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Talk Outline

Computer science research at Oak Ridge National
Laboratory: Who we are and what we do...

Availability deficiencies of today’s scientific high-end
computing systems.

Existing high availability solutions for scientific high-
end computing systems.

Proposed Thesis: High availability framework for
scientific high-end computing systems.

Internship opportunities for current MSc students.
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Computer Science Research at
Oak Ridge National Laboratory
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¢ Privately managed for US DOE
e $1.06 billion budget
¢ 3,900 employees total
e 1500 scientists and engineers
¢ 3,000 research guests annually
¢ 30,000 visitors each year
e Total land area 58mi? (150km?)

e Nation’s largest energy laboratory
e Nation’s largest science facility:
e The $1.4 billion Spallation Neutron Source
¢ Nation’s largest concentration of open source
materials research
e Nation’s largest open scientific computing facility
e $300 million modernization in progress
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National Center for Computational Sciences

40,000 ft2 (3700 m2) computer center:
0 36-in (~1m) raised floor, 18 ft (5.5 m) deck-to-deck
0 12 MW of power with 4,800 t of redundant cooling
o High-ceiling area for visualization lab:
= 35 MPixel PowerWall, Access Grid, etc.

3 systems in the Top 500 List of Supercomputer Sites:
oJaguar:  10. Cray XT3, MPP with 5212 Procs./10 TByte = 25 TFlop/s.
o Phoenix: 17. Cray X1E, Vector with 1024 Procs./ 4 TByte = 18 TFlop/s.
o Cheetah: 283. IBM Power 4, Cluster with 864 Procs./ 1 TByte = 4.5 TFlop/s.
o Ram: SGI Altix, SSli with 256 Procs./ 2 TByte = 1.4 TFlop/s.




At Forefront in Scientific
Computing and Simulation

Leading partnership in developing the National
Leadership Computing Facility

o Leadership-class scientific computing capability
2 100 TFlop/s in 2006 (commitment made)

0 250 TFlop/s in 2007 (commitment made)

o 1 PFlop/s in 2008 (proposed)

Attacking key computational challenges
o Climate change
o Nuclear astrophysics
o Fusion energy
o Materials sciences
o Biology

Providing access to computational resources
through high-speed networking (10Gbps)




Computer Science Research Groups

Computer Science and Mathematics (CSM) Division.
o Applied research focused on computational sciences,
intelligent systems, and information technologies.

CSM Research Groups:

Climate Dynamics

Complex Systems

Computational Chemical Sciences
Computational Materials Science
Future Technologies

Statistics and Data Science
Computational Mathematics
Network and Cluster Computing
(~20 researchers, 2 postdocs, 5 postmasters, 4 students, ++)

L U 0O 0 00000
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Network & Cluster Computing Projects

June

e
Parallel Virtual Machine (PVM). "

MPI Specification, FT-MPIl and Open MPI.
Common Component Architecture (CCA). I
Open Source Cluster Application Resources (OSCAR)
Scalable cluster tools (C3). -
Scalable Systems Software (SSS).
Fault-tolerant metacomputing (HARNESS). =
High availability for high-end computing (RAS/MOLAR).
Super-scalable algorithms research. ﬁrﬁ
Parallel storage systems (Freeloader). N
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‘ Network & Cluster Computing Projects

| | FRMPL
= Parallel Virtual Machine (PVM).

= MPI Specification, FT-MPI and Open MPI
= Common Component Architecture (CCA). it
= Open Source Cluster Application Resources (OSCAR).
= Scalable cluster tools (C3).

= Scalable Systems Software (SSS).

s Fault-tolerant metacomputing (HARNESS).
= High availability for high-end computing (RAS/I\/IOLAR).
m Super-scalable algorithms research. ﬁrﬁ

= Parallel storage systems (Freeloader). V
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Availability Deficiencies of Today’s
Scientific HEC Systems
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Scientific High-End Computing (HEC)

Large-scale HPC systems.

o Tens-to-hundreds of thousands of processors.

o Current systems: IBM Blue Gene/L and Cray XT3

o Next-generation systems: IBM Blue Gene/P and Cray XT4

Computationally and data intensive applications.
2 10 TFLOP — 1PFLOP with 10 TB — 1 PB of data.

o Climate change, nuclear astrophysics, fusion energy,
materials sciences, biology, nanotechnology, ...

Capability vs. capacity computing

o Single jobs occupy large-scale high-performance computing
systems for weeks and months at a time.
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Availability Measured by the Nines

O’s | Availability | Downtime/Year Examples

1 190.0% 36 days, 12 hours | Personal Computers -

2 199.0% 87 hours, 36 min | Entry Level Business

3 199.9% 8 hours, 45.6 min | ISPs, Mainstream Business

4 199.99% 52 min, 33.6 sec | Data Centers

5 199.999% 5 min, 15.4 sec Banking, Medical

6 [99.9999% |31.5 seconds Military Defense
Enterprise-class hardware + Stable Linux kernel = 5+
Substandard hardware + Good high availability package = 2-3
Today’s supercomputers =1-2
My desktop =1-2
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IBM Blue Gene/I. at LI.LNL. e
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‘ Vector Machines: Cray X1 (Phoenix)
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‘ Single Head/Service Node Problem

= Single point of failure.

= Compute nodes sit idle while
head node is down.

«= A=MTTF/(MTTF + MTTR)

= MTTF depends on head node
hardware/software quality.

= MTTR depends on the time it
takes to repair/replace node.

» MTTR=0=>A=1.00 (100%)
continuous availability.
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High Awvailability Solutions for
Scientitic HEC Systems
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High Availability Models

Active/Standby (Warm or Hot):

o For one active component at least one redundant inactive
(standby) component.

o Fail-over model with idle standby component(s).
o Level of high-availability depends on replication strategy.

Active/Active (Asymmetric or Symmetric):
o Multiple redundant active components.
o No wasted system resources.

o State change requests can be accepted and may be
executed by every member of the component group.
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‘ Active/Standby Head/Service Nodes with
Heartbeat Package and Shared Storage

| Acive/Standby Head Nodes with Shared Storage = Single active head node.

= Backup to shared storage.
= Simple checkpoint/restart.
= Fail-over to standby node.

= Corruption of backup state
when failing during backup.

= Introduction of a new single
point of failure.

=» Correctness and availability
are NOT guaranteed.

=> Folks, don't do this!!!

- - Bad examples: SLURM,
| — | PVFS2, and Luste.

C. Engelmann - University of Reading and Oak Ridge National Laboratory
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Active /Standby Head/Service Nodes

Acive/Standby Head Nodes = Single active head node.
= Backup to standby node.
= Simple checkpoint/restart.
= Fail-over to standby node.
= |dle standby head node.

= Rollback to backup.

= Service interruption for fail-
over and restore-over.

= Examples: HA-OSCAR,
Torque on Cray XT3
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Active /Standby PBS with HA-OSCAR
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‘ A-Active/ Active Head/Service Nodes

‘ Asymmetric Active/Active Head Nodes

Many active head nodes.
Work load distribution.

Optional fail-over to standby
head node(s) (n+7 or n+m)

No coordination between
active head nodes.

Service interruption for fail-
over and restore-over.

Loss of state w/o standby.
Limited use cases, such as
high-throughput computing.
Only solution:
A-Active/Active HA-OSCAR.
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S-Active/Active Head/Service Nodes

| Active/Active Head Nodes

B
NS LAN
0

Compute Nodes

Many active head nodes.
Work load distribution.

Symmetric replication
between head nodes.

Continuous service.
Always up-to-date.

No fail-over necessary.

No restore-over necessary.
Virtual synchrony model.
Complex algorithms.

Only solution: JOSHUA.
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‘ S-Active/Active Torque with JOSHUA
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'S-Active / Active Torque with JOSHUA

Head Node Fails

To Outside World
To Compute Nodes
Schedule Job A No Single Point
Schedule Job B of Failure
§chedule Job C
Launch Job A No Single Point
Schedule Job D of Control

§chedule Job E
Launch Job B
< Launch Job C
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Active / Active Redundancy for Nines

A

system

Tdown

Acomponent = MTTF / (MTTF + MTTR)

=1- (1 - Acomponent)n

= 8760 hours - (1 — A)

Signle node MTTF of 5000-hours and MTTR 72 of hours:

Nodes

Availability

Est. Annual Downtime

1

98.58%

5d 4h 21m
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Active / Active Redundancy for Nines

A

system

Tdown

Acomponent = MTTF / (MTTF + MTTR)

=1- (1 - Acomponent)n

= 8760 hours - (1 — A)

Signle node MTTF of 5000-hours and MTTR 72 of hours:

Nodes | Availability | Est. Annual Downtime
1 98.58% 5d 4h 21m
2 99.97% 1h 45m
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Active / Active Redundancy for Nines

A

Acomponent = MTTF / (MTTF + MTTR)

= n
system =1- (1 - Acomponent)

T gown = 8760 hours - (1 —A)

Signle node MTTF of 5000-hours and MTTR 72 of hours:

Nodes | Availability | Est. Annual Downtime
1 98.58% 5d 4h 21m

2 99.97% 1h 45m

3 99.9997% Im 30s
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Active / Active Redundancy for Nines

Acomponent = MTTF / (MTTF + MTTR)

Asystem =1- (1 - Acomponent)n
T gown = 8760 hours - (1 —A)

Signle node MTTF of 5000-hours and MTTR 72 of hours:

Nodes | Availability | Est. Annual Downtime
1 98.58% 5d 4h 21m

2 99.97% 1h 45m

3 99.9997% Im 30s

4 99.999995% 1s

Single-site redundancy for 7 nines does not make sense
as it does not mask catastrophic events, such as flood,
hurricane, tornado, earthquake, and terrorist attack.
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Generic High Availability Framework

HA-OSCAR:

o Heartbeat for monitoring and IP-failover.
o PBS specific scripts for replication to standby.

JOSHUA:

o Transis for group communication.
o TORQUE specific commands for input replication.
o TORQUE specific scripts for output unification.

How can we provide active/stand-by and
active/active high availability solutions for services in
a generic, modular and configurable fashion?

C. Engelmann - University of Reading and Oak Ridge National Laboratory
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Applications
HA Frame \X’ Ork Scheduler | | MPI Runtime | | File System | | 88T

\ & )

Virtual Synchrony

------------------------------------------------------------------------------

Pluggable component framework. | &giss =siss msiad

Q CommunicatiOn drivers. ;Replicated Feplicated EDistributed
o Group communication. | /0
a

. A
Virtual synchrony. " O
. B} Group Communication
o Applications.

Membership Failure Reliable Atomic
Management Detection e lticast Multicast

Interchangeable components. _
Adaptation to application needs, m"f
such as level of consistency. o] [Famenami| anan m

Adaptation to system properties,
such as network and system scale. vt

NHetwork (Xthermnet, Byrinet, Xlaod, Infiniand, .3
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Initial Prototype

Flexible, modular, pluggable component framework
to provide RAS capabilities for services.

C++ prototype developed as part of the RAS LDRD:
o Object-oriented communication stack.
o Dynamic loading of protocol components (Harness-based).
o TCP and UDP communication drivers.

Problems with the use of C++ and dynamic loading.
Performance overhead due to C++ runtime.
Ongoing work focuses on pure C implementation.

C. Engelmann - University of Reading and Oak Ridge National Laboratory
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Follow-on Prototype

Unique, flexible, dynamic, C-based component
framework: Adaptive Runtime Environment (ARTE).

Dynamic component loading/unloading on demand.
XML as interface description language (IDL).

“Everything” is a component:

o Communication driver modules.

o Group communication layer modules.
o Virtual synchrony layer modules.
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Other Major Accomplishments

Development of a high availability taxonomy for HEC
system architectures.

a Definition of high availability terms and metrics for HEC.

o ldentification of single points of failure and control.

o Evaluation and classification of existing solutions.

Development of a high availability programming
model for symmetric active/active replication.

o Virtually synchronous environment model for easily making
existing single services highly available.

o JOSHUA prototype as proof-of-concept developed by Kai
Uhlemann (2005/6 Reading MSc student internship).

C. Engelmann - University of Reading and Oak Ridge National Laboratory
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Future Work

Implementation of individual framework components.
o Communication drivers and group communication.

Design of high availability programming models.
o Implementation of respective components.

Integration with the JOSHUA solution.

o Replacing Transis with the framework.
Development of highly available system services.
o Metadata server of a parallel file system, etc.

Investigation and design of further use cases.
o MPI, software management, etc.

C. Engelmann - University of Reading and Oak Ridge National Laboratory
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MSc Internship Basics

1-2 students for 6 months at Oak Ridge National
Laboratory in Oak Ridge, Tennessee, USA.

Full-time (40 hours per week) internship supervised
by a research staff member.

Individual leading-edge projects that include
background investigation, design, and development.

Includes MSc thesis and draft research paper writeup
as part of the final MSc project.

$1300-1500 per month stipend plus travel costs
depending on student qualifications.
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MSc Internship Timeline

Early June: Application process (now)

- Specify area of interest/project

- Submit resume/CV to Vassil
Late June: Acceptance notification

Background Check/Subcontracts

J-1 (Student) Visa application
August: Visa issued through U.S. Embassy
September 1:  Start of internship
February 28: End of internship
March: Defense at the University of Reading

C. Engelmann - University of Reading and Oak Ridge National Laboratory
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Further Practical Information

Driver license is a must: No public transport to work.
$3500 (2700€) in initial minimum funds needed for:

o First rent and various deposits.

o One-week car rental (reimbursed afterwards).
Is anyone under 25? Car rental/insurance is more expensive.

o Used car, car sales tax, registration, and insurance.

Break-even point:
o 1 student after 4-5 months, 2 students after 2-3 months.

o Most students leave with a net plus despite extra expenses
for: high-speed Internet, cable TV, and weekend trips.
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Possible Projects (see Handout)

Harness
o Design/Prototyping of Harness workbench architecture
o Analysis of HPC development and deployment tools

o Experiments with generalizing selected tools and
subsystems

o Development of prototype plug-in components
FreeLoader
o Diskless (in-memory) FreelLoader prototype

o Data replication techniques
o Integration of FreelLoader into Harness.
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Freel.oader Pistributed Storage Infrastructure
http://www.csm.ornl.gov/~vazhkuda/Morsels USiIlg Scavenging

Todays Hierarchical Storage Map

High 4 Pros:
Latency = Excellent price/performance ratio
= Optimized for wide-area, bulk transfers
and refliability
Systens Cons:
Pk = High deployment/maintenance/
4 Disks administrative costs
L.::nc:.r = Specialized software and central points
= of failure
éﬁ._,;ym Eﬁ;‘g’d = Low availability
Motivation
Idea: Aggregate idle desktop storage to use for caching remote datasets
Benefits:

= Low cost (~51 / GB]
= Low utilization means high availability for aggregation

- Creates GBs of nearby storage

- Decreases latency & increases bandwidth to remote datasets
= Low impact on individual desktops (load is shared by many)
Concerns:
= Volatility, trust, performance, user impact [disk, CPU, network)

Scalable, Decentralized Architecture

Storage Layer: [ Client Access Tools

= Benefactor Nodes: t
- Unit of contribution (Morsels)
= Basic morsel operations Rogestratorn Ciata p::m u::hwcaﬁmr Grid
- Space reclaim Swvareness. Metadata Managemenit

— Data Integrity through checksums

Design Objectives and Assumptions

Design Goals:

= Scalable: O(100) or O[1000)

= Liilizing commodity components
* Preserving user autonomy

= Heterogeneity tolerant

Assumptions:

= Well-connected & secure corporate setting
= Large, immutable datasets (WORM)

= Lise by wide-area and Grid clients

Use Cases
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Status and Preliminary Results

[P PR e = e = Client, Manager, Benefactor APls
= = - = Manager has greedy striping of datasets
' I | = Client morselfetch flow control
|_ ; i 1 = User Impact analysis and benchmarking
[ .I ' lf '| = Testbed: A dozen Linux machines;
e By I | b aggregate storage of 120GB; GridFTP
- i LU access to local and remote GPFS; HSI
T e - - access to local HPSS archives
Experiment Setup: FreeLoader results with an 8-node stripe width and 1 ME stripe size; GridFTP
transfers with 4 parallel streams and 1MB TCP buffers

Conclusions
= What the scavenged storage “is not™:
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= Pools:
— Benefactor registrations (soft stare)

— Dataset distributions, striping
- Metadata
— Selection heuristics
Management Layer:
= Pool registrations
* Replication and selection
= Grid awareness
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| Pocl m I - I5 not a replacement to high-end storage
- —Is not a file system
— Is not intended to integrate storage resources
at a wide-area scale
=) Etﬁl = What it “is":
& : — Is a Low-cost, best-effort alternative
Sy — Is intended to facilitate:

= Transient access to large, read-only datasets
= Data sharing within an administrative domain
- Is to be used with high-end and archival storage



‘ Questions and Comments

More information: www.csm.ornl.gov/~engelman

FIFA World Cup Opening Match at 5PM: Germany - Costa Rica
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