
Symmetric Active/Active High Availability for
High-Performance Computing System Services

Christian Engelmann1,2 and Stephen L. Scott1
1Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

2Department of Computer Science, The University of Reading, Reading, UK
Email: {engelmannc, scottsl}@ornl.gov

Chokchai (Box) Leangsuksun
Computer Science Department, Louisiana Tech University, Ruston, LA, USA

Email: box@latech.edu

Xubin (Ben) He
Department of Electrical and Computer Engineering, Tennessee Tech University, Cookeville, TN, USA

Email: hexb@tntech.edu

Abstract— This work aims to pave the way for high avail-
ability in high-performance computing (HPC) by focusing on
efficient redundancy strategies for head and service nodes.
These nodes represent single points of failure and control
for an entire HPC system as they render it inaccessible and
unmanageable in case of a failure until repair. The presented
approach introduces two distinct replication methods, inter-
nal and external, for providing symmetric active/active high
availability for multiple redundant head and service nodes
running in virtual synchrony utilizing an existing process
group communication system for service group membership
management and reliable, totally ordered message deliv-
ery. Resented results of a prototype implementation that
offers symmetric active/active replication for HPC job and
resource management using external replication show that
the highest level of availability can be provided with an
acceptable performance trade-off.

Index Terms— high-performance computing, high availabil-
ity, virtual synchrony, group communication

I. INTRODUCTION

During the last decade, high-performance computing
(HPC) has become an important tool for scientists world-
wide to understand problems, such as in climate dynam-
ics, nuclear astrophysics, fusion energy, nanotechnology,
and human genomics. Computer simulations of real-world
and theoretical experiments exploiting multi-processor
parallelism on a large scale using mathematical models
have provided us with the advantage to gain scientific

This paper is based on “Active/Active Replication for Highly
Available HPC System Services,” by C. Engelmann, S. L. Scott, C.
Leangsuksun, and X. He, which appeared in the Proceedings of the
1st International Conference on Availability, Reliability and Security
(ARES), Vienna, Austria, April 2006, and on “JOSHUA: Symmetric
Active/Active Replication for Highly Available HPC Job and Resource
Management,” by K. Uhlemann, C. Engelmann, and S. L. Scott, which
appeared in the Proceedings of the International Conference on Cluster
Computing (Cluster), Barcelona, Spain, September 2006. c© 2006 IEEE.

knowledge without the immediate need or capability of
performing physical experiments.

Every year, new larger scale HPC systems emerge on
the market with better raw performance capabilities. This
growth in system scale poses a substantial challenge for
system software and scientific applications with respect
to reliability, availability and serviceability (RAS).

With only very few exceptions, the availability of
recently installed HPC systems has been much lower
in comparison to the same deployment phase of their
predecessors. As a result, HPC centers may artificially
set allowable job run time to very low numbers in
order to force an application to store intermediate results,
essentially a forced checkpoint, as insurance against lost
computation time on long running jobs. However, this
forced checkpoint itself wastes valuable computation time
and resources as it does not produce scientific results.

In contrast to the experienced loss of availability, the
demand for continuous availability has risen dramatically
with the recent trend towards capability computing, which
drives the race for scientific discovery by running appli-
cations on the fastest machines available while desiring
significant amounts of time (weeks and months) without
interruption. These HPC systems must be able to run in
the event of frequent failures in such a manner that the
capability is not severely degraded.

Both, the telecommunication and the general IT com-
munity, have dealt with these issues and have been able to
provide high-level RAS using traditional high availability
concepts, such as active/standby, for some time now. It
is time for the HPC community to follow the IT and
telecommunication industry lead and provide high-level
RAS for HPC centers.

This work aims to pave the way for high availability
in HPC by focusing on efficient redundancy strategies

JOURNAL OF COMPUTERS, VOL. 1, NO. 8, DECEMBER 2006 43

© 2006 ACADEMY PUBLISHER

for head and service nodes. These nodes represent single
points of failure and control for an entire HPC system as
they render it inaccessible and unmanageable in case of
a failure until repair.

The approach presented in this paper introduces two
distinct replication methods, internal and external, for
providing symmetric active/active high availability for
multiple redundant head and service nodes running in
virtual synchrony. We utilize an existing process group
communication system for service membership manage-
ment and reliable, totally ordered message delivery in oder
to provide symmetric active/active replication.

This paper is structured as follows. First, we illustrate
the overall background of the conducted research, in-
cluding a more detailed problem description, conceptual
models, and a review of existing solutions. Second, we
describe two different replication methods for providing
symmetric active/active high availability for HPC system
services. Third, we present results of a prototype imple-
mentation that offers symmetric active/active replication
for HPC job and resource management. We conclude with
a short summary of the presented research and a brief
overview of future work.

II. BACKGROUND

High-performance computing has its historical roots in
parallel and distributed computing, which is based on
the general idea of solving a problem faster using more
than one processor [1], [2]. While distributed computing
takes a decentralized approach, parallel computing uses
the opposite centralized concept. Both are extremes in
a spectrum of concurrent computing with everything in-
between. For example, a distributed computer system may
be loosely coupled, but it is parallel.

Parallel and distributed computing on a large scale
is commonly referred to as supercomputing or high-
performance computing (HPC). Today‘s supercomputers
are typically parallel architectures that have some dis-
tributed features. They scale from a few hundred pro-
cessors to more than a hundred thousand. The elite of
supercomputing systems, i.e., the fastest systems in the
world that appear in the upper ranks of the Top 500 List
of Supercomputer Sites [3], are referred to as high-end
computing (HEC) systems, or ultra-scale HEC systems
due to the number of processors they employ.

Scientific computing (or Computational science) is the
field of study concerned with constructing mathematical
models and numerical solution techniques, and using
computers to analyze and solve scientific and engineering
problems [4], [5]. It utilizes computer simulations and
other forms of computation to solve problems in various
scientific disciplines, such as in climate dynamics, nuclear
astrophysics, fusion energy, nanotechnology, and human
genomics. Ultra-scale scientific high-end computing ex-
ploits multi-processor parallelism on a large scale for
scientific discovery using the fastest machines available
for days, weeks, or even months at a time.

Head Node

Compute Nodes

LAN

Figure 1. Beowulf Cluster Architecture with Single Head Node
(c© 2006 IEEE)

For example, the Terascale Supernova Initiative [6]
is a multidisciplinary collaborative project that aims to
develop models for core collapse supernovae and enabling
technologies in radiation transport, radiation hydrodynam-
ics, nuclear structure, linear systems and eigenvalue solu-
tion, and collaborative visualization. Recent breakthrough
accomplishments include a series of 3D hydrodynamic
simulations that show the extent of a supernova shock.

III. SYSTEM ARCHITECTURE

The emergence of cluster computing in the late 90’s
made scientific computing affordable to everyone, while
it introduced the Beowulf cluster system architecture [7],
[8] (Figure 1) with its single head node controlling a set
of dedicated compute nodes. This parallel architecture has
been proven to be very efficient as it permits customiza-
tion of nodes and interconnects to their purpose. Many
supercomputing vendors adopted the Beowulf architecture
either completely in the form of HPC clusters or in part
by developing hybrid HPC solutions.

A HPC system typically consists of several nodes,
where each node has at least one processor, some memory
and at least one network interface. While a significant
number of compute nodes perform the actual parallel
scientific computation, a single head node and optional
service nodes handle system management tasks, such as
user login, resource management, job scheduling, data
storage, and I/O. A separate network interconnect for sys-
tem management may exist permitting scientific applica-
tions running on compute nodes to communicate without
interference. Furthermore, multi-processor nodes may be
used to significantly reduce communication latency.

In order to improve scalability and to enable isolation
in case of failures, large-scale HPC systems may be
partitioned, so that several sets of partition compute nodes
are supported by their respective partition service nodes.
A single head node is still controlling the entire system,
but individual responsibilities, such as data storage and

44 JOURNAL OF COMPUTERS, VOL. 1, NO. 8, DECEMBER 2006

© 2006 ACADEMY PUBLISHER

I/O, are delegated to partition service nodes to balance
the ratio of the number of compute nodes per service
node and allow for partition outages.

IV. CRITICAL SYSTEM SERVICES

HPC systems run critical and non-critical system ser-
vices on head, service, and compute nodes.

A service is critical to its system if it can‘t operate
without it. Any such service is a single point of failure
and control for the entire system. As long as one of them
is down, the entire system is not available. Critical system
services may involve a set of distributed communicating
processes, and they may cause a loss of system and
application state in case of a failure. If a critical system
service depends on another service, this other service is
an additional point of failure and control for the critical
system service and therefore also a critical system service
by itself. Interdependent critical system services do not
necessarily reside at the same physical location, i.e., not
on the same node. Any node and any network connection
a critical system service depends on is an additional point
of failure and control for the critical system service and
therefore also for the entire system.

A service is non-critical to its system if it can operate
without it in a degraded mode. Any such service is still a
single point of failure for the entire system. Non-critical
system services may also cause a loss of system and
application state in case of a failure.

Typical critical HPC system services are: user login,
network file system, job and resource management, com-
munication services, and in some cases the OS, e.g., for
single system image (SSI) systems. User management,
software management, and programming environment are
usually non-critical system services.

V. SINGLE POINTS OF FAILURE AND CONTROL

If a system has a head node running critical system ser-
vices, this head node is a single point of failure and control
for the entire system. As long as it is down, the entire
system is not available. A head node failure may cause a
loss of system and application state. A typical head node
on HPC systems may run the following critical system
services: user login, job and resource management, and
network file system. It may also run the following non-
critical services: user management, software management,
and programming environment.

Most HPC systems employ a head node, such as
clusters, vector machines, massively parallel processing
(MPP) systems, and SSI solutions. Examples are: Cray
X1 [9], Cray XT3 [10], IBM Blue Gene/L [11], IBM
MareNostrum [12], and SGI Altix [13].

If a system employs service nodes running critical
system services, any such service node is a single point
of failure and control for the entire system. As long as
one of them is down, the entire system is not available.
Similar to a head node failure, a service node failure may
cause a loss of system and application state. If a system
has service nodes running non-critical system services,

any such service node is a single point of failure for the
entire system. A failure of a service node running non-
critical system services may still cause a loss of system
and application state.

Service nodes typically offload head node system ser-
vices, i.e., they may run the same critical and non-critical
system services. Most of the advanced HPC systems
currently in use employ service nodes, e.g., Cray X1, Cray
XT3, IBM Blue Gene/L, and IBM MareNostrum.

VI. AVAILABILITY TAXONOMY

In the following, principles, assumptions and tech-
niques employed in providing high availability in modern
systems are explained. The content of this section is based
on earlier work in refining a modern high availability
taxonomy for generic computing systems [14], [15]. As
part of this research effort [16], it has been adopted to the
complexity of HPC system architectures.

A. Faults, Failures, and Outages

Conceptually, a fault can be described as an unexpected
behavior of a system and can be classified as reproducible
or non-reproducible. While a fault is any unexpected non-
compliance within the system, a failure is a fault that is
externally visible to the end user. The terms fault and
failure are often used synonymously when a distinction
between visible and non-visible faults can‘t be observed.

High availability computing does not make this dis-
tinction as a software system can only preempt or react
to faults it already expects and can detect, i.e., faults that
are visible either directly as abnormal system behavior or
through detection and event propagation. There are many
different causes for failures in HPC systems:

• Design errors can cause failures, since the system is
not designed to correctly perform the expected be-
havior. Programming errors fit under this description
as well as any discrepancies between implementa-
tion, specification, and use cases. Such failures are
reproducible if the software itself is deterministic.

• System overloading can cause failures, since the
system is being used in a way that exceeds its re-
sources to perform correctly. An example is a denial-
of-service attack. System overloading can also be
triggered by using a system beyond its specification,
i.e., by a preceding design error.

• Wearing down can cause failures, since the system is
exposed to mechanical or thermal stress. Typical ex-
amples are power supply, processor, cooling fan, and
disk failures. They are typically non-reproducible
with the original hardware as it gets rendered un-
usable during the failure.

• Preemptive, protective measures of the system can
also cause failures if the system forces a failure in
order to prevent permanent or more extensive dam-
age. For example, a system may automatically shut
down if its processor heat monitor reports unusually
high temperature readings.

JOURNAL OF COMPUTERS, VOL. 1, NO. 8, DECEMBER 2006 45

© 2006 ACADEMY PUBLISHER

• Other causes for failures exist, such as race condi-
tions between processes, distributed deadlocks, and
network transmission errors.

• Further causes are catastrophic events, such as flood,
hurricane, tornado, and terrorist attack.

There is a differentiation between hard errors and
soft errors. A hard error is related to the failure of a
hardware component that needs replacement, such as a
failed memory chip. A soft error is related to software
or data corruption, such as a bit flip in a memory chip,
which can be resolved by simply restarting the system.

There is also a further distinction between benign and
malicious (or Byzantine) failures. While a benign failure,
such as a disk crash, is an easily detectable event, a mali-
cious failure, like in the Byzantine Generals Problem [17]
or the earlier mentioned denial-of-service attack, follows a
malevolent plan. Extensive failure detection mechanisms,
like network intrusion detection for example, often use
probabilistic approaches to identify such failures.

The term outage is used to describe any kind of
deviation from specified system behavior, whether it is
expected or unexpected. All faults and failures can be
categorized as unplanned outages, while intentional pre-
vention of delivering specified system functionality, such
as to perform maintenance operations, software upgrades,
etc., are planned outages.

B. Availability Domains and Configurations

Availability is a system property that can be generalized
into the following three distinctive domains.

1) Basic Availability: A system which is designed,
implemented and deployed with sufficient components
(hardware, software, and procedures) to satisfy its func-
tional requirements, but no more, has basic availability. It
will deliver the correct functionality as long as no failure
occurs and no maintenance operations are performed.
In case of failures or maintenance operations, a system
outage may be observed.

2) High Availability: A system that additionally has
sufficient redundancy in components (hardware, software,
and procedures) to mask certain defined failures, has high
availability. There is a continuum of high availability con-
figurations with this definition due to the ambiguity of the
terms “sufficient”, “mask”, and “certain”. A clarification
of these ambiguous terms follows.

“Sufficient”, is a reflection of the system’s requirements
to tolerate failures. For computing systems, this typically
implies a particular level of hardware and software redun-
dancy that guarantees a specific quality of service.

“Certain”, is a recognition of the fact that not all fail-
ures can or need to be masked. Typically, high availability
solutions mask the most likely failures. However, mission
critical applications (military, banking, and telecommuni-
cation) may mask even catastrophic failures.

“Masking” a fault implies shielding its external ob-
servation, i.e., preventing the occurrence of a failure.
Since faults are defined as an unexpected deviation from

specified behavior, masking a fault means that no devia-
tions (or only precisely defined deviations) from specified
behavior may occur. This is invariably achieved through
a replication mechanism appropriate to the component, a
redundancy strategy. When a component fails, the redun-
dant component replaces it. The degree of transparency in
which this replacement occurs can lead to a wide variation
of configurations:

• Manual masking requires human intervention to put
the redundant component into service.

• Cold Standby requires an automatic procedure to
put the redundant component into service, while
service is interrupted and component state is lost.
A cold standby solution typically provides hardware
redundancy, but not software redundancy.

• Warm Standby requires some component state repli-
cation and an automatic fail-over procedure from
the failed to the redundant component. The service
is interrupted and some service state is lost. A
warm standby solution typically provides hardware
redundancy as well as some software redundancy.
Component state is regularly replicated to the re-
dundant component. In case of a failure, it replaces
the failed one and continues to operate based on the
previously replicated state. Only those component
state changes are lost that occurred between the last
replication and the failure.

• Hot Standby requires full component state replica-
tion and an automatic fail-over procedure from the
failed to the redundant component. The service is
interrupted, but no component state is lost. A hot-
standby solution provides hardware redundancy as
well as software redundancy. However, component
state is replicated to the redundant component on
any change, i.e., it is always up-to-date. In case of
a failure, it replaces the failed one and continues to
operate based on the current state.

Manual masking is a rarely employed configuration
for computing systems as it needs human intervention.
Cold, warm and hot standby are active/standby config-
urations commonly used in high availability computing.
The number of standby components may be increased to
tolerate more than one failure at a time. The following
active/active configurations require more than one redun-
dant system component to be active, i.e., to accept and
execute state change requests.

• Asymmetric active/active requires two or more ac-
tive components that offer the same capabilities at
tandem without coordination, while optional standby
components may replace failing active components
(n+1 and n+m). Asymmetric active/active provides
high availability with improved throughput perfor-
mance. While it is heavily used in the telecommuni-
cation sector for stateless components, it has limited
use cases due to the missing coordination between
active components.

• Symmetric active/active requires two or more active
components that offer the same capabilities and

46 JOURNAL OF COMPUTERS, VOL. 1, NO. 8, DECEMBER 2006

© 2006 ACADEMY PUBLISHER

maintain a common global component state using
virtual synchrony [18] or distributed control [19],
i.e., using a state change commit protocol. There is
no interruption of service and no loss of state, since
active services run in virtual synchrony without the
need to failover. Symmetric active/active is superior
in many areas, but is significantly more complex due
to need for advanced commit protocols.

3) Continuous Availability: A system that has high
availability properties and additionally applies these to
planned outages as well, has continuous availability.
This implies a masking strategy for planned outages,
such as maintenance. Furthermore, a service interruption
introduced by a high availability solution is a planned
outage that needs to be dealt with as well. Continuous
availability requires complete masking of all outages.

Application areas are typically mission critical, i.e., in
the military, banking, and telecommunication sector. Em-
ployed technologies range from hot standby with trans-
parent fail-over and multiple standbys to active/active.

C. Availability Metrics

A systems availability can be between 0 and 1 (or 0%
and 100% respectively), where 0 stands for no availability,
i.e., the system is inoperable, and 1 means continuous
availability, i.e., the system does not have any outages.
Availability, in the simplest form, describes a ratio of
system uptime tup and downtime tdown:

A =
tup

tup + tdown
(1)

When only considering unplanned outages, availability
can be calculated (Equation 2) based on a systems mean
time to failure (MTTF) and mean time to recover
(MTTR). While the MTTF is the average interval of
time that a system will operate before a failure occurs,
the MTTR of a system is the average amount of time
needed to repair, recover, or otherwise restore its service.
However, there is a distinction between MTTF and mean
time between failures (MTBF), which is the average
interval of time in which any failure occurs again, i.e.,
the inverse of the failure frequency. A systems MTBF
covers both, MTTF and MTTR (Equation 3). The
estimated annual downtime of a system in terms of hours
tdown can be calculated using its availability (Equation 4).
Planned outages of a system may be considered by
respectively adjusting its MTTF and MTTR.

A =
MTTF

MTTF + MTTR
(2)

MTBF = MTTF + MTTR (3)

tdown = 8760 · (1 − A) (4)

Since a component can be described as a system in
itself, the availability of a system depends on the avail-
ability of its individual components. System components
can be coupled serial, e.g., component 1 depends on
component 2, or parallel, e.g., component 3 is redundant

to component 4. Availability of serial and parallel com-
ponent blocks can be calculated as follows:

Aserial =
n∏

i=1

Ai (5)

Aparallel = 1 −
n∏

i=1

(1 − Ai) (6)

The more interdependent (serial) components a system
has, the less availability it provides. The more redundant
(parallel) components a system has, the more availability
it offers. High availability systems are build upon adding
redundant components to increase overall availability.

D. Fail-Stop

The fail-stop model assumes that system components,
such as individual services, nodes, and communication
links, fail by simply stopping. Employed failure detection
mechanisms only react to hard errors or catastrophic soft
errors. Redundancy solutions based on this model do
not guarantee correctness if a failing system component
violates this assumption by producing false output due to
an occurring soft error or a system design error.

The research presented in this paper is entirely based
on the fail-stop model.

VII. EXISTING SOLUTIONS

High availability solutions for head and service nodes
of HPC systems are typically based on service-level
replication techniques. If a service running on a head or
service node fails, a redundant one running on another
node takes over. This may imply a head/service node fail-
over, where the failed node is completely replaced by the
standby node, i.e., the standby node assumes the network
address of the failed node.

Individual high availability solutions are usually tied
directly to the services they provide high availability for.
Each solution uses its own failure detection mechanism
and redundancy strategy.

A. Active/Standby using Shared Storage

The concept of using a shared storage device (Figure 2)
for saving service state is a common technique for pro-
viding service-level high availability, but it has its pitfalls.
Service state is saved on the shared storage device upon
modification, while the standby service takes over in case
of a failure of the active service. The standby service
monitors the health of the active service using a heartbeat
mechanism [20] and initiates the fail-over procedure. An
extension of this technique uses a crosswise hot standby
redundancy strategy in an asymmetric active/active fash-
ion. In this case, both are active services and additional
standby services for each other. In both cases, the MTTR
depends on the heartbeat interval.

While the shared storage device is typically a RAID
system and therefore highly available, it remains a single

JOURNAL OF COMPUTERS, VOL. 1, NO. 8, DECEMBER 2006 47

© 2006 ACADEMY PUBLISHER

Acive/Standby Head Nodes with Shared Storage

Compute Nodes

LAN

Figure 2. Enhanced Beowulf Cluster Architecture with Active/Standby
High Availability for Head Node System Services using Shared Storage
(c© 2006 IEEE)

point of failure and control. Furthermore, file system cor-
ruption due to failures occurring during write operations
are not masked. Moreover, they lead to further corruption
of the standby service state and to a subsequent failure
(if detected at all). As with most shared storage solutions,
correctness and quality of service are not guaranteed due
to the lack of commit protocols.

The following solutions using a shared storage device
exist for head and service nodes of HPC systems.

1) SLURM: The Simple Linux Utility for Resource
Management (SLURM) [21], [22] is an open source
and highly scalable HPC job and resource management
system. SLURM is a critical system service running on
the head node. It provides job and resource management
for many HPC systems, e.g., IBM Blue Gene/L. It offers
high availability using a hot standby redundancy strategy
with a standby head node and a shared storage device.

2) PVFS 2 Metadata Server: The Parallel Virtual File
System (PVFS) 2 [23], [24] is a file system for HPC
that utilizes parallel I/O in order to eliminate bottlenecks.
One of the main components of any parallel file system
is the metadata server (MDS), which keeps records of all
stored files in form of a directory server. This MDS is a
critical system service typically located on head or service
nodes. PVFS 2 offers two high availability configurations
for its MDS involving a standby node and a shared storage
device, hot standby and asymmetric active/active.

3) Lustre Metadata Server: Similar to PVFS 2, Lus-
tre [25], [26] is a scalable cluster file system for HPC. It
runs in production on systems as small as 4 and as large
as 15,000 compute nodes. Its MDS keeps records of all
stored files in form of a directory server. This MDS is a
critical system service typically located on head or service
nodes. Lustre provides high availability for its MDS using
an active/standby configuration with a shared storage.

Acive/Standby Head Nodes

Compute Nodes

LAN

Figure 3. Enhanced Beowulf Cluster Architecture with Active/Standby
High Availability for Head Node System Services (c© 2006 IEEE)

B. Active/Standby

Service-level active/standby high availability solutions
for head and service nodes in HPC systems (Figure 3)
involve active and standby nodes. They use state commit
protocols to maintain consistency of backup state. The
following solutions using the active/standby configuration
exist for head and service nodes of HPC systems.

1) HA-OSCAR: High Availability Open Source Cluster
Application Resources (HA-OSCAR) [27]–[29] is a high
availability framework for OpenPBS [30]. OpenPBS is
the original version of the Portable Batch System (PBS),
a flexible batch queuing system developed for NASA in
the early to mid-1990s. Its service interface has become
a standard in HPC job and resource management.

OpenPBS provides job and resource management for
typical low- to mid-end HPC systems. It is a critical
system service running on the head node. HA-OSCAR
supports high availability for Open PBS using a warm
standby redundancy strategy involving a standby head
node. Service state is replicated to the standby upon mod-
ification, while the standby service takes over based on
the current state. The standby node monitors the health of
the active node using a heartbeat mechanism and initiates
the fail-over. However, OpenPBS does temporarily loose
control of the system in this case. All previously running
jobs are automatically restarted.

The MTTR of HA-OSCAR depends on the heartbeat
interval, the fail-over time, and the time currently running
jobs need to recover to their previous state. HA-OSCAR
integrates with the compute node checkpoint/restart layer
for LAM/MPI [31], BLCR [32], improving its MTTR to
3-5 seconds for detection and fail-over plus the time to
catch up based on the last application checkpoint.

2) PBS Pro on the Cray XT3: PBS is the leading job
and resource management solution for HPC systems. Its
professional edition, PBS Professional (PBS Pro) [33],
operates in networked multi-platform UNIX environ-

48 JOURNAL OF COMPUTERS, VOL. 1, NO. 8, DECEMBER 2006

© 2006 ACADEMY PUBLISHER

Asymmetric Active/Active Head Nodes

Compute Nodes

LAN

Figure 4. Enhanced Beowulf Cluster Architecture with Asymmetric Ac-
tive/Active High Availability for Head Node System Services (c© 2006
IEEE)

ments, and supports heterogeneous clusters of worksta-
tions, supercomputers, and massively parallel systems.

PBS Pro for the Cray XT3 system [34] supports
high availability using a hot standby redundancy strategy
involving Crays proprietary interconnect for replication
and transparent fail-over. Service state is replicated to the
standby node, which takes over based on the current state
without loosing control of the system. This solution has
an MTTR of practically 0. However, it is only available
for the Cray XT3 and its availability is limited by the
deployment of two redundant nodes.

C. Asymmetric Active/Active

Similar to active/standby solutions, service-level asym-
metric active/active high availability solutions with op-
tional standby service(s) (n + 1 or n + m) for head and
service nodes in HPC systems (Figure 4) also perform
state change commit protocols to maintain consistency
of backup state. However, the backup states of all active
services are kept separately.

At this moment, there is only one proof-of-concept pro-
totype implementation of asymmetric active/active high
availability for HPC system services, which has been
developed in conjunction with this research effort.

1) Asymmetric Active/Active HA-OSCAR: As part of
the HA-OSCAR research, an asymmetric active/active
prototype implementation [35] has been developed that
offers HPC job and resource management in a high-
throughput computing scenario. Two different job and
resource management services, OpenPBS and the Sun
Grid Engine (SGE) [36], run independently on different
head nodes at the same time, while an additional head
node is configured as a standby. Fail-over is performed
using a heartbeat mechanism and is guaranteed for only
one service at a time using a priority-based fail-over
policy. Similar to the active/standby HA-OSCAR variant,

Symmetric Active/Active Head Nodes

Compute Nodes

LAN

Figure 5. Enhanced Beowulf Cluster Architecture with Symmetric Ac-
tive/Active High Availability for Head Node System Services (c© 2006
IEEE)

Node A Node B Node C

Service
O

ut
pu

t
In

pu
t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Service

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Service

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Group
Communication

Group
Communication

Group
Communication

Group
Communication

In
pu

t
M

1 In
pu

t
M

2 In
pu

t
M

3

O
ut

pu
t

M
1,

 M
2,

 M
3

Figure 6. Symmetric Active/Active Replication Architecture (c© 2006
IEEE)

OpenPBS and SGE do loose control of the system during
fail-over, requiring a restart of lost jobs. Only one failure
is completely masked at a time due to the 2 + 1 config-
uration. A second failure results in a degraded operating
mode with one head node serving the system.

D. Symmetric Active/Active

Work in symmetric active/active high availability solu-
tions HPC system services (Figure 5) started only very
recently as part of this research effort. The following
sections describe the developed mechanisms as well as
prototype implementation results.

VIII. SYMMETRIC ACTIVE/ACTIVE REPLICATION

The symmetric active/active high availability configu-
ration for services (Figures 5, 6) allows more than one
redundant service to be active, i.e., to accept and perform
state changes, while it does not waste system resources
using idle standbys. Furthermore, there is no interruption

JOURNAL OF COMPUTERS, VOL. 1, NO. 8, DECEMBER 2006 49

© 2006 ACADEMY PUBLISHER

of service and no loss of state, since active services run
in virtual synchrony without the need to fail over.

Service state replication is performed by totally or-
dering all state change messages and reliably delivering
them to all redundant active services. A process group
communication system is used to ensure total message
order and reliable message delivery as well as service
group membership management. Furthermore, consistent
output produced by all active services, i.e., messages sent
to other parts of the system or return messages related to
service state changes, may be routed through the group
communication system, using it for a distributed mutual
exclusion to ensure that output is delivered only once.
This is only necessary if the receiving component is
unable to ignore duplicate return messages.

The number of active services is variable at runtime
and can be changed by either forcing an active service to
leave the service group or by joining a new service with
the service group. This allows adaptation of the service
group size, such as adding new nodes when old nodes
become less reliable. This also permits reconfiguration of
the service group behavior, for example when performing
live upgrades in order to fix discovered vulnerabilities or
improve throughput performance.

As long as one active service is alive, state is never lost,
state changes can be performed and output is produced
accordingly to state changes.

Implementing symmetric active/active replication using
virtual synchrony supported by a group communication
system implies event-based programming, where a service
only reacts to event messages using uninterruptible event
handler routines. More advanced programming models for
virtual synchrony, such as distributed control [37], use the
replicated remote procedure call abstraction to provide a
request/response programming model.

However, both programming models assume that a
service supplies the necessary hooks to perform uninter-
ruptible state transitions. While this is typically the case
for networked services that have some sort of event notifi-
cation, remote procedure call or remote method invocation
interface, command line based services, such as the batch
job scheduler in HPC systems, and proprietary network
services, such as data storage and I/O in HPC systems,
do not necessarily offer these hooks.

Adaptation to the event-based or request/response pro-
gramming model can be performed either internally by
modifying the service itself or externally by wrapping it
into a virtually synchronous environment [38].

A. Internal Replication

Internal replication (Figure 7) allows each active ser-
vice of a service group to accept external state change
requests individually, while using a group communication
system for total message order and reliable message
delivery to all members of the service group. All state
changes are performed in the same order at all services,
thus virtual synchrony is given.

Node C

Adapter

Service

Adapter

Node B

Adapter

Service

Adapter

Node A

Adapter

Service

Adapter

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Group
Communication

Group
Communication

Group
Communication

Group
Communication

M
1

M
2

M
3

M
1,

 M
2,

 M
3

In
pu

t

In
pu

t

In
pu

t

O
ut

pu
tService Interface Service Interface

Service Interface Service Interface

Figure 7. Symmetric Active/Active Replication Architecture using
Internal Replication by Service Modification/Adaptation (c© 2006 IEEE)

Node C

Interceptor

Service

Interceptor

Node B

Interceptor

Service

Interceptor

Node A

Interceptor

Service

Interceptor

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Group
Communication

Group
Communication

Group
Communication

Group
Communication

M
1

M
2

M
3

M
1,

 M
2,

 M
3

Service Interface Service Interface

Service Interface Service Interface

Service Interface Service Interface

Service Interface Service Interface

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

In
pu

t

In
pu

t

In
pu

t

O
ut

pu
t

Figure 8. Symmetric Active/Active Replication Architecture using
External Replication by Service Interface Utilization (c© 2006 IEEE)

For example, a networked server that changes its state
based on incoming remote procedure calls, such as a
parallel file system metadata server, is modified to repli-
cate all state changes in form of messages to all services
in the service group. Upon delivery, state changes are
performed in virtual synchrony. Remote procedure calls
and respective state changes are executed by separate
event handler routines.

This method requires modification of existing code,
which may be unsuitable for complex and/or large ser-
vices. The amount of modification necessary may result
in a complete redesign and reimplementation. However,
adaptation of the service to the event-based programming
model of the group communication system may lead to
performance enhancements as internal replication implies
fine-grain synchronization of state changes.

B. External Replication

External replication (Figure 8) avoids modification of
existing code by wrapping a service into a virtually
synchronous environment. Interaction with other services
or with the user is intercepted, totally ordered and reliably
delivered to the service group using a group commu-

50 JOURNAL OF COMPUTERS, VOL. 1, NO. 8, DECEMBER 2006

© 2006 ACADEMY PUBLISHER

nication system that mimics the service interface using
separate event handler routines.

For example, the command line interface of a service
is replaced with an interceptor command that behaves
like the original, but forwards all input to an interceptor
group. Once totally ordered and reliably delivered, each
interceptor group member calls the original command to
perform operations at each service group member. Service
group output may be routed through the interceptor group
for at most once delivery.

This method wraps an existing solution into a virtually
synchronous environment without modifying it, which al-
lows reusing the same solution for different services with
the same interface. However, the missing adaptation of
the service to the event-based programming model of the
group communication system may lead to performance
degradation as external replication implies coarse-grain
synchronization of state changes.

C. Expected Performance

Both methods result in a performance impact in com-
parison to a single service solution. Based on existing
experience with group communication systems [39], [40],
both methods increase the response latency and may
limit throughput performance. It is expected that inter-
nal replication offers overall better performance due to
optimizations within the service. However, the overall
performance highly depends on the group communication
system and its commit protocol.

For both methods, non-conflicting internal replication
state changes or external replication service interface
operations may be interleaved in order to gain latency
and throughput performance. Furthermore, state changes
or service interface operations may be split up into smaller
atomic operations for fine-grain interleaving.

Overall, we recommend the internal replication method
when low latency and high throughput performance is
needed, except where the prospect of extensive code
modification or foreseeable major service design changes
prohibits it. However, we recommend using external repli-
cation when the symmetric active/active high availability
solution should be reusable for other services with the
same or a similar interface.

D. Continuous Availability

Since symmetric active/active replication provides high
availability without interruption of service in case of a
failure, using its mechanisms for planned outages as well,
such as for live upgrades and other maintenance, would
result in providing continuous availability.

Servicing or upgrading a highly available system ser-
vice while it is running in a symmetric active/active
fashion requires removal, maintenance/upgrade and rejoin
of each individual service group member, one at a time.
A strict prerequisite of such a procedure is that the new
version of the service fully supports the interface of the
old version.

Head Node C

Joshua

Torque

(PBS Sever,
 Maui & Mom)

JMutex

(Prologue
 of PBS Mom)

Head Node B

Joshua

Torque

(PBS Sever,
 Maui & Mom)

JMutex

(Prologue
 of PBS Mom)

Head Node A

Joshua

Torque

(PBS Sever,
 Maui & Mom)

JMutex

(Prologue
 of PBS Mom)

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Group
Communication

Group
Communication

Group
Communication

Group
Communication

M
1

M
2

M
3

M
1,

 M
2,

 M
3

PBS Interface PBS Interface

PBS Interface PBS Interface

PBS Interface PBS Interface

PBS Interface PBS Interface

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

In
pu

t

In
pu

t

In
pu

t

O
ut

pu
t

Figure 9. Symmetric Active/Active High Availability Architecture of
the JOSHUA solution for HPC Job and Resource Management (c© 2006
IEEE)

libjutils
 � message and logging facilities
 � i/o, lists and misc

joshua
(server process)

libconfuse
 � configuration file parser

libtranis
 � communication facilities
 � event driven programming interface

jcmd
 � jsub (submission)
 � jstat (status info)
 � jdel (deletion)

jmutex
 � jmutex (lock mutex)
 � jdone (unlock mutex)

pr
og

ra
m

s
lib

ra
rie

s

Figure 10. Individual Software Components of the JOSHUA Solution
for Highly Available HPC Job and Resource Management (c© 2006
IEEE)

Maintaining a consistent interface between service and
group communication system over a certain period of time
is easier using external replication as it is based on the
service interface, while the internal design of the service
is not affected and may change with a new version.

IX. PROTOTYPE IMPLEMENTATION

The JOSHUA solution [41], [42] offers symmetric
active/active high availability for HPC job and resource
management services with a PBS compliant service in-
terface. It represents a virtually synchronous environment
using external replication based on the PBS service in-
terface (Figure 9) providing high availability without any
interruption of service and without any loss of state.

A. Software Architecture
Conceptually, the JOSHUA software architecture (Fig-

ure 10) consists of three major parts: a server process
(joshua) running on each head node, a set of control
commands (jsub, jdel, and jstat) reflecting PBS compliant
behavior to the user, and a set of scripts (jmutex and
jdone) to perform a distributed mutual exclusion during
job launch. Furthermore, JOSHUA relies on the Tran-
sis [43], [44] group communication system for reliable,
totally ordered message delivery.

JOURNAL OF COMPUTERS, VOL. 1, NO. 8, DECEMBER 2006 51

© 2006 ACADEMY PUBLISHER

System # Latency Overhead
TORQUE 1 98ms
JOSHUA/TORQUE 1 134ms 36ms / 37%
JOSHUA/TORQUE 2 265ms 158ms /161%
JOSHUA/TORQUE 3 304ms 206ms /210%
JOSHUA/TORQUE 4 349ms 251ms /256%

TABLE I.
JOB SUBMISSION LATENCY RESULTS FOR JOSHUA (c© 2006 IEEE)

System # 10 Jobs 50 Jobs 100 Jobs
TORQUE 1 0.93s 4.95s 10.18s
JOSHUA/TORQUE 1 1.32s 6.48s 14.08s
JOSHUA/TORQUE 2 2.68s 13.09s 26.37s
JOSHUA/TORQUE 3 2.93s 15.91s 30.03s
JOSHUA/TORQUE 4 3.62s 17.65s 33.32s

TABLE II.
JOB SUBMISSION THROUGHPUT RESULTS FOR JOSHUA (c© 2006

IEEE)

The JOSHUA prototype is based on the PBS compliant
TORQUE [45] HPC job and resource management system
that employs the TORQUE PBS server together with the
Maui [46] scheduler on each active head node and a set
of PBS mom servers on compute nodes.

B. Test Results

The JOSHUA v0.1 prototype implementation has been
deployed on a dedicated Linux cluster for functional
and performance testing. Each node contained dual Intel
Pentium III (Katmai) 450MHz processors with 512 MB
of memory and 8 GB of disk space. All nodes were
connected via a single Fast Ethernet (100MBit/s full
duplex) hub. Debian GNU/Linux 3.1 (sarge) has been
used as operating system in conjunction with Transis
v1.03, TORQUE v2.0p5, and Maui v3.2.6p13.

The job submission latency overhead (Table I) in-
troduced by the network communication between the
JOSHUA commands, the Transis group communication
system and the JOSHUA server was in an accept-
able range. The latency overhead between TORQUE
and JOSHUA/TORQUE on a single head node (37%)
can be attributed to communication on the same node,
while the significant latency overhead increase between
JOSHUA/TORQUE on a single and on two head nodes
(439%) can be explained by off-node communication and
the Transis commit protocol overhead. Overall a latency
overhead of only 250ms for a 4 head node system is still
acceptable for a HPC system.

The job submission throughput overhead of JOSHUA
(Table II) reflected similar characteristics. Considering
high throughput HPC scenarios, such as in computational
biology or on-demand cluster computing, adding 100 jobs
to the job queue in 33s for a 4 head node system is also
an acceptable performance.

Using a rather low MTTF of 5000 hours and a MTTR
of 72 hours for an individual head node, the expected
downtime (Equations 2, 4) of a single head node is
over 5 days within a year. An availability analysis (Ta-
ble III) based on parallel system component coupling

Availability Nines Downtime/Year
1 98.6% 1 5d 4h 21min
2 99.98% 3 1h 45min
3 99.9997% 5 1min 30s
4 99.999996% 7 1s

(Based on MTTF=5000h and MTTR=72h)

TABLE III.
AVAILABILITY AND DOWNTIME/YEAR ESTIMATES FOR JOSHUA

(c© 2006 IEEE)

(Equation 6) shows that deploying the JOSHUA solution
on two head nodes reduces the annual downtime to only
1 hour and 45 minutes with a latency overhead of only
158 milliseconds. Adding another head node decreases the
downtime to 1 1/2 minutes with a latency overhead of 206
milliseconds. A 4 head node solution offers an availability
of 7 nines with an annual downtime of 1 second and a
still acceptable latency overhead of 251 milliseconds.

This analysis shows that the JOSHUA solution can
provide the highest level of availability with an acceptable
performance trade-off. However, it does not show the im-
pact of correlated failures, such as caused by overheating
of a rack or computer room. The deployment of redundant
head nodes also needs to take into account these location
dependent failure causes. Furthermore, an availability of
7 nines as provided by 4 active head nodes may not be
a realistic target for a single HPC system as catastrophic
events are not considered.

More extensive implementation details and test results
of the JOSHUA solution for highly available HPC job
and resource management can be found in earlier publi-
cations [41], [42].

X. CONCLUSION

With this paper, we presented our recent research
accomplishments in providing the highest level of RAS
for HPC systems. As a first step, we focused on efficient
redundancy strategies for HPC system services running
on head and service nodes. These nodes represent single
points of failure and control for an entire HPC system as
they render it inaccessible and unmanageable in case of
a failure until repair.

We illustrated the overall background of the conducted
research, including a more detailed problem description,
conceptual models, and a review of existing solutions. We
introduced two different replication methods, internal and
external, for providing symmetric active/active high avail-
ability for multiple redundant nodes running in virtual
synchrony utilizing an existing process group communi-
cation system for service group membership management
and reliable, totally ordered message delivery.

Results of a prototype implementation that offers sym-
metric active/active replication for HPC job and resource
management using external replication shows that the
highest level of availability can be provided with an
acceptable performance trade-off. The JOSHUA prototype

52 JOURNAL OF COMPUTERS, VOL. 1, NO. 8, DECEMBER 2006

© 2006 ACADEMY PUBLISHER

is based on the TORQUE/Maui job and resource manage-
ment combination and is able to provide an availability
of 7 nines with an annual downtime of 1 second using a
4 head node system with a job submission latency over-
head of 251ms (256%) and a job submission throughput
performance of 100 jobs in 33.32s.

Ongoing work in this area focuses on providing sym-
metric active/active replication for other HPC system
services, such as for the PVFS metadata server, as well
as on performance enhancements and generalized high
availability programming models.

Future research efforts will focus on providing high
availability for compute nodes of HPC systems.

ACKNOWLEDGMENTS

This research was partially sponsored by the Mathemat-
ical, Information, and Computational Sciences Division;
Office of Advanced Scientific Computing Research; U.S.
Department of Energy. The work was performed in part at
Oak Ridge National Laboratory, which is managed by UT-
Battelle, LLC under Contract No. DE-AC05-00OR22725.
It was also performed in part at Louisiana Tech University
under U.S. Department of Energy Grant No. DE-FG02-
05ER25659.

The research performed at Tennessee Tech University
was partially supported by the U.S. National Science
Foundation under Grant No. CNS-0617528 and the Re-
search Office of the Tennessee Tech University under a
Faculty Research Grant.

The work at Oak Ridge National Laboratory and Ten-
nessee Tech University was also partially sponsored by the
Laboratory Directed Research and Development Program
of Oak Ridge National Laboratory.

The presented research is part of the MOLAR [47],
[48] project, which concentrates on adaptive, reliable,
and efficient operating and runtime system solutions for
ultra-scale scientific high-end computing as part of the
Forum to Address Scalable Technology for Runtime and
Operating Systems (FAST-OS) [49].

REFERENCES

[1] “Scientific Computing explained at Wikipedia,” Available
at http://en.wikipedia.org/wiki/Distributed computing.

[2] S. Hariri and M. Parashar, Tools and Environments for
Parallel and Distributed Computing. Wiley-Interscience,
2004.

[3] “Top 500 List of Supercomputer Sites,” Available at
http://www.top500.org.

[4] M. T. Heath, Scientific Computing. McGraw-Hill Higher
Education, 2001.

[5] “Scientific Computing explained at Wikipedia,” Available
at http://en.wikipedia.org/wiki/Scientific computing.

[6] “Terascale Supernova Initiative at Oak Ridge Na-
tional Laboratory, Oak Ridge, TN, USA,” Available at
http://www.phy.ornl.gov/tsi.

[7] T. Sterling, Beowulf cluster computing with Linux. Cam-
bridge, MA, USA: MIT Press, 2002.

[8] T. Sterling, J. Salmon, D. J. Becker, and D. F. Savarese,
How to Build a Beowulf: A Guide to the Implementation
and Application of PC Clusters. Cambridge, MA, USA:
MIT Press, 1999.

[9] “X1 Computing Platform at Cray, Seattle, WA, USA,”
Available at http://www.cray.com/products/x1.

[10] “XT3 Computing Platform at Cray, Seattle, WA, USA,”
Available at http://www.cray.com/products/xt3.

[11] “Blue Gene/L Computing Platform at IBM Research,”
Available at http://www.research.ibm.com/bluegene.

[12] “MareNostrum eServer Computing Platform at IBM,”
Available at http://www.ibm.com/servers/eserver/linux/
power/marenostrum.

[13] “Altix Computing Platform at SGI, Mountain View,
CA, USA,” Available at http://www.sgi.com/products/
servers/altix.

[14] R. I. Resnick, “A modern taxonomy of high availabil-
ity,” 1996, Available at http://www.generalconcepts.com/
resources/reliability/resnick/HA.htm.

[15] E. Vargas, “High availability fundamentals,” Sun
Blueprints series, Nov. 2000.

[16] C. Engelmann and S. L. Scott, “Concepts for high avail-
ability in scientific high-end computing,” in Proceedings
of High Availability and Performance Workshop (HAPCW)
2005, Santa Fe, NM, USA, Oct. 11, 2005.

[17] L. Lamport, R. E. Shostak, and M. C. Pease, “The Byzan-
tine generals problem,” ACM Transactions on Program-
ming Languages and Systems (TOPLAS), vol. 4, no. 3, pp.
382–401, 1982.

[18] L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal,
“Extended virtual synchrony,” Proceedings of IEEE 14th

International Conference on Distributed Computing Sys-
tems (ICDCS) 1994, pp. 56–65, June 21-24, 1994.

[19] C. Engelmann, S. L. Scott, and G. A. Geist, “High avail-
ability through distributed control,” in Proceedings of High
Availability and Performance Workshop (HAPCW) 2004,
Santa Fe, NM, USA, Oct. 12, 2004.

[20] “Heartbeat,” Available at http://www.linux-ha.org/
HeartbeatProgram.

[21] “SLURM at Lawrence Livermore National Laboratory,
Livermore, CA, USA,” Available at http://www.llnl.gov/
linux/slurm.

[22] A. Yoo, M. Jette, and M. Grondona, “SLURM: Simple
linux utility for resource management,” in Lecture Notes in
Computer Science: Proceedings of Job Scheduling Strate-
gies for Parallel Processing (JSSPP) 2003, vol. 2862,
Seattle, WA, USA, June 24, 2003, pp. 44–60.

[23] “Parallel Virtual File System (PVFS),” Available at
http://www.pvfs.org/pvfs2.

[24] PVFS2 Development Team, “PVFS2 High-Availability
Clustering,” Available at http://www.pvfs.org/pvfs2 as part
of the PVFS2 source distribution.

[25] “Lustre at Cluster File Systems, Inc., Boulder, CO, USA,”
Available at http://www.lustre.org.

[26] “Lustre Architecture Whitepaper at Cluster File
Systems, Inc., Boulder, CO, USA,” Available at
http://www.lustre.org/docs/whitepaper.pdf.

[27] “HA-OSCAR at Louisiana Tech University, Ruston, LA,
USA,” Available at http://xcr.cenit.latech.edu/ha-oscar.

[28] I. Haddad, C. Leangsuksun, and S. L. Scott, “HA-OSCAR:
Towards highly available linux clusters,” Linux World
Magazine, Mar. 2004.

[29] K. Limaye, C. Leangsuksun, Z. Greenwood, S. L. Scott,
C. Engelmann, R. Libby, and K. Chanchio, “Job-site
level fault tolerance for cluster and grid environments,” in
Proceedings of IEEE International Conference on Cluster
Computing (Cluster) 2005, Boston, MA, USA, Sept. 26-
30, 2005.

[30] “OpenPBS at Altair Engineering, Troy, MI, USA,” Avail-
able at http://www.openpbs.org.

[31] “LAM-MPI Project at Indiana University, Bloomington,
IN, USA,” Available at http://www.lam-mpi.org.

JOURNAL OF COMPUTERS, VOL. 1, NO. 8, DECEMBER 2006 53

© 2006 ACADEMY PUBLISHER

[32] “Berkeley Lab Checkpoint/Restart (BLCR) project at
Lawrence Berkeley National Laboratory, Berkeley, CA,
USA,” Available at http://ftg.lbl.gov/checkpoint.

[33] “PBS Pro at Altair Engineering, Troy, MI, USA,” Available
at http://www.altair.com/software/pbspro.htm.

[34] “PBS Pro for the Cray XT3 Computing Platform
at Altair Engineering, Troy, MI, USA,” Available at
http://www.altair.com/pdf/PBSPro Cray.pdf.

[35] C. Leangsuksun, V. K. Munganuru, T. Liu, S. L. Scott, and
C. Engelmann, “Asymmetric active-active high availability
for high-end computing,” in Proceedings of 2nd Interna-
tional Workshop on Operating Systems, Programming En-
vironments and Management Tools for High-Performance
Computing on Clusters (COSET-2) 2005, Cambridge, MA,
USA, June 19, 2005.

[36] “Sun Grid Engine (SGE) at Sun Microsys-
tems, Inc, Santa Clara, CA, USA,” Available
http://gridengine.sunsource.net.

[37] C. Engelmann, S. L. Scott, and G. A. Geist, “Distributed
peer-to-peer control in Harness,” in Lecture Notes in Com-
puter Science: Proceedings of International Conference on
Computational Science (ICCS) 2002, Part II, vol. 2330,
Amsterdam, The Netherlands, Apr. 21-24, 2002, pp. 720–
727.

[38] C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He,
“Active/active replication for highly available HPC system
services,” in Proceedings of International Symposium on
Frontiers in Availability, Reliability and Security (FARES)
2006, in conjunction with 1st International Conference on
Availability, Reliability and Security (ARES) 2006, Vienna,
Austria, Apr. 20-22, 2006, pp. 639–645.

[39] X. Defago, A. Schiper, and P. Urban, “Total order broad-
cast and multicast algorithms: Taxonomy and survey,”
ACM Computing Surveys, vol. 36, no. 4, pp. 372–421,
2004.

[40] G. V. Chockler, I. Keidar, and R. Vitenberg, “Group
communication specifications: A comprehensive study,”
ACM Computing Surveys, vol. 33, no. 4, pp. 1–43, 2001.

[41] K. Uhlemann, C. Engelmann, and S. L. Scott, “JOSHUA:
Symmetric active/active replication for highly available
HPC job and resource management,” in Proceedings of
IEEE International Conference on Cluster Computing
(Cluster) 2006, Barcelona, Spain, Sept. 25-28, 2006.

[42] K. Uhlemann, “High availability for high-end scientific
computing,” Master’s thesis, Department of Computer Sci-
ence, University of Reading, UK, Mar. 2006.

[43] D. Dolev and D. Malki, “The Transis approach to high
availability cluster communication,” Communications of
the ACM, vol. 39, no. 4, pp. 64–70, 1996.

[44] “Transis Project at Hebrew University of Jerusalem, Is-
rael,” Available at http://www.cs.huji.ac.il/labs/transis.

[45] “TORQUE Resource Manager at Cluster Resources,
Inc., Spanish Fork, UT, USA,” Available at
http://www.clusterresources.com/torque.

[46] “Maui Cluster Scheduler at Cluster Resources,
Inc., Spanish Fork, UT, USA,” Available at
http://www.clusterresources.com/maui.

[47] C. Engelmann, S. L. Scott, D. E. Bernholdt, N. R.
Gottumukkala, C. Leangsuksun, J. Varma, C. Wang,
F. Mueller, A. G. Shet, and P. Sadayappan, “MOLAR:
Adaptive runtime support for high-end computing op-
erating and runtime systems,” ACM SIGOPS Operating
Systems Review (OSR), vol. 40, no. 2, pp. 63–72, 2006.

[48] “Modular Linux and Adaptive Runtime Support for High-
end Computing Operating and Runtime Systems (MO-
LAR),” Available at http://www.fastos.org/molar.

[49] “Forum to Address Scalable Technology for Run-
time and Operating Systems (FAST-OS),” Available at
http://www.fastos.org.

Christian Engelmann is a R&D Staff Member in the Network
and Cluster Computing Group of the Computer Science and
Mathematics Division at the Oak Ridge National Laboratory
(ORNL). He is also a Research Assistant at the Department of
Computer Science of the University of Reading. He received his
MSc in Computer Science from the University of Reading and
his German Certified Engineer diploma in Computer Systems
Engineering from the Technical College for Engineering and
Economics (FHTW) Berlin, both in 2001. He is currently a
PhD student in Computer Science at the University of Reading.
He is part of the MOLAR research team, where his work
focuses on high availability for Linux clusters. He is also a
contributor to the Harness HPC Workbench research of ORNL,
the University of Tennessee, and Emory University in develop-
ing next-generation development tools, deployment mechanisms,
and runtime environments. In the past, he was involved with the
ORNL/IBM Blue Gene/L research initiative in super-scalable
scientific algorithms for next generation supercomputing on
systems with 100,000 processors. He was also a contributor to
the Harness DVM research effort. He is a member of the ACM,
the ACM SIGOPS, the IEEE, the IEEE Computer Society, and
its Technical Committee on Scalable Computing and Task Force
on Cluster Computing.

Dr. Stephen L. Scott is a Senior Research Scientist in the
Network and Cluster Computing Group of the Computer Science
and Mathematics Division at the Oak Ridge National Laboratory
(ORNL). He received his MSc and PhD in Computer Science
from Kent State University, Kent, Ohio, in 1992 and 1996
respectively. His research interest is in experimental systems
with a focus on high performance distributed, heterogeneous,
and parallel computing. He is a founding member of the Open
Cluster Group (OCG) and Open Source Cluster Application
Resources (OSCAR). He is presently the OCG steering com-
mittee chair and has served as the OSCAR release manager
and working group chair. Dr. Scott is the lead principal inves-
tigator for the MOLAR research team. He is also the ORNL
lead for the Scalable Systems Software project, which targets
the development of technologies to scale cluster resources to
10,000’s of processors. He is a member of the ACM, the IEEE,
the IEEE Computer Society, and its Technical Committee on
Scalable Computing and Task Force on Cluster Computing.

Dr. Chokchai (Box) Leangsuksun is an Associate Professor
in Computer Science and the Center for Entrepreneurship and
Information Technology (CEnIT) at Louisiana Tech University.
He received his MSc and PhD in Computer Science from Kent
State University, Kent, Ohio, in 1989 and 1995 respectively. His
research interests include highly reliable and high performance
computing, intelligent component based software engineering,
parallel and distributed computing, service-oriented architec-
tures, and service engineering and management.

Dr. Xubin (Ben) He is an Assistant Professor in the Department
Electrical and Computer Engineering at the Tennessee Tech-
nological University. He received his PhD degree in Electrical
Engineering from the University of Rhode Island, USA, in 2002
and both, his BSc and MSc, degrees in Computer Science from
the Huazhong University of Science and Technology, China,
in 1995 and 1997 respectively. His research interests include
computer architecture, storage systems, high performance I/O
systems, and performance evaluation. He received the Ralph E.
Powe Junior Faculty Enhancement Award in 2004 and the TTU
Chapter Sigma Xi Research Award in 2005. He is a member of
the IEEE, the IEEE Computer Society, Sigma Xi, and ASEE.

54 JOURNAL OF COMPUTERS, VOL. 1, NO. 8, DECEMBER 2006

© 2006 ACADEMY PUBLISHER

