A Lightweight Kernel for the Harness M etacomputing Framework *

C. Engdmannand G. A. Geist
Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
{engelmannc,gst} @ornl.gov
http://www.csm.ornl.gov

Abstract

Harness is a pluggable heterogeneous Distributed Vir-
tual Machine (DVM) environment for parallel and dis-
tributed scientific computing. This paper describes recent
improvements in the Harness kernel design. By using a
lightweight approach and moving previously integrated sys-
tem services into software modules, the software becomes
more versatile and adaptable. This paper outlines these
changes and explains the major Harness kernel components
in more detail. A short overview is given of ongoing ef-
forts in integrating RMIX, a dynamic heterogeneous recon-
figurable communication framework, into the Harness en-
vironment as a new plug-in software module. We describe
the overall impact of these changes and how they relate to
other ongoing work.

1. Introduction

The heterogeneous adaptable reconfigurable networked
systems (Harness [9]) research project is an ongoing col-
laborative effort among Oak Ridge National Laboratory,
The University of Tennessee, Knoxville, and Emory Uni-
versity. It focuses on the design and development of a plug-
gable lightweight heterogeneous Distributed Virtual Ma-
chine (DVM) environment, where clusters of PCs, work-
stations, and “big iron” supercomputers can be aggregated
to form one giant DVM (in the spirit of its widely-used pre-
decessor, “Parallel Virtual Machine” (PVM) [10]).

As part of the Harness project, a variety of experi-
ments and system prototypes were developed to explore
lightweight pluggable frameworks, adaptive reconfig-
urable runtime environments, assembly of scientific appli-
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cations from software modules, parallel plug-in paradigms,
highly available DVMs, fault-tolerant message pass-
ing, fine-grain security mechanisms and heterogeneous
reconfigurable communication frameworks.

Currently, there are three different Harness system proto-
types, each concentrating on different research issues. The
teams at Oak Ridge National Laboratory [3, 5, 12] and at the
University of Tennessee [6, 7, 13] provide different C vari-
ants, while the team at Emory University [11, 14, 15, 18]
maintains a Java-based alternative.

Conceptually, the Harness software architecture consists
of two major parts: a runtime environment (kernel) and a
set of plug-in software modules. The multi-threaded user-
space kernel manages the set of dynamically loadable plug-
ins. While the kernel provides only basic functions, plug-
ins may provide a wide variety of services needed in fault-
tolerant parallel and distributed scientific computing, such
as messaging, scientific algorithms and resource manage-
ment. Multiple kernels can be aggregated into a Distributed
Virtual Machine.

This paper describes recent improvements in the kernel
design, which significantly enhance versatility and adapt-
ability by introducing a lightweight design approach. First,
we outline the changes in the design and then explain the
major kernel components in more detail. We continue with
a short overview of recent efforts in integrating RMIX, a dy-
namic heterogeneous reconfigurable communication frame-
work, into the Harness environment. We describe the over-
all impact of these changes and how they relate to other on-
going work. This paper concludes with a brief summary of
the presented research.

2. Kernd Architecture

Earlier designs of a multi-threaded kernel [3] for Har-
ness were derived from an integrated approach similar to
PVM [10], since the Harness software was initially devel-
oped as a follow-on to PVM, based on the distributed vir-
tual machine (DVM) model.
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Daemon Process Running Processes:

External Process External Process r

Startup and Control: i‘:

‘ Process Manager 1 Forker Process

Worker Threads:
‘ Thread Pool ‘
Loadable Plug-Ins:
D icall
ynamically Some Plug-In [»
Loaded Plug-Ins: \

‘ Plug-In Loader *+ Distributed Control Plug-In ‘

‘ Some Plug-In H \+
L

Figure 2. New Lightweight Kernel Design

FT-MPI Plug-In ‘

In PVM, every node runs a local virtual machine and the
overall set of virtual machines is controlled by a single mas-
ter. This master is a single point of control and failure. In the
DVM model, all nodes form together a distributed virtual
machine, which they equally control in virtual synchrony.
Symmetric state replication among all nodes, or a subset,
assures high availability. Since there is no single point of
control or failure, the DVM survives as long as at least one
node is still alive.

The original Harness kernel design (Figure 1) featured
all components needed to manage plug-ins and external pro-
cesses, to send messages between components inside and
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Figure 3. Harness Architecture

between kernels, and to control the DVM. Recent improve-
ments in the design (Figure 2) are based on a lightweight ap-
proach. By moving previously integrated services into plug-
ins, the kernel becomes more versatile and adaptable.

The new design features a lightweight kernel with plug-
in, thread and process management only. All other basic
components, such as communication, distributed control
and event notification, are moved into plug-ins in order
to make them reconfigurable and exchangeable at runtime.
The kernel provides a container for the user to load and ar-
range all software components based on actual needs, with-
out any preconditions imposed by the managing framework
(Figure 3). The user can choose the programming model
(peer-to-peer, client/server, PVM, MPI, Harness DVM) by
loading the appropriate plug-in(s).

The kernel itself may run as a daemon process and ac-
cepts various command line and configuration file options,
such as loading default plug-ins and spawning certain pro-
grams on startup, for bootstrapping with an initial set of ser-
vices. A debug variant with more extensive error logging
and memory tracing is also provided using the ‘.debug’ ex-
tension or “—debug” command line flag.

In the following sections, we describe the three major
kernel components (process manager, thread pool and plug-
in loader) in more detail.



2.1. Process M anager

Harness is a pluggable multi-threaded environment.
However, in heterogeneous distributed scientific comput-
ing scenarios it is sometimes necessary to fork a child
process and execute a different program, e.g. for remote lo-
gins using the ssh program. The process manager allows
just that. In addition, it also provides access to the stan-
dard input and output channels of spawned programs,
allowing plug-ins to initiate and control them.

Only programs that reside in a specific preset program
directory, or in a respective sub-directory, may be executed.
Links to system programs, such as ssh, may be created by
the system administrator.

Forking a process in a multi-threaded environment is
not very well defined. On startup, the Harness kernel im-
mediately creates a separate process that is responsible for
launching child processes and relaying standard input and
output between spawned programs and the kernel. This
avoids any problems associated with duplicating threads
and file descriptors in the kernel.

2.2. Thread Pool

Due to the potentially unpredictable runtime configura-
tion of the Harness environment, certain issues regarding
thread creation, termination and synchronization need to be
addressed. They range from dealing with the limited num-
ber of threads controllable by a single process to stalling the
system by using too many simultaneous threads. The thread
pool allows the execution of jobs in threads, while staying
in a preset range of running threads utilizing a job queue.

Jobs are submitted to the thread pool in the form of a
job function pointer and a pointer to a job function argu-
ment. The thread pool always maintains a minimum num-
ber of threads to offer quick response times. The thread
count is increased for every newly submitted job if no idle
thread is available and a preset maximum is not reached.
Jobs are queued into a fixed length job queue after reaching
this maximum. Job submissions are finally blocked when
the job queue is full. Idle threads time out and exit if the
minimum number of threads is not yet reached.

Most thread pool properties, such as the maximum num-
ber of threads, are configured during kernel startup and may
be modified via command line options and a kernel con-
figuration file. They may also be modified at runtime via
the thread pool configuration functions. This is essential for
long running jobs which permanently occupy a thread, such
as network servers. The maximum number of threads can
be easily adjusted to avoid thread pool starvation.

2.3. Plug-in Loader

The plug-in loader handles loading and unloading of run-
time plug-ins, which exist in the form of shared libraries.
Such plug-ins are automatically unloaded on kernel shut-
down. Plug-ins may load and unload other plug-ins on de-
mand. Only plug-in modules that reside in a specific pre-
set plug-in directory, or in a respective sub-directory, may
be loaded. The kernel itself may load plug-ins on startup, in
a separate thread that applies command line options.

Every plug-in has the opportunity to initialize itself dur-
ing loading and to finalize itself during unloading via
<plug-in name>_init() and <plug-in name> fini() func-
tions that are automatically resolved and called by the
plug-in loader if they exist. Plug-ins are able to load and
unload other plug-ins they depend on during initializa-
tion and finalization, since the plug-in loading and unload-
ing functions are reentrant and deadlock free.

A plug-in (shared library) is loaded by the plug-in loader
via dlopen() without exporting any of its symbols (functions
and data) to the global name space of the kernel. Plug-in
symbols are not made automatically available to the kernel
or to other plug-ins, to prevent naming conflicts and to al-
low multiple plug-ins to offer the same interface with differ-
ent implementations. In fact, only the module (kernel or an-
other plug-in) that loads a plug-in may have access to it us-
ing a unique and private handle.

The plug-in loading and unloading policy is based on
ownership. A module that loads a specific plug-in owns it
and is also responsible for unloading it. The ownership of
orphaned plug-ins is automatically transferred to the kernel.
They are unloaded on kernel shutdown. The plug-in loader
supports multiple loading to allow different modules to load
the same plug-in. Plug-ins that maintain state may use ref-
erence counting and separate state instances to support mul-
tiple loading.

Plug-in symbols are resolved by the plug-in loader via
dIsym(), requiring the plug-in handle and a symbol name.
Plug-ins may provide tables with function and data point-
ers to improve performance by offering a one-time lookup.
In this case, plug-in functions are called and plug-in data is
accessed virtually similar to C++ objects.

The plug-in loader also supports a specific versioning
scheme for plug-ins similar to the library versioning of the
GNU Libtool [16]. A single number describes the plug-in
API version and a single number describes the revision of
this specific plug-in APl implementation. The version num-
ber is increased and the revision number is set to 0 if the API
was changed. The revision number is increased if the imple-
mentation of the APl was improved, e.g. in case of bug fixes
and performance enhancements.

A plug-in may also support past API versions if func-
tions where only added, so that there is always a continuous
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range of versions specified by two numbers, the first ver-
sion and the number of follow-up versions (age). Together
with the revision, the triplet <first>.<age>.<revision> is
formed, which is used to differentiate and order files and
folders by appending it to or inserting it into file or folder
names, e.g. libfoo.1.2.3.s0.

The plug-in loader allows one to specify the desired ver-
sion in addition to the plug-in name when loading a plug-in.
It chooses the most recent implementation of this version.
Furthermore, age and revision may also be specified.

In order to provide more extensive debugging support,
plug-in variants with built-in extended error logging and
memory tracing are supported as well using the ‘.debug’
extension, e.g. libfoo.debug.so or libfoo.1.2.3.debug.so. De-
bug plug-in variants are automatically preferred when load-
ing into the kernel debug variant.

3. RMIX Framework

RMIX [15] is a dynamic heterogeneous reconfigurable
communication framework, initially developed by the Har-
ness team at Emory University, that allows Java applica-
tions to communicate via TCP/IP using various RMI/RPC
protocols, like Sun RPC, Java RMI and SOAP. In addition
to standard synchronous RMI/RPC mechanisms, RMIX
also allows support for asynchronous and one-way invoca-
tions, which suits well the messaging needs of the peer-to-
peer distributed control in Harness [5]. Ongoing research
at Oak Ridge National Laboratory targets the development
of a stand-alone C variant of RMIX and its integration
into the lightweight Harness framework in order to replace
the inflexible HCom communicator plug-in, thus improv-
ing adaptability and heterogeneity.
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Figure 5. RMIX Plug-in for Harness Kernel

The C based RMIX framework (Figure 4) consists of a
base library and a set of runtime provider plug-ins (shared
libraries). The base library offers the same plug-in loader
and thread pool as the Harness kernel. The provider plug-
ins are responsible for the protocol as well as for the
TCP/IP communication. In the future, provider plug-ins
may also support different inter-process communication
methods, e.g. pipes and shared memory.

The RMIX framework offers access to remote network
services via client stubs, which provide the illusion of local
invocation of remote methods. Client stub methods have the
same signature as the remote methods they represent. They
translate the method arguments into and the method return
value from a generic representation that is being used by the
provider plug-ins.

Network services are implemented using the RMIX
framework via server stubs, which translate the method ar-
guments from and the method return value into the
generic representation. The same provider plug-ins are be-
ing used on the server side.

The RMIX framework is integrated into Harness as a



base plug-in and a stub plug-in (see Figure 5). The base
plug-in is linked directly to the RMIX base library and pro-
vides its functions to other Harness plug-ins. The stub plug-
in contains all client and server stubs necessary to invoke
local or remote kernel functions.

On loading into the kernel, the RMIX stub plug-in auto-
matically loads the RMIX base plug-in and optionally starts
one or more RMI/RPC servers depending on a RMIX stub
plug-in configuration file. Using the command line boot-
strap mechanism, a kernel may provide all of its essential
services via RMI/RPC servers at startup.

4. Impact

The described recent changes and improvements to the
Harness lightweight kernel design were motivated by a lack
of variety in programming paradigms. The previously em-
bedded DVM programming paradigm forced a Harness user
to run its application or service in the DVM context. How-
ever, more loosely coupled peer-to-peer paradigms that do
not maintain global knowledge (state) among the participat-
ing processes where only supported through the DVM, thus
introducing an additional overhead.

The main reasons for embedding the DVM into the ker-
nel were the original P\VM-like design approach and the re-
quirement for high availability of the kernel itself. Every-
thing that depends on the kernel can be highly available,
since its managing framework is highly available. However,
managing global state among a large number of nodes has
scalability limits. Even with caching and partitioning hier-
archies, the DVM approach is not suited for systems with
tens or hundreds of thousands of processors, such as are on
the horizon, e.g. the IBM BlueGene\L. Localized peer-to-
peer concepts [4] can be much more efficient on such ex-
treme scale systems.

With the new design, the DVM management, i.e. the dis-
tributed control [5], has been moved into a plug-in. The
DVM plug-in now handles all DVM requests, such as load-
ing a plug-in or replicating plug-in state for high availabil-
ity. It also implements failure recovery and event notifica-
tion. However, high availability is limited to plug-ins that
rely on the DVM plug-in. The kernel itself is no longer
highly available.

The lightweight design now allows plug-ins to exist out-
side of the DVM context. Furthermore, highly available
plug-ins inside the DVM are able to use plug-ins outside of
the DVM for simple tasks, which can be easily restarted dur-
ing recovery. For example, a communication plug-in, such
as HCom or RMIX, does not need to be highly available,
since its service (providing communication endpoints) is
bound to a specific location.

An early prototype of the new design showed signifi-
cant improvements in usability, versatility and adaptabil-

ity. Especially the capability for plug-in loading at kernel
startup, without having a DVM running, proved to be very
useful. For example, a worker task for a scientific calcula-
tion can be easily started by simply spawning the kernel on
a remote machine using ssh with the appropriate applica-
tion plug-in name in the kernel command line. The applica-
tion plug-in has full access to its local kernel and may load
the DVM plug-in for high availability and/or the HCom or
RMIX plug-in to communicate with other kernels. It also
may just perform some local computation and relay the re-
sult back to a repository.

In contrast, the previous Harness design required a user
to start the kernel via a PVM-like command line tool on the
local and subsequently remote machine, forming a DVM.
The application plug-in was then loaded and accessed via
the DVM management, replicating some or all of its state
throughout the DVM server process group.

With our new design, we have experienced performance
improvements in some cases, e.g. where kernel functions
were used without going through the DVM management.
The DVM related overhead depends on the number of par-
ticipating nodes inside the DVM and the current load (pend-
ing requests) of the DVM management. Request processing
times can vary from less than a second to a few seconds un-
der normal conditions and up to several minutes in large
systems under heavy load. This time can be saved when by-
passing the DVM management for tasks that do not need to
be highly available.

For example, applications that follow the bag-of-tasks
programming paradigm can easily be made fault-tolerant
by farming out tasks and restarting them at different lo-
cations on failure. Task farming with on-the-fly fault tol-
erance by task replacement is a widely used technique to-
day. Examples are SETI@HOME [17] and Condor [1, 2].
The new kernel design efficiently supports this program-
ming paradigm without the DVM overhead.

The kernel design changes also made it easier to program
plug-ins. For example, the new thread pool gives the kernel
sole control over thread management, rather than each indi-
vidual plug-in. Plug-in programmers need only write their
job functions and submit them to the thread pool. Thread
cancellation clean-up on kernel shutdown is supported via
the pthread_cleanup interface.

5. Related Work

This paper describes the recent changes and improve-
ments to the C-based variant of the Harness kernel main-
tained at Oak Ridge National Laboratory. The Harness
team at Emory University developed a Java-based version,
H20 [18], with a similar design.

H20 is a secure, scalable, stateless, lightweight, flexi-
ble, resource sharing platform. It allows resource owners,



any authorized third parties or clients themselves to de-
ploy services (pluglets) into the H20O container (kernel).
H20 has been designed to support a wide range of dis-
tributed programming paradigms, including self-organizing
applications, widely distributed applications, massively par-
allel applications, task farms and component compaosition
frameworks. H20 is founded on the RMIX communica-
tion framework. Common usage scenarios involve clients
deploying computational services just prior to using them,
thus availing of the raw computational power shared by the
container owner. Hence, resource sharing and grid comput-
ing systems can naturally be formed using H20.

Our Harness kernel and H20 have similar lightweight
designs. However, H20 is far more advanced in terms of
security mechanisms, while it does not fully support native
plug-ins (shared libraries). This is due to the fact that the
Java Native Interface does not allow multiple Java objects
to simultaneously load the same native plug-in.

The Harness team at the University of Tennessee (UTK)
also maintains a C-based variant which has a lightweight
design. However, it uses a ring-based replicated database
for high-availability, where our solution is based on more
advanced distributed control [5]. The Harness variant from
UTK also provides a PVM-like console control program
to manage DVMs. Furthermore, UTK developed an FT-
MPI [7, 6, 8] plug-in for fault-tolerant MPI messaging in
Harness.

The ongoing research effort in Harness includes the co-
operative integration of technology between members of
the overall Harness team. Currently, FT-MPI is being com-
bined with H20, for support across administrative bound-
aries. RMIX is being implemented in C as a stand-alone so-
lution, as well as a native Harness plug-in, to provide flex-
ible heterogeneous communication for all Harness frame-
works, and for any other heterogeneous distributed comput-
ing platforms.

6. Conclusions

We have described recent changes and improvements to
the Harness lightweight kernel design. By using a more
efficient and flexible approach and moving previously in-
tegrated services into distinct plug-in modules, the soft-
ware becomes more versatile and adaptable. The kernel pro-
vides a container for the user to load and arrange all soft-
ware components based on actual needs, without any pre-
conditions imposed by the managing framework. The user
chooses the programming model (DVM, PVM, MPI, etc.)
by loading the appropriate plug-in(s).

Recent efforts were described in which RMIX, a dy-
namic heterogeneous reconfigurable communication frame-
work, was integrated into the Harness environment as a new
pluggable software module.

Our experience with an early prototype has shown that
the new kernel design is able to efficiently support mul-
tiple programming models without additional DVM over-
head, simply by bypassing the DVM management for tasks
that do not need high availability. Furthermore, the design
changes have also made it easier to program plug-ins.

Future work will concentrate on providing service-level
high availability features to applications, as well as to typi-
cal operating system components, such as schedulers.
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