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ABSTRACT

Existing challenges for current terascale high performance
computing (HPC) systems are increasingly hampering the
development and deployment efforts of system software and
scientific applications for next-generation petascale systems.
The expected rapid system upgrade interval toward petas-
cale scientific computing demands an incremental strategy
for the development and deployment of legacy and new large-
scale scientific applications that avoids excessive porting.
Furthermore, system software developers as well as scientific
application developers require access to large-scale testbed
environments in order to test individual solutions at scale.
This paper proposes to address these issues at the system
software level through the development of a virtualized sys-
tem environment (VSE) for scientific computing. The pro-
posed VSE approach enables “plug-and-play” supercomput-
ing through desktop-to-cluster-to-petaflop computer system-
level virtualization based on recent advances in hypervisor
virtualization technologies. This paper describes the VSE
system architecture in detail, discusses needed tools for VSE
system management and configuration, and presents respec-
tive VSE use case scenarios.
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1. INTRODUCTION

The U.S. Department of Energy (DOE) plans to deploy a 1
petaflop (quadrillion of calculations per second, or Pflop/s)
scientific high performance computing (HPC) system by the
2008/9 time frame. A similar system deployment effort is
currently being undertaken by the U.S. National Science
Foundation (NSF). In order for these systems to run “out-
of-the-box”, several challenges in petascale system software
and application runtime environments have to be addressed
to assure day-one operation capability. Efficiently exploiting
tens-to-hundreds of thousands of processor cores using tens-
to-hundreds of thousands of interdependent computational
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tasks requires appropriate scalability, manageability, and
ease-of-use at the system software and application runtime
environment (RTE) level. Furthermore, the expected rapid
system upgrade interval demands an incremental strategy
for scientific application development and deployment that
avoids excessive porting.

Current efforts in operating system (OS) research and de-
velopment at vendors, such as Cray and IBM, and within
DOE'‘s Forum to Address Scalable Technology for Runtime
and Operating Systems (FAST-OS) [7] concentrate on nu-
merous varying approaches ranging from custom lightweight
solutions, such as Catamount on the Cray XT3/4 [3] and the
Compute Node Kernel (CNK) on the IBM Blue Gene/L sys-
tem [18], to scalable Linux variants, like ZeptoOS [1]. From
recent HPC system deployment experience, it has become
clear that there is no one-size-fits-all OS solution. FEach
OS has its own design and performance advantages, sup-
ported platforms, and targeted scientific applications. Fur-
thermore, it is not clear at this point which OS will be bet-
ter suited or even available for each of the planned petascale
class systems and for the targeted set of scientific applica-
tions.

A petaflop class computer with tens-to-hundreds of thou-
sands of processors raises many challenges for both, its users
and system administrators. A management approach that
is consistent with small- to large-scale systems is crucial in
order to easily port and run the next-generation large-scale
scientific applications developed today for the targeted plat-
form. The potential problem lies in porting and successfully
executing legacy and new large-scale scientific applications.
It is exacerbated by the fact that many scientific applications
are developed on desktop systems or small-scale clusters, as
resources and system knowledge are gained, the codes are
enhanced to exploit the targeted supercomputer environ-
ment. Consequently, scientific application deployment often
takes significantly more time than anticipated.

In addition, access to large-scale testbed environments is
needed for system software developers as well as for scien-
tific application developers in order to test individual soft-
ware solutions at scale. Both groups directly compete with
each other for access to a limited set of testbed environ-



ments. Furthermore, system software tests often require to
modify or replace the currently installed system software
suite, which often contradicts with production system use
policies of HPC centers.

These challenges are by no means new, but their impact in-
creases in magnitude as HPC systems dramatically scale up
in processor count, while supporting only one specific system
software suite. Furthermore, with today‘s emerging multi-
core processor architectures and with next-generation het-
erogeneous accelerator-supported computing environments,
even more development time will be incurred as scientific
application as well as system software developers try to dis-
cover the methods of efficiently exploiting the power of these
new technologies.

This paper proposes to address these issues at the system
software level through the development of a virtualized sys-
tem environment (VSE) for scientific computing. In addi-
tion to providing a scalable and reliable “sandbox” environ-
ment for scientific application development on desktops and
clusters, the VSE will offer an identical production environ-
ment for scientific application deployment on existing teras-
cale and future petascale HPC systems. The proposed VSE
concept enables “plug-and-play” supercomputing through
desktop-to-cluster-to-petaflop computer system-level virtu-
alization based on recent advances in hypervisor virtualiza-
tion technologies. The overall goal of the proposed effort
is to advance the race for scientific discovery through com-
putation by enabling day-one operation capability of newly
installed systems and by improving productivity of system
software and scientific application development and deploy-
ment.

In the following, we describe the VSE research background
and approach in more detail. We discuss the proposed VSE
system architecture and the needed tools for VSE system
management and configuration. We continue with a pre-
sentation of use case scenarios for the VSE concept, and a
review of related work in this area. We conclude with a short
summary of the presented research and a brief outlook on
future work.

2. VIRTUALIZED SYSTEM ENVIRON-

MENTS

The proposed VSE approach is derived from the virtual en-
vironment (VE) concept for scientific application develop-
ment and deployment, which is presently being studied in
the Harness Workbench project [23] at Oak Ridge National
Laboratory, the University of Tennessee, and Emory Uni-
versity.

In a traditional HPC application development and deploy-
ment model, system administrators are solely responsible for
system-wide installation of supporting software and scien-
tific libraries. Scientific application developers write, com-
pile, and run their codes utilizing these resources. While
this model makes perfect sense for general-purpose software
components, like optimized MPI [25, 24, 15] implementa-
tions or BLAS/LAPACK [20, 21] packages, it is less appro-
priate for libraries that are unconventional and more prob-
lems specific. In situations when only a few scientists in an
organization need some (usually recent) package, it might

be more reasonable to enable them to perform user-specific,
local (home directory) installation, rather than placing that
burden on site administrators. Even though such local, user-
level installations may be technically possible (by careful
setup of appropriate environment variables, and appropri-
ate use of configuration options) the technicalities of the
procedure and potential for conflicts render it fraught with
pitfalls to scientific application developers in practice.

The Harness Workbench project addresses this problem by
allowing the scientific application developer to deploy VEs
for scientific application development and deployment. The
XML-based VE configuration description contains the nec-
essary modifications to be applied to the base system, which
are needed by an application in order to compile, link, and
run. The current Harness Workbench approach for VEs fo-
cuses on the chroot mechanism of a Unix-type OS in con-
junction with linking/copying files and directories to/from
the original base system root directory to the VE root di-
rectory, and/or mounting the original base system root di-
rectory underneath VE root directory using features of the
UnionF§S [27] stackable file system, such as copy-on-write.

The limitation to the chroot mechanism and its system se-
curity implications are a major concern for deployment on
production-type HPC systems. In order to alleviate this is-
sue and to further extend the VE concept, the VSE approach
is based on system-level hypervisor virtualization technology
that provides better VE isolation in form of a “sandbox”
environment for scientific application development and de-
ployment. Additionally, the VSE concept is not limited to
the application space as system software development and
deployment efforts also can profit from hypervisor virtual-
ization technology. While the VE concept allows specifying
the RTE requirements of a scientific application in form of
a XML configuration file, the VSE approach is extending
this idea to the entire software suite installed on a HPC sys-
tem, including OS (kernel, libraries, and services), RTE(s)
(libraries and services), and access policies for external re-
sources, e.g., for a parallel file system.

2.1 System Architecture

The proposed software infrastructure (Figure 1) utilizes sys-
tem-level hypervisor virtualization technology in combina-
tion with configuration mechanisms for virtual machines in
order to provide a powerful abstraction for portability, iso-
lation, and customization of the entire software suite of a
HPC system.

At its core, a virtual machine monitor (VMM), i.e., hyper-
visor, offers a low-level abstraction layer to support a wide
variety of operating systems running inside a virtual ma-
chine (VM). A low-level protection mechanism isolates VM
instances and the host OS residing on the same processor
from each other, which enables on-demand VM instantiation
on development systems, such as desktops or HPC system
service nodes, and permits oversubscription of processors on
compute nodes in case of large-scale emulation on a smaller
scale system.

Inside the VM resides the entire software suite running on a
HPC system customized based on a VSE configuration de-
scription to the needs of the running job, which may be a
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Figure 1: The virtual system environment software
architecture for scientific high performance comput-
ing systems utilizes system-level virtualization on
compute nodes and development environment ser-
vice nodes to provide “sandbox” environments for
system software and scientific application develop-
ment and deployment.

production run or a test run of an application or of a sys-
tem software component. The software suite running inside
the VM may access external resources, such as a parallel file
system. The VM is configured to access external resources
based on the VSE configuration description, e.g., for access-
ing a different root file system.

Due to the utilization of type-I system-level virtualization
technology [8, 11] a host OS is required to perform certain
basic functionality, such as providing VM management, e.g.,
VM creation and destruction. The host OS is identical to
the original OS on development systems, while on compute
nodes it also may be a customized lightweight OS solution.
In some cases, the host OS on compute nodes may be elimi-
nated completely if its functionality can be offloaded to ser-
vice nodes.

Current type-I virtualization solutions, like Xen [2, 32], use
the host OS also for hardware drivers. With the develop-
ment of OS-bypass technologies and hardware-level virtual-
ization support in processors and devices, OS-level hardware
drivers and user-level libraries will be able to access virtu-
alized hardware from within a VM without requiring a host
OS for driver support.

2.2 System Management
A VSE, like traditional systems, is composed of different el-
ements: OS (kernel, drivers, and low-level system libraries),

RTE(s) (libraries, compilers, and scientific runtimes), and
user applications. The characteristics of a VSE do not differ
much from non-virtualized system environments. Therefore,
traditional tools can be reused for performing routine system
management. However, they need to be adapted in order to
make them aware of the virtualized nature of a VSE.

VSE

VSE configuration
configuration Create (e.g. VM image)
description added to system
management

VSE running on
Compute Nodes

VSE
configuration VSE removed
removed from Destroy from Compute
system Nodes
management
-

Figure 2: The life cycle of a virtual system envi-
ronment encompasses the creation of a configura-
tion from a configuration description, the deploy-
ment of the configuration on compute nodes and
development environment service nodes as virtual
machines, the cleanup of deployed virtual machines,
and the destruction of the virtual system environ-
ment configuration.

VSE instances are administered using a set of system man-
agement tools and configuration files that create, deploy,
cleanup, and destroy VMs belonging to a VSE instance in
form of a customized parallel virtual system (Figure 2).

VSE configuration tools translate individual VSE configura-
tion descriptions to respective system dependent VSE con-
figurations, e.g., VM images to be loaded on compute nodes
for job runs or on service nodes for compilation runs. These
VSE configuration tools create and destroy VSEs in the form
of system dependent VSE configurations, which can be then
used by system management tools for VSE deployment and
cleanup.

In order to enable the VSE concept in HPC environments,
existing system management tools, e.g., HPC system re-
source managers, need to be enhanced to support scalable
management of lightweight system-level hypervisor virtual-
ization technology on compute nodes. Furthermore, respec-
tive OS deployment mechanisms for compute nodes, e.g.,
HPC system installation suites, need to be improved to al-
low for scalable on-demand deployment of VMs on service
and compute nodes.

In order to enable the VSE concept directly on the compute
nodes and on single system environments, such as the desk-
top of an application software developer or the development
environment server of a HPC system, existing system man-
agement tools for VM deployment and cleanup need to be
adapted in order to interface with system resource manage-
ment tools and software development environment solutions.



2.3 Configuration Management

VSEs are preferably configured offline, i.e., VM configura-
tions are modified without actually deploying VMs. How-
ever, special circumstances may exist in which a VM config-
uration needs to be modified while it is is running. In this
case, the VM to be modified is deployed to the desktop of the
application software developer or to the development envi-
ronment server of the HPC system for modification. Config-
uring a VSE may also include to compile, link, and install an
application or system software component into a VM con-
figuration depending on the VSE deployment mechanism.
This may require online VM configuration, e.g., when using
the system probing features of the GNU autotools [29].

A VSE configuration description specification is needed that
allows defining the properties of a VSE, such as installed
OS, RTE(s) and services, and access policies for external
resources. Respective VSE configuration tools are needed as
well with support for offline and online VM configuration.
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Figure 3: The hierarchical virtual system environ-
ment configuration description scheme enables users
to override, remove, or add certain configuration op-
tions using vendor or system operator configuration
descriptions as a base configuration description.

A hierarchical VSE configuration description scheme (Fig-
ure 3) enables users to override, remove, or add certain
configuration options, such as libraries and services, using
vendor or system operator configuration descriptions as a
base configuration description. Certain configuration op-
tions may be reserved for system administrators to avoid
unintentional or malicious configurations, and to maintain
site-specific policies. For example, if an application is sup-
posed to run in a specific Linux distribution, it derives its
VSE configuration description from a VSE configuration de-
scription for this Linux distribution. A different base VSE
configuration description for this Linux distribution may
be supplied by system administrators of HPC centers to
adapt to system-specific VSE configuration and deployment
mechanisms, to enable system-specific hardware and soft-
ware support, and to enforce site-specific policies.

VSE configuration tools translate individual VSE configura-
tion descriptions to respective system dependent VSE con-
figurations. Depending on the granularity of the VSE config-
uration description scheme, the following VSE configuration
mechanisms may exist: copying files or directories into a VM
configuration; copying, linking, and/or deleting files or di-
rectories within a VM configuration; compiling, linking, and

installing software into/within a VM configuration; chang-
ing existing (configuration) file content within a VM con-
figuration; installing/removing software packages into/from
a VM configuration; and supplying boot options to the OS
of the VM configuration. Existing tools for software and
package management may be adapted to or reused for VSE
configuration. The VE configuration and management tools
currently being developed by the earlier mentioned Harness
Workbench project may be reused for fine-grain VM config-
uration.

3. USE CASE SCENARIOS

The main motivation behind this research effort in VSEs is
to improve the productivity of system software and scientific
application development and deployment for current teras-
cale and next-generation petascale scientific HPC systems.
The proposed VSE concept enables “plug-and-play” super-
computing through desktop-to-cluster-to-petaflop computer
system-level virtualization by enabling developers with a
seamless development, test, and deployment process for sys-
tem software and scientific applications across the various
systems involved in these activities.

3.1 Application Development and Deployment
Scientific application developers typically implement early
prototypes on their desktops using standard OSs and RTE(s),
e.g., Linux and Open-MPI [24]. Depending on the applica-
tion and on the developers preference, different program-
ming languages, e.g., C, Fortran and/or Python, and ap-
plication programming interfaces (APIs), e.g., SysV sockets
and/or POSIX file I/O, are utilized. Initial tests are per-
formed on the developers desktop, and as the application
matures, more extensive tests are performed on small-scale
scientific computing systems, such as on Linux clusters.

Moving an application prototype from a desktop to a small-
scale scientific computing system already implies a certain
adaptation effort as OSs and RTE(s) may not be the same,
some APIs may not be supported, and different compiler
and linker flags are needed. In other words, the system
environment changes, therefore the application needs to be
adapted, i.e., ported.

Once a certain maturity threshold is reached, the scientific
application is deployed on large-scale production-type HPC
systems, which typically involves more extensive adaptation
efforts as these systems employ even different environments.
At this initial deployment stage, applications are commonly
ported to several HPC system platforms at the same time
in order to fully utilize provided resource allocations. Fur-
thermore, application porting is performed with each HPC
system upgrade and with each newly deployed HPC system.
This results in a continuous porting effort for scientific appli-
cations, which diverts resources away from developing new
and improving legacy scientific applications.

The VSE concept changes the way scientific applications are
developed and deployed (Figure 4) by adapting the system
environment required by an application to the system the
application is running on, instead of trying to adapt the
application to each system environment. Due to the use
of system-level virtualization technology, the adaptation of
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Figure 4: The virtual system environment use-case
scenario for software development and deployment
provides a seamless development, test, and deploy-
ment process for system software and scientific ap-
plications across the various involved systems.

system environments to systems is much simpler and trans-
parent to the application.

Using the VSE approach, scientific application developers
continue to implement early prototypes on their desktops.
However, by deploying VSEs on these desktops, scientific
application developers are able to develop in the production-
type system environment utilizing the features of a partic-
ular HPC system. Using VSEs on application developer
desktops is an added optional benefit of the VSE concept
and by no means a mandatory requirement for the scientific
application developer.

Once a certain maturity threshold is reached, instead of
porting the scientific application to a small-scale scientific
computing system, the developer describes the scientific ap-
plication requirements in form of a VSE configuration de-
scription by deriving existing VSE configuration descrip-
tions of HPC systems provided by system administrators.
Although interaction with system administrators and scien-
tific application support groups of HPC centers is needed, it
is by far less than the amount of time spend for traditional
scientific application porting efforts.

The initial VSE configuration description of a scientific ap-
plication defines the best-fit requirements. Application de-
ployment to small-scale scientific computing systems or to
large-scale production-type HPC systems is seamlessly pro-
vided by deploying this best-fit VSE configuration. Of-
ten, the-best fit requirements of a scientific application de-
pend on certain system parameters, such as scale or avail-
able memory. Individual application tuning may be sup-
ported by the VSE concept by using tuned VSE config-
uration descriptions. For example, if the application re-
quires a Linux-like OS due to the use of SysV and POSIX
features, VSE configuration description should be changed
to use a lightweight Linux variant on supported large-scale
production-type HPC systems.

The VSE deployment mechanisms for scientific application
development and deployment rely on the system and con-
figuration management tools described earlier. Addition-
ally, automatic VSE deployment for scientific application
development and testing may be supported by interfacing
with integrated development environments (IDEs), such as
Eclipse [5].

3.2 System Software Development and
Deployment

System software development and deployment efforts often
require to modify or replace a currently installed system
software suite for testing purposes. This procedure often vi-
olates use policies of large-scale production-type HPC sys-
tems or even of entire HPC centers. As a result, system soft-
ware is mostly developed on desktops and small-scale scien-
tific computing systems. Adaptation of a developed system
software suite for testing and deployment purposes to differ-
ent HPC system architectures is a necessity due to different
hardware and software environments. Large-scale develop-
ment and testing of system software is typically performed
in conjunction with its deployment, i.e., when a scientific
HPC system is newly installed or upgraded.

The VSE concept changes the way system software is de-
veloped and deployed by providing virtual testbeds on desk-
tops, small-scale scientific computing systems, and large-
scale HPC systems. Instead of developing and testing sys-
tem software on the bare hardware by replacing the origi-
nal system software, system-level virtualization technology
allows to encapsulate system software to be tested in “sand-
box” testbed environments in the form of VMs on top of
a low-level hardware abstraction and isolation provided by
VMMs. In case of a serious failure of the tested system soft-
ware, the VMM protects the host OS and other VMs from
unintended corruption. Current type-I virtualization solu-
tions, like Xen, are already being used by system software
developers outside the HPC community. The VSE approach
extends this idea to parallel and distributed systems for sci-
entific computing.

In contrast to using system-level virtualization technology
for developing system software for desktops and servers, the
parallel and distributed nature of scientific computing sys-
tems requires the deployment of VMs on multiple compute
nodes at various scale in form of a parallel virtual testbed
system. Large-scale HPC system emulation may be achieved
by oversubscribing compute nodes, i.e., by deploying more
than one VM per compute node.

Since the system software test run becomes an actual ap-
plication test run to be performed on a desktop, small-
scale scientific computing system, or large-scale HPC sys-
tem, the VSE configuration description of a system software
defines the system software, RTE, and test application re-
quirements.

The VSE deployment mechanisms for system software de-
velopment and deployment are similar to those of scien-
tific applications (Figure 4). They rely on the same sys-
tem and configuration management tools described earlier.
Automated testing of system software components or en-
tire system software suites may be supported by interfacing



with IDEs, and/or, due to the rather collaborative nature
of system software development, with management tools for
source code repositories.

4. RELATED WORK

Related research and development efforts focus on system-
level virtualization technologies, virtual machine configu-
ration mechanisms, and virtual system management tools.
The VSE approach presented in this paper relies on solutions
in each of these areas. However, system-level virtualization
technologies typically focus on the desktop and server mar-
ket, while virtual machine configuration mechanisms and
virtual system management tools have also been recently
developed for HPC systems.

4.1 System-level Virtualization

The recently increased world-wide interest by researchers,
developers, and enterprise businesses in system-level virtu-
alization was sparked a few years ago with the development
of lightweight hypervisor technology using type-I virtual-
ization. Over the last years, this technology matured up
to the point that processor manufacturers, like Intel and
AMD, very recently incorporated hardware virtualization
support into their products. Soon, device manufacturers,
like network card vendors, will follow and virtualization will
be supported by most computer hardware components.

4.1.0.1 Xen

Xen [2, 32] is an open source VMM for 1A-32, x86-64, TA-
64, and PowerPC architectures. Its type-I system-level vir-
tualization allows one to run several VMs (guest OSs) in a
unprivileged domain (DomU) on top of the VMM on the
same computer hardware at the same time using a host OS
running in a privileged domain (Dom0) for VM manage-
ment and hardware drivers. Several modified OSs, such as
FreeBSD, Linux, NetBSD, and Plan 9, may be employed
as guest systems using paravirtualization, i.e., by modifying
the guest OS for adaptation to the VMM interface. Using
hardware support for virtualization in processors, such as
Intel VT and AMD-V, the most recent release of Xen is
able to run unmodified guest OSs inside VMs.

Xen originated as a research project at the University of
Cambridge, led by Ian Pratt, senior lecturer at Cambridge
and founder of XenSource, Inc. This company now supports
the development of the open source project and also sells
enterprise versions of the software. The first public release
of Xen was made available in 2003.

In the context of this paper, Xen provides a perfect starting
point as a system-level virtualization solution for VSEs in
HPC environments. However, the Xen development effort is
targeted toward the desktop and server market, where use
case, such as single VM vs. multiple VMs per processor,
and system characteristics, like processor scale, are much
different from scientific HPC.

4.1.0.2 VMware

VMware Inc. [31] offers a wide range of system-level virtu-
alization solutions, including the free VMware player and
VMware Server (formerly VMware GSX Server). While the

mentioned free products and the non-free VMware Work-
station employ type-II virtualization, i.e., VMs are actual
processes inside the host OS, VMware Inc. also provides a
non-free type-I system-level virtualization solution, VMware
ESX Server, based on hypervisor technology. The company
further distributes an infrastructure solution (VMware In-
frastructure) and various data-center products for deploy-
ment of system-level virtualization in enterprise businesses,
such as for server consolidation.

Similar to Xen, VMware products also target the desktop
and server market. However, VMware is not open source
and type-I products are non-free. This makes it rather hard
to use VMware in an HPC environment. It is our intend
to use the free VMware products only for proof-of-concept
prototypes, if at all.

4.1.03 I4

L4 is a microkernel originally designed and implemented by
Jochen Liedtke [17]. The L4 microkernel has complete con-
trol over all hardware access and is the only component in
the system running in privileged mode. It offers minimal
abstractions and mechanisms to support isolation and com-
munication for all OS services. In order to support virtual-
ization of OS instances, 1.4 provides abstractions for timers
and interrupts as well as virtual memory management, and
encapsulates these as IPC messages. L4Linux [10] is a port
of the Linux 2.6 kernel to run on top of the L4 API. Hard-
ware accesses in LinuxL4 are replaced by IPC calls to the
underlying L4 microkernel.

While the proposed VSE approach does not focus on us-
ing a microkernel as a virtualization layer, there are certain
similarities between microkernels, such as L4, and hypervi-
sors, like Xen. As hypervisors evolve in the next few years,
researchers may profit from existing microkernel technology.

Moreover, microkernel technology plays an important role
in custom lightweight OS solutions for HPC, such as Cata-
mount on the Cray XT3/4 [3] and the Compute Node Kernel
(CNK) on the IBM Blue Gene/L system [18]. Using these
existing lightweight OS solutions as a host OS requires in-
tegrating a microkernel with hypervisor technology.

4.2 VM Configuration and Virtual System

Management

Appropriate mechanisms for VM configuration are a neces-
sity for efficiently using virtualization technology. Precon-
figured system images, e.g., boot disk partition image files,
are typically used to avoid the system software and appli-
cation installation process for every instantiation of a VM.
Additionally, virtual system management tools are a neces-
sity as well in order to create, destroy, migrate, suspend,
resume, and load balance VMs.

4.2.0.4 OSCAR-V

The Open Source Cluster Application Resources (OSCAR)
toolkit is used to build and maintain HPC clusters [19].
The toolkit has been recently extended to support system-
level virtualization technology, e.g., Xen and QEMU. This
virtualization-enhanced version, OSCAR-V [28], includes ad-
ditional tools to create and manage VMs atop a standard



OSCAR cluster. The OSCAR-V solution combines exist-
ing OSCAR facilities with a new VM Management (V2M)
tool that provides a high-level abstraction for the interaction
with underlying VM implementations.

The OSCAR-V enhancements were developed recently by
our team at Oak Ridge National Laboratory to help explor-
ing virtualization technology in HPC environments, and as
a first step toward a VSE configuration and system manage-
ment suite.

4.2.0.5 Virtual Workspaces

The Virtual Workspaces project [12, 30] is an effort to ex-
ploit virtualization technology for the Grid [13]. The goal is
to capture the requirements for an execution environment in
the Grid in form of a virtual workspace definition, and then
use automated tools to find, configure, and provide an envi-
ronment best matching those requirements. Virtualization
technology, such as Xen, is being used in conjunction with
the Globus Toolkit for dynamic provisioning of customized
and controllable remote execution environments.

While the Virtual Workspaces approach seems to be sim-
ilar to the VSE concept proposed in this paper, the ma-
jor difference between both research efforts is the resource
oriented aspect of the Virtual Workspaces approach and
its focus on computing environments with distributed re-
sources. The VSE concept focuses on tightly coupled large-
scale production-type HPC systems, where highly scalable,
lightweight solutions are needed and performance is the rul-
ing metric. The Virtual Workspaces project focuses on more
loosely coupled small-scale distributed cooperative comput-
ing environments, where interoperability is needed most.

4.2.0.6 Virtuoso

Virtuoso [22] is a resource management system build on top
of VMware for managing VMs in a distributed Grid comput-
ing environment. The Virtuoso solution performs admission
control of VMs, and provides the ability for the system to
adapt when the user cannot state his resource requirements.
It also offers the ability to support a mode of operation in
which VMs and other processes compete for resources.

The Virtuoso project further explores network virtualization
issues, such as a layer 2 virtual network system (VNET) [16,
26] and the virtual traffic and topology inference framework
(VTTIF) [9]. VNET creates virtual network overlays of VMs
residing on distributed hosts. It provides a layer-2 Ethernet
that connects remote VMs to a local physical LAN. On the
other hand, the VTTIF observes every packet sent by a VM
and infers from this traffic a global communication topology
and traffic load matrix among a collection of VMs.

Similar to the Virtual Workspaces project, the Virtuoso
project targets distributed Grid computing environments.
However, its research in VM management and in network
virtualization may be reused for VSEs in HPC environments.

4.2.0.7 Cluster On-Demand

In addition to the mentioned projects, there have been re-
cent research and development efforts in using virtualiza-
tion technology for dynamic virtual clusters or cluster on-
demand (COD) provision [14, 4, 6]. These approaches target

capacity HPC as well as distributed Grid computing envi-
ronments for dynamic (on-demand) allocation of resources
in form of encapsulated virtual cluster computing environ-
ments. Research in this area focuses on matching resources
with COD provision requirements, deploying virtual clus-
ters on resources, and isolating virtual cluster instances from
each other and from the host system(s).

The VM configuration and system management tools devel-
oped by these projects will highly influence the development
of appropriate tools for the VSE approach.

5. CONCLUSIONS

We have presented the virtualized system environment (VSE)
concept for scientific high performance computing (HPC).
The proposed approach utilizes system-level virtualization
for improving the development and deployment processes
of system software and applications in scientific HPC en-
vironments. Based on recent advances in hypervisor virtu-
alization technologies, the solution presented in this paper
enables “plug-and-play” supercomputing through desktop-
to-cluster-to-petaflop computer system-level virtualization.
It enables software developers with a seamless development,
test, and deployment process across the various systems in-
volved in these activities.

The overall goal of the proposed effort is to advance the race
for scientific discovery through computation by enabling day-
one operation capability of newly installed systems and by
improving productivity of system software and scientific ap-
plication development and deployment. To this end, the
VSE approach provides an identical, scalable, and reliable
“sandbox” environment for software development and de-
ployment on desktops, small-scale scientific computing sys-
tems, and large-scale production-type HPC systems.

In this paper, we discussed the VSE research background
and approach, the proposed VSE system architecture, the
needed tools for VSE system management and configura-
tion, and the use case scenarios for the VSE concept.

For the implementation of the proposed approach, several
software research and development efforts need to be un-
dertaken. First, a hierarchical VSE configuration descrip-
tion scheme needs to be devised and appropriate tools are
required to allow for VSE configuration. Second, existing
system-level virtualization technologies and virtual system
management tools need to be adapted to allow for VSE de-
ployment. Third, existing system-level virtualization tech-
nologies have to be modified or new solutions must be de-
veloped to provide scalable hypervisors for HPC with low-
to-zero performance impact.

While the implementation of the VSE concept seems to be
straightforward, many open research questions remain, such
as the deployment of scalable HPC hypervisors. Future work
of our research team will focus on these open research ques-
tions, while implementing the proposed VSE approach in
collaboration with university and industry partners.
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