High Availability 6/30

At Forefront in Scientific Computing At Forefront in Scientific Computing 
and Simulationand Simulation

! Leading partnership in developing the National 
Leadership Computing Facility
" Leadership-class scientific computing capability
" 100 TFlop/s in 2007 (recently installed)
" 250 TFlop/s in 2007/8 (commitment made)
" 1 PFlop/s in 2008/9 (proposed)

! Attacking key computational challenges
" Climate change
" Nuclear astrophysics
" Fusion energy
" Materials sciences
" Biology

! Providing access to computational resources through 
high-speed networking (10Gbps)



April 12, 2007 On Programming Models for Service-Level High Availability 7/30

Availability Measured by the Nines
see <http://info.nccs.gov/resources> for current status of HPC systems at Oak Ridge National Laboratory

! Enterprise-class hardware + Stable Linux kernel = 5+ 
! Substandard hardware + Good high availability package = 2-3
! Today�s supercomputers = 1-2
! My desktop = 1-2

9�s Availability Downtime/Year Examples
1 90.0% 36 days, 12 hours Personal Computers
2 99.0% 87 hours, 36 min Entry Level Business
3 99.9% 8 hours, 45.6 min ISPs, Mainstream Business
4 99.99% 52 min, 33.6 sec Data Centers
5 99.999% 5 min, 15.4 sec Banking, Medical
6 99.9999% 31.5 seconds Military Defense



April 12, 2007 On Programming Models for Service-Level High Availability 8/30

Typical HEC System Architecture

Image source: Moreira et al., �Designing a Highly-Scalable Operating System: The Blue Gene/L Story�
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Nov. 11-17, Tampa, FL, USA.

Typical failure causes:
� Overheating !!!
� Memory errors
� Network errors
� Other hardware issues
� Software bugs

Different scale requires
different solutions:
� Compute nodes (10,000+)
� Front-end, service, and
I/O nodes (50+)



April 12, 2007 On Programming Models for Service-Level High Availability 9/30

Single Head/Service Node Problem

! Single point of failure.
! Compute nodes sit idle while 

head node is down.
! A = MTTF / (MTTF + MTTR)
! MTTF depends on head node 

hardware/software quality.
! MTTR depends on the time it 

takes to repair/replace node.
$ MTTR = 0 % A = 1.00 (100%) 

continuous availability.



April 12, 2007 On Programming Models for Service-Level High Availability 10/30

Projects Overview

! Initial HA-OSCAR research in active/standby 
technology for the batch job management system

! Ongoing MOLAR research in active/standby, 
asymmetric and symmetric active/active technology

! Recent RAS LDRD research in symmetric 
active/active technology

% 3-4 years of research and development in high 
availability for high-performance computing system 
services



April 12, 2007 On Programming Models for Service-Level High Availability 11/30

Accomplishments Overview

! Investigated the overall background of HA 
technologies in the context of HPC
" Detailed problem description
" Conceptual models
" Review of existing solutions

! Developed different replication strategies for 
providing high availability for HPC system services
" Active/standby
" Asymmetric active/active
" Symmetric active/active

! Implemented several proof-of-concept prototypes



April 12, 2007 On Programming Models for Service-Level High Availability 12/30

Active/Standby with Shared Storage

! Single active head node
! Backup to shared storage
! Simple checkpoint/restart
! Fail-over to standby node
! Possible corruption of backup 

state when failing during 
backup

! Introduction of a new single 
point of failure

! Correctness and availability 
are NOT ALWAYS guaranteed

% SLURM, meta data servers of 
PVFS and Lustre



April 12, 2007 On Programming Models for Service-Level High Availability 13/30

Active/Standby Redundancy

! Single active head node
! Backup to standby node
! Simple checkpoint/restart
! Fail-over to standby node
! Idle standby head node
! Rollback to backup
! Service interruption for fail-

over and restore-over
% Torque on Cray XT
% HA-OSCAR prototype



April 12, 2007 On Programming Models for Service-Level High Availability 14/30

Asymmetric Active/Active 
Redundancy

! Many active head nodes
! Work load distribution
! Optional fail-over to standby 

head node(s) (n+1 or n+m)
! No coordination between active 

head nodes
! Service interruption for fail-over 

and restore-over
! Loss of state w/o standby
! Limited use cases, such as 

high-throughput computing
% Prototype based on HA-OSCAR



April 12, 2007 On Programming Models for Service-Level High Availability 15/30

Symmetric Active/Active Redundancy

! Many active head nodes
! Work load distribution
! Symmetric replication between 

head nodes
! Continuous service
! Always up-to-date
! No fail-over necessary
! No restore-over necessary
! Virtual synchrony model
! Complex algorithms
! JOSHUA prototype for Torque



April 12, 2007 On Programming Models for Service-Level High Availability 16/30

Developed Prototypes Overview (1/2)

! Active/Standby HA-OSCAR
" High availability for Open PBS/TORQUE
" Integration with compute node checkpoint/restart

! Asymmetric active/active HA-OSCAR
" High availability for Open PBS & SGE
" High throughput computing solution

! Symmetric active/active JOSHUA
" High availability for PBS TORQUE
" Fully transparent replication



April 12, 2007 On Programming Models for Service-Level High Availability 17/30

Existing Limitations

! The active/standby and asymmetric active/active technology 
interrupts the service during fail-over

! Generic n+1 or n+m asymmetric active/active configurations 
have not been developed yet

! The 2+1 asymmetric active/active configuration uses two 
different service implementations

! The developed symmetric active/active technology has certain 
stability and performance issues

! All developed prototypes use a customized high availability 
environment

! Missing interaction with compute node fault tolerance 
mechanisms (except for HA-OSCAR for head node fail-over)



April 12, 2007 On Programming Models for Service-Level High Availability 18/30

Most Pressing Issues

! For production-type deployment
" Stability � guaranteed quality of service
" Performance � low replication overhead
" Interaction with compute node fault tolerance mechanisms 

� e.g. procedure for failing PBS mom
%Testing, enhancements, and staged deployment

! For extending the developed technologies
" Portability � ability to apply technology to different services
" Ease-of-use � simplified service HA management (RAS)
%Generic HA framework needed



April 12, 2007 On Programming Models for Service-Level High Availability 19/30

Next Step: Generic HA Framework 

! Generalization of HA programming models
" Active/Standby
" Asymmetric active/active
" Symmetric active/active

! Enhancing the transparency of the HA infrastructure
" Minimum adaptation to the actual service protocol
" Virtualized communication layer for abstraction

%Portability
%Ease-of-use



April 12, 2007 On Programming Models for Service-Level High Availability 20/30

Failure Model

! Fail-stop
" The service, its node, or its communication links, fail by 

simply stopping.
" Failure detection mechanisms may be deployed to assure 

fail-stop behavior in certain cases, such as for incomplete 
or garbled messages.

! Permanent failures
" Non-transient behavior assured by detection mechanisms 

via node fencing.
" Recovery requires external intervention, such as repair or 

replacement of the failed component.
! Both assumptions match real-world properties.



April 12, 2007 On Programming Models for Service-Level High Availability 21/30

Communicating Process Generalization

� Most, if not all, HPC system services are deterministic
� Non-determinism introduced by random number generators or unsynchronized timers:

� Removal of the use of random number generators in HPC system services
� Synchronization of timers (clocks) between replicas is trivial:

�Closely coupled local area networks with low and constant latency
�Clock skew tolerable within certain boundaries (not real-time, not fully synchronous)



April 12, 2007 On Programming Models for Service-Level High Availability 22/30

Active/Standby Generalization

� Warm-Standby:
� Regular state updates from Active Service to Standby Service (push or pull)

� Hot-Standby
� On-change state updates from Active Service to Standby Service (push)

� Group communication style consistency required for state updates to multiple Standby Services
� Note: ARES Paper on extended Hot/Passive Replication semantics



April 12, 2007 On Programming Models for Service-Level High Availability 23/30

Asymmetric Active/Active Generalization

� Replication of service capability via multiple Active Services
� No replication of state among Active Services
� Mechanisms and semantics for optional Standby Services are the same as for Active/Standby



April 12, 2007 On Programming Models for Service-Level High Availability 24/30

Symmetric Active/Active Generalization

� Replication of service capability via multiple Active Services
� Replication of state among Active Services
� Virtual synchrony (active replication) model



April 12, 2007 On Programming Models for Service-Level High Availability 25/30

Comparison of Replication Methods



April 12, 2007 On Programming Models for Service-Level High Availability 26/30

Modular HA Framework

! Pluggable component framework.
" Communication drivers.
" Group communication.
" Virtual synchrony.
" Applications.

! Interchangeable components.
! Adaptation to application needs, 

such as level of consistency.
! Adaptation to system properties, 

such as network and system scale.



April 12, 2007 On Programming Models for Service-Level High Availability 27/30

Current Prototype

! Unique, flexible, dynamic, C-based component 
framework: Adaptive Runtime Environment (ARTE)

! Dynamic component loading/unloading on demand
! XML as interface description language (IDL)
! �Everything� is a component:

" Communication driver modules
" Group communication layer modules
" Virtual synchrony layer modules



April 12, 2007 On Programming Models for Service-Level High Availability 28/30

Future Work

! Continued implementation of framework components
" Implementation of HA programming model components

! Integration with existing prototypes
" For example, replacing Transis with the framework

! Availability and reliability modeling
! Testing and benchmarking
! What about communication security/integrity?

" For client-server connections across administrative domains
" For distributed computing scenarios



April 12, 2007 On Programming Models for Service-Level High Availability 29/30

MOLAR: Adaptive Runtime Support for High-end 
Computing Operating and Runtime Systems

! Addresses the challenges for operating and runtime systems to 
run large applications efficiently on future ultra-scale high-end 
computers.

! Part of the Forum to Address Scalable Technology for Runtime 
and Operating Systems (FAST-OS).

! MOLAR is a collaborative research effort (www.fastos.org/molar):



April 12, 2007 On Programming Models for Service-Level High Availability 30/30

On Programming Models for 
Service-Level High Availability

Christian Engelmann1,2, Stephen L. Scott1,
Chokchai (Box) Leangsuksun3, Xubin (Ben) He4

1 Oak Ridge National Laboratory, Oak Ridge, USA
2 The University of Reading, Reading, UK
3 Louisiana Tech University, Ruston, USA
4 Tennessee Tech University, Cookeville, USA


	On Programming Models for Service-Level High Availability
	Talk Outline
	Scientific High-End Computing (HEC)
	National Center for Computational Sciences
	At Forefront in Scientific Computing and Simulation
	Availability Measured by the Nines�see <http://info.nccs.gov/resources> for current status of HPC systems at Oak Ridge Nationa
	Typical HEC System Architecture
	Single Head/Service Node Problem
	Projects Overview
	Accomplishments Overview
	Active/Standby with Shared Storage
	Active/Standby Redundancy
	Asymmetric Active/Active Redundancy
	Symmetric Active/Active Redundancy
	Developed Prototypes Overview (1/2)
	Existing Limitations
	Most Pressing Issues
	Next Step: Generic HA Framework 
	Failure Model
	Communicating Process Generalization
	Active/Standby Generalization
	Asymmetric Active/Active Generalization
	Symmetric Active/Active Generalization
	Comparison of Replication Methods
	Modular HA Framework
	Current Prototype
	Future Work
	MOLAR: Adaptive Runtime Support for High-end Computing Operating and Runtime Systems
	On Programming Models for Service-Level High Availability

