Super-Scalable Algorithms for Computing on
100,000 Processors *

Christian Engelmann and Al Geist

Computer Science and Mathematics Division,
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6164, USA
{engelmannc,gst}@ornl.gov
http://www.csm.ornl.gov

Abstract. In the next five years, the number of processors in high-end
systems for scientific computing is expected to rise to tens and even
hundreds of thousands. For example, the IBM Blue Gene/L can have up
to 128,000 processors and the delivery of the first system is scheduled
for 2005. Existing deficiencies in scalability and fault-tolerance of scien-
tific applications need to be addressed soon. If the number of processors
grows by a magnitude and efficiency drops by a magnitude, the overall
effective computing performance stays the same. Furthermore, the mean
time to interrupt of high-end computer systems decreases with scale and
complexity. In a 100,000-processor system, failures may occur every cou-
ple of minutes and traditional checkpointing may no longer be feasible.
With this paper, we summarize our recent research in super-scalable
algorithms for computing on 100,000 processors. We introduce the al-
gorithm properties of scale invariance and natural fault tolerance, and
discuss how they can be applied to two different classes of algorithms. We
also describe a super-scalable diskless checkpointing algorithm for prob-
lems that can’t be transformed into a super-scalable variant, or where
other solutions are more efficient. Finally, a 100,000-processor simulator
is presented as a platform for testing and experimentation.

1 Introduction

Today’s top supercomputers are able to deliver several tens of TeraFLOPS of
sustained performance for computational scientific research in areas like climate
modeling, fusion energy and nanotechnology. If the steady increase in computing
power stays on the track of Moore’s Law, by 2010 the largest supercomputers
in the world will be in the PetaFLOPS range. This trend is not solely based on
improvements of individual processors, but also aided by ever-increasing paral-
lelism. Currently, these systems scale for up to 10,000 processors. In the next five
years the number of processors is expected to rise to tens and even hundreds of

* Research sponsored by the Laboratory Directed Research and Development Program
of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the
U. S. Department of Energy under Contract No. DE-AC05-000R22725.

thousands. For example, the IBM Blue Gene/L [1, 2] will have up to 128,000 low-
powered processors shipped in densely populated compute nodes. The first Blue
Gene/L system will be delivered in 2005. A prototype at IBM recently achieved
a maximal LINPACK performance of 70 TeraFLOPS and currently holds the
top spot in the Top 500 list of supercomputers.

Experiences with existing 10,000-processor machines show that the efficiency
of scientific applications can be as low as 1%, which is equal to fully utilizing
only 100 processors. Amdahl’s Law shows how efficiency can drop off as the num-
ber of processors increases. If the number of processors grows by a magnitude
and efficiency drops by a magnitude, the overall effective computing performance
stays the same. Furthermore, the mean time to interrupt (MTTI) decreases with
system scale and complexity. While reliability of individual components, such as
network and storage, can be improved by redundancy, the number of system
software issues increases due to complexity. Some of today’s major supercom-
puting centers have already scheduled downtimes and unscheduled outages about
every 40 hours. In a 100,000-processor machine, such system interrupts may oc-
cur as often as every couple of minutes. Network bottlenecks and latencies will
make frequent coordinated checkpointing (once every hour) of applications, for
fault-tolerance, almost impossible. Even with traditional checkpointing, it does
not make sense to restart 99,999 processors because one failed! Finally, at some
point the MTTI is going to exceed the time to restart.

In this paper, we summarize our recent research in super-scalable algorithms
for high-end scientific computing on extreme-scale systems with 100,000 pro-
cessors. First, we introduce the algorithmic properties of scale invariance and
natural fault tolerance, and then we discuss how they can be applied to two
different classes of algorithms. We also describe a super-scalable diskless check-
pointing algorithm for problems that cannot be transformed into a super-scalable
variant, or where other solutions are more efficient. We continue with a short
description of our efforts in developing a 100,000-processor simulator as a plat-
form for testing and experimentation. Finally, we close with a brief summary of
the work and possible future directions.

2 Super-Scalable Algorithms

High-end computing on 100,000-processor systems requires fundamental rethink-
ing of how algorithms can efficiently utilize such an enormous amount of proces-
sors. There are two major issues that need to be considered. The first is Amdahl’s
Law, and the need to reduce the serial fraction to a point where reasonable ef-
ficiency can be achieved. The second is the high probability of failures, and the
need to survive in a way that does not involve global operations. In order to
address these problems, we have established a foundation for a new class of al-
gorithms called super-scalable algorithms [3] that have the properties of scale
inwvariance and natural fault tolerance.

Scale invariance means that the individual tasks in a larger parallel job have
a fixed maximum number of other tasks they communicate with, independent of

the total number in the application. For example, a finite difference algorithm has
a constant number of neighbor tasks defined by its stencil, which is independent
of the total number of tasks in the problem. Another example is a binary tree
communication infrastructure, where each node is only connected to three other
nodes. With scale invariance, individual tasks do not have to be concerned about
failures throughout the system unless these failures happen to affect one of their
neighbors. Conversely, dynamically adding replacement or additional tasks can
be ignored by tasks not communicating with these new tasks.

However, scale invariance alone does not guarantee high efficiency of applica-
tions on 100,000-processor computing systems. The serial fraction of a parallel
algorithm does not solely depend on the communication footprint, but also on
hardware factors, such as I/O latencies and cache misses, that can quickly drive
efficiency down even if the best-known algorithms are being used.

Scale invariance does not provide fault tolerance, but it enables isolation of
the failure. However, most parallel algorithms designed today will deadlock, or
worse, calculate the wrong answer, if one or more tasks fail. Fault tolerance needs
to be handled locally by “self-healing” or natural fault tolerance.

Natural fault tolerance is the ability to tolerate failures through the math-
ematical properties of the algorithm itself, without requiring notification or re-
covery. It is not that the calculations are taken over by other tasks, but rather
that the nature of the algorithm includes natural compensation for the lost in-
formation. For example, an iterative algorithm may require more iterations to
converge, but it still converges despite lost information [4].

The maximum number of tasks that can fail, yet still obtain the correct
answer, is problem dependent and still an open research question. We assume
that the actual number of tasks lost during an application run will be a small
fraction of the overall number of tasks. We based our research on the assumption
that up to 100 out of 100,000 tasks may fail, which is only 0.1%. However, the
time-to-solution increases dramatically when using traditional checkpointing or
message logging schemes due to the large amount of processors involved and
the centralized nature of existing solutions. We discuss a peer-to-peer diskless
checkpointing alternative later in this paper.

Scale invariance and natural fault tolerance are rather restrictive require-
ments on algorithms, and when we began our research it was not clear that
anything other than the most trivial applications, using the bag-of-tasks pro-
gramming paradigm, would be able to meet these definitions. Such applications
are (to a certain extend) scale invariant, because each task communicates only
to send back its answer. They have fault tolerance, because tasks are farmed out
and can be easily replaced. Task farming with on-the-fly fault tolerance by task
replacement is a widely used technique today. Examples are SETIQHOME [5]
and Condor [6,7].

In the following sections, we will describe solutions for two different non-
trivial classes of super-scalable algorithms. The first is where the problem can
be formulated as some function of a local volume, such as for finite difference
and finite element applications. The second is where the problem requires global

information, like in global minimum or maximum searches, that are often used
to determine if an iterative algorithm has converged.

2.1 Local Information

Parallel applications where individual tasks only require information from a lo-
cal region include finite difference and finite element solutions to differential
equations. We combined two ideas, chaotic relaxation [8,9] and meshless meth-
ods [10], to demonstrate that both super-scalable algorithm requirements, scale
invariance and natural fault tolerance, can be achieved.

In a meshless finite difference algorithm with chaotic relaxation, each data
point in the solution space is assigned to an independent task that asynchronously
receives update messages from its neighbors, calculates its own value and sends
update messages back to its neighbors. The programming model is similar to
active messaging [11], but could be coded using PVM [12] or MPI [13].

We use a coordinate in a virtual space to identify each task. This virtual space
may coincide with the solution space, for example in a 2-D Poisson problem.
Based on the coordinate, we can form nearest neighbor as well as random peer-
to-peer networks to experiment with the algorithm. Each message contains the
sender coordinates, so that necessary metrics, such as distance, can be calculated
at runtime. Update messages additionally contain the value of the sending task.
The update processing routine reflects the mathematical definition of the task
and its relation to its neighboring tasks, which in the case of the 2-D Poisson
problem is an average of the surrounding values with a distance bias.

Early investigations in the 1970’s showed that chaotic relaxation has quite
restrictive convergence properties, which is the main reason why it never became
popular. However, for 100,000-processor systems it may be time to once again
look at this iteration-free method. When failures and failure recovery are factored
into the solution time, chaotic relaxation has some attractive recovery properties.
The tasks that communicate with a failed task can do recovery independently
and locally. Furthermore, the information lost by a failed task does not need to
be recovered. The calculations can be formulated to proceed and converge to the
solution despite failures.

We experimented with super-scalable finite difference algorithms and ob-
served that simple problems, such as 2-D Poisson, converged despite 100 ran-
dom failures across the machine. However, multiple failures of neighboring tasks,
similar to multi-processor node failures, could cause the error of the solution to
be significantly higher. However, this can be avoided if the virtual space is not
directly mapped to the physical location of processors. Furthermore, connecting
tasks randomly can decrease the overall convergence time.

We also experimented with asynchronous multi-grid variants based on the
above ideas and this approach also tolerated failures. However, a master that
controlled the “V” and “W” cycles was necessary, since the mathematical model
of chaotic relaxation between different levels is not yet well understood at this
time.

2.2 Global Information

Parallel algorithms where individual tasks require global information include
global maximum searches, such as are often used to determine if an iterative
algorithm has converged. First, the global maximum needs to be found among
the values of all tasks. Then this value needs to be broadcast to all other tasks.

This is a graph problem that can be solved by creating a logical interconnect
topology with the property of high probability message delivery despite failures,
and that maintains efficient scale invariance to a low degree.

We conducted experiments with different network architectures, such as near-
est neighbor, random, mesh and fully connected. We also implemented a broad-
cast algorithm. Both algorithms, global maximum search and broadcast, worked
very well under various failure conditions.

A serious challenge for the global information algorithms, as well as for the
finite difference, is algorithm termination. How does each task know when the
complete system is stable and all tasks have the correct answer? Only the ob-
serving user knows that there are no messages on the network any more and that
the system has converged. A global convergence test can solve this problem, but
it needs to be either super-scalable or occur very infrequently.

3 Peer-to-Peer Diskless Checkpointing

Problems that cannot be transformed into a super-scalable variant, or where
other existing solutions are more efficient, still need to deal with the expected
MTTT of 100,000-processor systems.

To address this, we have developed a super-scalable replication technique
based on peer-to-peer diskless checkpointing [14], which equips scientific appli-
cations with a self-healing capability for fault-tolerance. We assume that on Blue
Gene/L like systems local disk storage will no longer be available, due to the
associated costs, failure sensitivity and maintenance.

In peer-to-peer diskless checkpointing, every task replicates its own local
application state to a set of neighboring tasks using an encoding, such as RAID.
The neighbor tasks themselves also replicate their own local application state,
each to different sets of neighbor tasks. A scalable peer-to-peer infrastructure of
checkpointing tasks is formed with local separation of current application state
and multiple redundant backups. The amount of additional information each
task needs to hold in its memory is dependent only on the encoding algorithm
and on the number of neighbors involved in the replication of the state of one
task, i.e. the system-wide degree of fault-tolerance.

The set of neighbor tasks may be derived from the network infrastructure or
application algorithm. However, the probability of a failure involving physical
neighbors, e.g. multi-processor node failures, may be greater than the probabil-
ity of a failure involving a set of random or far away neighbors. The physical
neighborhood of a task may also change in the case of a restart.

Synchronization of individual checkpoints is not necessary if tasks do not
communicate with each other at all or if they do not communicate between

synchronizing checkpoints. The traditional global snapshot method, using a bar-
rier, can be used to synchronously checkpoint all tasks at once. Localized asyn-
chronous checkpointing requires additional message logging to make sure that a
consistent application state is being saved. We discussed advantages and disad-
vantages of both approaches in an earlier paper [14].

In the case of a failure, all surviving tasks roll back to their last checkpoint
using a locally maintained copy or the remote backup in the neighboring tasks.
All failed tasks are replaced using their last checkpoint from their neighboring
tasks. An area of future research would be to identify surviving tasks that do not
need to roll back if they are not directly dependent on the failed ones. Further-
more, a localized replay of the message log can eliminate the rollback of surviving
tasks all together for a certain set of deterministic scientific applications. While
centralized and partially localized rollback strategies and message log replay so-
lutions [15,16] exist, they currently do not scale to 100,000 processors. Initial
work [17] has been done recently to address this issue.

Our experience with peer-to-peer diskless checkpointing shows that it can
provide super-scalable self-healing capability for algorithms, such as FFT, where
every single task holds important information for calculating the correct result.
However, checkpointing and recovery scenarios can generally be very complex,
especially when using localized asynchronous mechanisms. Furthermore, an ap-
plication run still fails if the number of simultaneous failures of neighboring tasks
is greater than the system-wide degree of fault-tolerance.

4 100,000-Processor Simulator

While the theoretical analysis of super-scalable algorithms gave us some insight
into convergence properties and the probability of achieving the right answer,
there is a lot of practical analysis data that can only be acquired by testing the
algorithms using a variety of different failure situations.

A 100,000-processor machine was not available at the time of this work, the
IBM Blue Gene/L still under development, and software emulation frameworks,
such Charm++ [18], did not reached the necessary scale. Therefore, we developed
a simulator (Figure 1) that is able to run hundreds of thousands of tasks and
supports rapid prototyping. It is designed to test algorithms at very high scale
and provide a platform to develop fault-tolerant applications. It is instrumented
to mimic different failure modes, but it does not provide performance estimates
or analysis of the applications for a particular machine architecture.

The simulator can handle modules written in multiple languages and runs on
different operating systems, e.g. Linux and Windows. It is implemented in Java,
but also supports C and Fortran using the Java Native Interface. The number of
nodes that can be simulated depends on the size of the application being simu-
lated and the power of the hardware the simulator is running on. The simulator
is itself a parallel application and can run across a Linux cluster. On a 2 GHz
Windows laptop we have simulated 10,000 nodes for a small application. Using a

I & JCAS - Java Cellular Architecture Simulator - |5’ | X
Clicking on mode pulls |System Laplace (Java) Help
up information and D o

delete window \

Simulator has function
allows node to display
an internal variable as|

color 7

Each dot represents a
simulated node with a
user program, data and
communication lists

Fig. 1. User Interface to the Simulator

32 processor, large-memory Linux cluster we have simulated half a million nodes
running the super-scalable algorithms described earlier in this paper.

The simulated network topology, such as nearest neighbor, mesh, torus and
random, can be configured before running an application. The simulator has a
number of built in failure modes that the user can specify. It allows the killing
of a selected node, block of nodes or a random percentage of nodes in a specified
region. The failures are interactively initiated, i.e. the user clicks on a node and
kills it, or selects a region and 1% of the nodes in this region die.

5 Conclusions

In this paper we have summarized our recent research at the Oak Ridge National
Laboratory in super-scalable algorithms for high-end scientific computing on
extreme-scale supercomputer systems with 100,000 processors. We presented the
notion of a new class of algorithms called super-scalable algorithms that have
the properties of scale invariance and natural fault tolerance. These properties
allow scientific algorithms to scale to hundreds of thousands of processors, while
maintaining efficiency and fault-tolerance.

We described solutions for two classes of super-scalable algorithms. In the
first, the problem can be formulated as some function of a local volume, such as
for finite difference applications. In the second, the problem requires global infor-
mation, like in global maximum searches. We also developed a self-healing FFT
based on peer-to-peer diskless checkpointing. Finally, we developed a software
simulator that is able to run an enormous number of tasks.

Future research needs to be conducted to further develop appropriate pro-
gramming models for 100,000-processor machines. Furthermore, scientists will
need to rethink the mathematical models used in today’s applications to better
support the development of super-scalable solutions based on scale invariance
and natural fault tolerance.

References

1. Adiga, N.R., et al.: An overview of the Blue Gene/L supercomputer. Proceedings
of SC, also IBM research report RC22570 (W0209-033) (2002)

2. Lawrence Livermore National Laboratory, Livermore, CA, USA: ASCII Blue
Gene/L Computing Platform at http://www.lnl.gov/asci/platforms/bluegenel

3. Geist, G.A., Engelmann, C.: Development of naturally fault tolerant algorithms
for computing on 100,000 processors. (2002) to be published.

4. Bosilca, G., Chen, Z., Dongarra, J., Langou, J.: Recovery patterns for iterative
methods in a parallel unstable environment. Submitted to STAM Journal on Sci-
entific Computing (2005)

5. Space Sciences Laboratory, University of California Berkeley, USA: SETIGHOME
at http://setiathome.ssl.berkeley.edu

6. Basney, J., Livny, M.: Deploying a high throughput computing cluster. In Buyya,
R., ed.: High Performance Cluster Computing: Architectures and Systems, Volume
1. Prentice Hall PTR (1999)

7. Computer Sciences Department, University of Wisconsin, USA: Condor at
http://www.cs.wisc.edu/condor

8. Chazan, D., Miranker, M.: Chaotic relaxation. Linear Algebra and its Applications
2 (1969) 199-222

9. Baudet, G.M.: Asynchronous iterative methods for multiprocessors. Journal of the
ACM 25 (1978) 226244

10. Liu, G.R.: Mesh Free Methods: Moving beyond the Finite Element Method. CRC
Press (2002)

11. von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.: Active Messages: A
mechanism for integrated communication and computation. In: 19th International
Symposium on Computer Architecture, Gold Coast, Australia (1992) 256-266

12. Geist, G.A., Beguelin, A., Dongarra, J.J., Jiang, W., Manchek, R., Sunderam,
V.S.: PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked
Parallel Computing. MIT Press, Cambridge, MA, USA (1994)

13. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-
plete Reference. MIT Press, Cambridge, MA, USA (1996)

14. Engelmann, C., Geist, G.A.: A diskless checkpointing algorithm for super-scale
architectures applied to the fast fourier transform. Proceedings of CLADE (2003)
47-52

15. University of Paris South, France: MPICH-V at http://www.Iri.fr/~gk /MPICH-V

16. Indiana University, Bloomington, IN, USA: LAM-MPI at http://www.lam-mpi.org

17. Chen, Z., Fagg, G.E., Gabriel, E., Langou, J., Angskun, T., Bosilca, G., Dongarra,
J.: Building fault survivable MPI programs with FTMPI using diskless checkpoint-
ing. Submitted to PPoPP (2005)

18. Zheng, G., Singla, A.K., Unger, J.M., Kale, L.V.: A parallel-object programming
model for petaflops machines and blue gene/cyclops. Proceedings of IPDPS (2002)

