Concepts for High Availability in Scientific High-End Computing *'

C. Engelmann' and S. L. Scott!
YComputer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
2Department of Computer Science
The University of Reading, Reading, RG6 6AH, UK
{engelmannc, scottsl} @ornl.gov

Abstract

Scientific high-end computing (HEC) has become
an important tool for scientists world-wide to under-
stand problems, such as in nuclear fusion, human ge-
nomics and nanotechnology. Every year, new HEC sys-
tems emerge on the market with better performance and
higher scale. With only very few exceptions, the over-
all availability of recently installed systems has been
lower in comparison to the same deployment phase of
their predecessors. In contrast to the experienced loss
of availability, the demand for continuous availability
has risen dramatically due to the recent trend towards
capability computing. In this paper, we analyze the ex-
isting deficiencies of current HEC systems and present
several high availability concepts to counter the experi-
enced loss of availability and to alleviate the expected
impact on next-generation systems. We explain the ap-
plication of these concepts to current and future HEC
systems and list past and ongoing related research. This
paper closes with a short summary of the presented
work and a brief discussion of future efforts.

1. Introduction
During the last decade, scientific high-end com-

puting (HEC) has become an important tool for sci-
entists world-wide to understand problems, such as in
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nuclear fusion, human genomics and nanotechnology.
Computer simulations of real-world and theoretical ex-
periments using mathematical models have provided us
with the advantage to gain scientific knowledge without
the need or the capability of performing physical exper-
iments. Furthermore, high-end computing has played a
significant role in engineering, where computer simu-
lations have aided the design and testing of machinery,
cars, air planes and buildings.

Every year, new HEC systems emerge on the mar-
ket with better performance and higher scale. For exam-
ple, the fastest machine (#1 in Top 500 List [22] - IBM
ASCI White) in June 2001 had 8192 processors and a
maximum performance of 7.2 TFLOPS, while in June
2004 the processor count of the fastest system (IBM
Blue Gene/L [4]) reached 65,536 with a performance
of 136.8 TFLOPS.

Within three years, the number of processors in-
creased by almost a magnitude. This significant growth
of system scale poses a substantial challenge for system
software and applications as the reliability of a system
decreases with an increase of the number of its compo-
nents. With only very few exceptions, the availability of
recently installed systems has been lower in comparison
to the same deployment phase of their predecessors. In
some cases the mean time between failure (MTBF) is as
low as 40-50 hours.

In contrast to the experienced loss of availability,
the demand for continuous availability has risen dra-
matically. The notion of capability computing is driven
by the race for scientific discovery through advanced
computing by running applications on the fastest ma-
chines available for a significant amount of time (weeks
and months) without interruption. The U.S. Department
of Energy recently established the National Leadership
Computing Facility [17] at Oak Ridge National Labora-
tory as a national center for capability computing.



In the following sections, we analyze the existing
deficiencies of current HEC systems by identifying their
individual single points of failure and single points of
control. We continue with a presentation of several high
availability concepts. We explain their application to
current and future HEC systems and list past and on-
going related research. This paper closes with a short
summary of the presented work and a brief discussion
of future efforts.

2. Existing Deficiencies

High availability deficiencies of any type of system
can be categorized into single points of failure and sin-
gle points of control.

A failure at a single point of failure interrupts the
entire system. However, the system is able to continue
to run after reconfiguration into a degraded operating
mode. Such reconfiguration may involve a full or partial
restart of the system.

A failure at a single point of control interrupts the
entire system and additionally renders the system use-
less until the failure has been repaired.

Loss of state may occur in case of any failure. For
HEC systems we distinguish between system state and
application state. While system state consists of the
states of all system services including the OS state it-
self, application state comprises of the process states of
a parallel application including dependent system state,
such as communication buffers.

In the following, we describe the individual single
points of failure and single points of control of systems
for scientific high-end computing. We discuss critical
system services and their impact on system availability,
and illustrate the role of individual system components
(nodes) in more detail.

2.1. Critical System Services

HEC systems run critical and non-critical system
services on head, service and compute nodes, such as
job and resource management and communication ser-
vices (MPI), to allow applications to perform scientific
computation in parallel on compute nodes.

A service is critical to its system if it cannot operate
without it. Any such critical system service is a single
point of failure and control for the entire system. As
long as one of them is down, the entire system is not
available. Critical system services may cause a loss of
system and application state in case of a failure.

If a critical system service depends on another ser-
vice, this other service is an additional point of failure
and control for the critical system service and therefore

also a critical system service by itself.

Interdependent critical system services do not nec-
essarily reside at the same physical location, i.e. on the
same node. Any node and any network connection a
critical system service depends on is an additional point
of failure and control for the critical system service and
therefore also for the entire system.

A service is non-critical to its system if it can op-
erate without it in a degraded mode. Any such non-
critical system service is still a single point of failure
for the entire system. Non-critical system services may
also cause a loss of system and application state in case
of a failure.

A system partition service is critical to its system
partition if it cannot operate without it. Any such ser-
vice is a single point of failure and control for the re-
spective partition it belongs to.

If the system is not capable of operating in a de-
graded mode, any such critical system partition service
is also a critical system service. However, if the system
is capable of operating in a degraded mode, any such
critical system partition service is also a non-critical
system service.

Typical critical system services on systems for sci-
entific high-end computing are: user login, network file
system (I/O), job and resource management and com-
munication services (MPI), and in some cases the OS
or parts of the OS itself (e.g. for SSI systems).

User management, software management and pro-
gramming environment are usually non-critical system
services, while network file system (I/O) and commu-
nication services (MPI) are typical critical system parti-
tion services.

2.2. Head Node

If a system has a head node running critical system
services, this head node is a single point of failure and
control for the entire system. As long as it is down, the
entire system is not available. A head node failure may
cause a loss of system and application state.

A typical head node on systems for scientific high-
end computing may run the following critical system
services: user login, network file system (I/O) and job
and resource management. It may also run the follow-
ing non-critical services: user management, software
management and programming environment.

Head nodes can be found in almost all systems cur-
rently in use for scientific high-end computing, includ-
ing clusters (e.g. IBM MareNostrum [14]), vector ma-
chines (e.g. Cray X1 [23]), massively parallel process-
ing (MPP) systems (e.g. Cray XT3 [24]), and single
system image (SSI) solutions (e.g. SGI Altix [2]). How-



ever, some SSI solutions do not have a head node (e.g.
Kerrighed [12]).

2.3. Service Nodes

If a system has service nodes running critical sys-
tem services, any such service node is a single point of
failure and control for the entire system. As long as
one of them is down, the entire system is not available.
Similar to a head node failure, a service node failure
may cause a loss of system and application state.

If a system has service nodes running non-critical
system services, any such service node is a single point
of failure for the entire system. A failure of a ser-
vice node running non-critical system services may still
cause a loss of system and application state.

Service nodes typically offload head node system
services, i.e. they may run the same critical and non-
critical system services.

Service nodes can be found in almost all advanced
HEC systems currently in use (e.g. Cray X1, XT3, IBM
Blue Gene/L, and MareNostrum) with the exception of
some advanced SSI systems.

2.4. Partition Service Nodes

If a system has partition service nodes running crit-
ical system partition services, any such partition service
node is a single point of failure and control for the re-
spective partition it belongs to. As long as any such
partition service node is down, the respective partition
of the system is not available. Similar to a service node
failure, a partition service node failure may cause a loss
of system and application state.

If the system is not capable of operating in a de-
graded mode, any such partition service node is a single
point of failure and control for the entire system. As
long as any one of them is down, the entire system is
not available.

Partition service nodes typically offload critical
head/service node system services, but not non-critical
system services.

Partition service nodes can be found in more ad-
vanced large-scale cluster and MPP systems (e.g. Cray
XT3 and IBM Blue Gene/L). Furthermore, federated
cluster solutions use head nodes of individual clusters
as partition service nodes.

2.5. Compute Nodes
Each compute node that is running critical system

services is a single point of failure and control for the
entire system. As long as any such compute node is

down, the entire system is not available. A failure of
a compute node running critical system services may
cause a loss of system and application state.

Each compute node that is not running critical sys-
tem services is still a single point of failure for the entire
system. If the system is not capable of operating in a de-
graded mode, any such compute node is a single point
of failure and control for the entire system. As long as
one of them is down, the entire system is not available.
A failure of a compute node not running critical system
services may cause a loss of application state, but not
necessarily a loss of system state.

Communication services and in some cases the OS
or parts of the OS itself are typical critical system ser-
vices that may run on compute nodes.

Compute nodes that do not run critical system ser-
vices can be found in almost all systems, with the ex-
ception of SSI systems where the OS on the compute
nodes itself is a critical service (e.g. SGI Altix and Ker-
righed).

2.6. Partition Compute Nodes

Each partition compute node that is running criti-
cal system partition services is a single point of failure
and control for the respective partition it belongs to. As
long as any such partition compute node is down, the
respective partition of the system is not available. Sim-
ilar to a failure of a compute node, a failure of a parti-
tion compute node running critical system services may
cause a loss of system and application state.

If the system is not capable of operating in a de-
graded mode, any partition compute node is a single
point of failure and control for the entire system. As
long as any one of them is down, the entire system is
not available.

Each partition compute node that is not running
critical system services is still a single point of failure
for the respective partition it belongs to. If the system is
not capable of operating in a degraded mode, any such
compute node is a single point of failure and control for
the entire system. As long as one of them is down, the
entire system is not available. A failure of a partition
compute node not running critical system services may
cause a loss of application state, but not necessarily a
loss of system state.

Partition compute nodes may run the same critical
system services that run on normal compute nodes.

Partition compute nodes that do not run critical sys-
tem services can be found in more advanced large-scale
cluster and MPP systems (e.g. Cray XT3 and IBM Blue
Gene/L). Partition compute nodes that do run critical
system services can be found in federated SSI solutions



(e.g. NASAs SGI Altix system Columbia [5]), where
each partition is a SSI system.

2.7. System Scale

The mean time to failure of a system shrinks with
the number of its dependent (non-redundant) compo-
nents. Furthermore, mean time to recover of a system
grows with the number of its components if the recovery
involves the entire system. The more nodes a HEC sys-
tem consists of, the more frequent is the occurrence of
node failures and the more time is needed for a system-
wide recovery. If the mean time to failure of a system
is shorter than its mean time to recover, it becomes per-
manently inoperable.

Some of today‘s largest systems (e.g. IBM Blue
Gene/L) have over 32,000 nodes and will have over
64,000 nodes in the near future. Research projects, such
as the IBM Blue Gene/C [1] development, target the de-
ployment of systems with 1,000,000 nodes within the
next decade. Scalable recovery mechanisms are essen-
tial for such large-scale systems.

2.8. System Downtime

The availability of a system can be increased by re-
ducing its failure frequency, i.e. by increasing its mean
time to failure, but also by reducing its downtime, i.e.
by decreasing its mean time to recover.

The mean time to recover of HEC fault-tolerance
mechanisms, such as checkpoint/restart and message
logging, depends on the system size and the applica-
tion type. Furthermore, they introduce additional over-
head during normal system operation, which needs to
be counted as scheduled system downtime.

3. High Availability Concepts

High availability solutions are based on system
component redundancy [20]. If a component fails, the
system is able to continue to operate using a redundant
component. The level of high-availability depends on
high availability model and replication strategy.

As a result, the mean time to recover of a system
can be significantly decreased, the loss of system and
application state can be considerably reduced and single
points of failure and control can be eliminated.

There are two distinct high availability models: ac-
tive/standby and active/active. While the active/standby
model uses for one active component at least one re-
dundant standby component, the active/active model is
based on multiple redundant active components.

Component redundancy can be provided in differ-

ent ways. Systems for scientific high-end computing
need to provide at least hardware redundancy (addi-
tional nodes). Since the function of a HEC system
is to run parallel applications, software redundancy is
needed to achieve a higher level of availability.

In the following, we present several high availabil-
ity concepts and show how they can be applied to HEC
systems in order to eliminate individual single points of
failure and single points of control.

3.1. Active/Standby

Active/standby high availability follows the fail-
over model. In case of a failure, an idle standby compo-
nent takes over for the failed component. The level of
high-availability depends on the replication strategy for
component state.

3.1.1. Active/Cold-Standby. A cold-standby solution
provides hardware redundancy, but not software redun-
dancy. In case of a failure, the standby component is
automatically initialized and replaces the failed compo-
nent. However, any component state is lost.

In scientific high-end computing, the active/cold-
standby model can be used for all node types in order
to reduce the mean time to recover. However, having a
spare node without any replication is not a very efficient
way of using expensive equipment.

3.1.2. Active/Warm-Standby. A warm-standby solu-
tion provides hardware redundancy as well as some
software redundancy. State is regularly replicated to the
standby. In case of a failure, the standby component
replaces the failed component and continues to oper-
ate based on the previously replicated state. Only those
component state changes are lost that occurred between
the last replication and the failure.

Component state is copied using passive replica-
tion, i.e. in regular intervals or after a state change took
place. The standby component needs to ensure that an
old replica can only be replaced by a new replica if it
has been fully received.

Stateless components are components that do not
maintain internal state, but still react to external events,
like for example a simple Web server. Warm standby
solutions for stateless components do not replicate any
state, but provide a seamless failover without the need
of standby initialization.

HEC systems may use active/warm-standby solu-
tions for all types of nodes that do run critical system
services in order to eliminate the single points of con-
trol they represent and to improve the mean time to re-
cover. They still remain single points of failure as some
component state is lost in case of a failure.



Service and partition service nodes that do not run
critical system services may use warm-standby high
availability to avoid the degraded operating mode.

Compute nodes that do not run critical system ser-
vices may use warm-standby high availability to avoid
the degraded operating mode and to improve the mean
time to recover. In this case, component state is not
replicated to a standby component, but rather to a
backup storage to allow any compute node to be re-
placed by a standby node.

Existing active/warm-standby solutions for scien-
tific high-end computing include: checkpoint/restart
mechanisms (e.g. BLCR [3] and diskless checkpoint-
ing [7, 19]) and critical system service packages (e.g.
HA-OSCAR [11] and SLURM [21])

3.1.3. Active/Hot-Standby. A hot-standby solution
also provides hardware redundancy as well as software
redundancy. However, component state is replicated to
the standby on any change, i.e. the standby component
is always up-to-date. In case of a failure, the standby
component replaces the failed component and contin-
ues to operate based on the current state.

Component state is copied using active replication.
A commit protocol is used to announce state changes to
the standby component before they are executed at the
active component. Once executed, the standby com-
ponent receives a second message to commit the state
change. Any uncommitted state changes are executed
by the standby component upon failover.

The active/hot-standby model offers continuous
availability without any interruption of service.

Systems for scientific high-end computing may
use active/hot-standby solutions for all types of nodes
that run critical system services to eliminate the single
points of failure and control they represent.

Service and partition service nodes that do not run
critical system services may use hot-standby high avail-
ability to eliminate the single point of failure they rep-
resent and to avoid the degraded operating mode.

Compute nodes that do not run critical system ser-
vices may use hot-standby high availability to eliminate
the single point of failure they represent and to avoid
the degraded operating mode. However the operational
overhead may be too high at a larger scale.

Existing active/hot-standby solutions for scientific
high-end computing include: critical system services
(e.g. PBSPro for the Cray XT3 [18]) and message log-
ging facilities (e.g. MPICH-V [16]).

Future work should target complete solutions that
include all system services as well as applications.

3.2. Active/Active

Active/active high availability allows more than
one redundant system component to be active, while
it does not waste system resources by relying on idle
standby components. State change requests can be ac-
cepted and may be executed by every member of a repli-
cated component group.

3.2.1. Asymmetric Active/Active. An asymmetric ac-
tive/active solution provides hardware and software re-
dundancy. However, its software redundancy is not sup-
ported by component state replication, but rather by
multiple uncoordinated redundant active system com-
ponents that do not share state. In case of a failure, all
other active system components continue to operate.

Since component state is not replicated, compo-
nents that maintain internal state loose all of their state
in case of a failure. While additional hot-standby com-
ponents may offer continuous availability, state is still
not shared between active components and the active
component group does not act in a coordinated way.

Asymmetric active/active high availability is very
useful for stateless services as it allows a system to
seamlessly downgrade into a degraded operating mode.
The asymmetric active/active high availability model is
typically used in the telecommunication industry.

Critical system services within a HEC system are
typically stateful. Previous research showed that asym-
metric active/active high availability for HEC systems is
possible [13]. However, it is not a recommended model
due to its uncoordinated behavior. Further research is
needed to determine its application to non-critical HEC
system services that may be stateless.

3.2.2. Symmetric Active/Active. A symmetric ac-
tive/active solution also provides hardware and soft-
ware redundancy. Though, component state is repli-
cated within an active system component group using
advanced commit protocols, such as distributed con-
trol [9] and virtual synchrony [15]. In case of a failure,
all other active system components continue to operate
using the current state.

Furthermore, component state is shared in form of
global state. All components within an active system
component group have the same state and are able to
change it using mutual exclusive access.

Similar to active/hot-standby, HEC systems may
use symmetric active/active solutions for all types of
nodes that run critical system services to eliminate the
single points of failure and control they represent.

Service and partition service nodes that do not
run critical system services may use symmetric ac-
tive/active high availability to eliminate the single point



of failure they represent and to avoid the degraded op-
erating mode.

Compute nodes that do not run critical system ser-
vices may also use symmetric active/active high avail-
ability to eliminate the single point of failure they rep-
resent and to avoid the degraded operating mode. How-
ever the operational overhead may be too high at a
larger scale (probably higher than for active/hot-standby
high availability).

Existing solutions for HEC systems include: group
communication systems (e.g. Transis [6]) and dis-
tributed metacomputing systems (e.g. Harness [10]).

Future research needs to target the transition of ex-
isting active/hot-standby solutions to active/active, and
the development of complete active/active solutions that
include all system services as well as applications.

4. What Next

In this paper, we have analyzed current HEC sys-
tems and identified their high availability deficiencies
regarding individual single points of failure and single
points of control. We have presented of several high
availability concepts, explained how they can be applied
to current and future HEC systems, and listed related
past and ongoing research.

As already mentioned before, the main focus of fu-
ture research efforts in high availability for scientific
high-end computing needs to be on active/hot-standby
and active/active solutions that include all system ser-
vices as well as applications.

There are two major challenges on the way towards
active/active high availability for HEC systems.

First, individual critical and non-critical system
services need to be identified. This can only be per-
formed on a case by case basis for every single HEC
system as the implementation of system services de-
pends on system architecture, vendor and model.

Second, the transition to active/active high avail-
ability involves the use of complex commit protocols
that are difficult to understand and may involve substan-
tial modification of existing code.

We have began to work on a flexible, pluggable and
component-based high availability framework [8] that
allows adaptation to system properties and application
needs, while providing simple abstraction models for
complex commit protocols.

Other ongoing work concentrates on proof-of-
concept implementations for active/active HEC system
services, such as job management and file system meta-
data server, in order to provide blueprint solutions for
other researchers and for vendors.
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