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Super-scale Architectures

& Current tera-scale supercomputers have up to
10,000 processors.

@ Next generation peta-scale systems will have

100,000 processors and more.

€ Such machines may easily scale up to
1,000,000 processors in the next decade.

@ IBM currently builds the BlueGene\L at
Lawrence Livermore National Laboratory.
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IBM BlueGene\L at LLNL

€ Up to 64K diskless nodes with 2 processors per node.
€ Only 256MB RAM per processor. S
@ Additional service nodes (1/0).

& Estimated 360 Tera FLOPS.
@ Over 150k processors. wnciso || il
& Global tree network. e
@ 3-D torus network., e g
# Gigabit Ethernet.
& Operational in 2005. =g e




Scalability Issues
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& How to make use of 100,000 processors?
@ System scale jumps by a magnitude.

# Current algorithms do not scale well on
existing 10,000-processor systems.

@ Next generation peta-scale systems are
useless if efficiency drops by a magnitude.
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Fault-tolerance Issues

& How to survive on 100,000 processors?
@ Failure rate grows with the system size.
4 Mean time between failures may be a few

hours or just a few minutes.

@ Current solutions for fault-tolerance rely on
checkpoint/restart mechanismes.

# Checkpointing 100,000 processors to central
stable storage is not feasible anymore.




ORNL/IBM Collaboration
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@ Development of biology and material science
applications for super-scale systems.

@ Exploration of super-scalable algorithms.
= Natural fault-tolerance.
= Scale invariance.

€ Focus on test and demonstration tool.

@ Get scientists to think about scalability and
fault-tolerance in super-scale systems! ? 2
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Cellular Architecture Simulator

&

\ 4

®

Developed at ORNL in Java with native C and
~ortran application support using JNI.

Runs as standalone or distributed application.

_ightweight framework simulates up to
1,000,000 processes on 9 real processors.

# Standard and experimental networks:

= Multi-dimensional mesh/torus.
= Nearest/Random neighbors.

€ Message driven simulation is not in real-time.
€ Primitive fault-tolerant MPI support.
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Super-scalable Fault-tolerance

@ For non-naturally fault tolerant algorithms.

@ Does it makes sense to restart all 100,000
Nrocessors because one failed?

€ The mean time between failures is likely to be
a few hours or just a few minutes.

@ Traditional centralized checkpointing is limited
by bandwidth (bottleneck).
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» The failure rate is going to outrun the
recovery and the checkpointing rate. W
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Diskless Checkpointing

Decentralized peer-to-peer checkpointing.
Processors hold backups of neighbors.
_ocal checkpoint and restart algorithm.

® ¢ ¢S

Coordination of local checkpoints.
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Diskless Checkpointing

@ In case of a failure:
= Rollback to local memory backup if necessary.
= Restart from remote memory backup.

# Encoding semantics, such as RAID, trade off

storage size vs. degree of fault tolerance.

@ Very infrequent checkpointing to central
stable storage (disk/tape).

& Checkpoint and application processes may be
the same or different.

@ Possible OS support via library/service.
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Choosing Neighbors

@ Physically near neighbors:
= Low latency, fast backup and recovery.

# Physically far neighbors:

= Recoverable multiprocessor node failures.

€ Random neighbors:
= Medium latency and bandwidth.
= Acceptable backup and recovery time.

@ Optimum: Pseudorandom neighbors based on
system communication infrastructure.
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Backup Coordination

@ All peer-to-peer checkpoints need to be

consistent with the global ap
# Includes local states and in-f

@ No backup coordination for ¢
no communication since the

# Coordination techniques:
= Global synchronization.
= Local synchronization.

plication state.
ight messages.
neckpoints with

ast one or start.
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Global Synchronization

@ Global application snapshot (e.g. barrier) at
stable global application state.

@ Synchronous backup of all local states.

# Synchronizes complete application.

@ Preferred method for communication
intensive applications.

# Easy to implement.
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Local Synchronization

@ Asynchronous backup of local state and in-
flight messages (extensive message logging).

€ Acknowledgements for messages to keep

accurate records of in-flight messages.
@ Additional local group communication.

@ Different methods to retrieve missed
messages from neighbors (replay/lookup).

& Preferred method for less communication
intensive applications.

@ More complicated to implement.
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Application to FFT

@ Distributed and transposed FFT:
= Not naturally fault-tolerant.
= Every process is important.
= Not scale invariant.

= Mixture of local and global communication.
= Well known algorithm behavior.

# Other Fourier transform algorithms may be
naturally fault-tolerant or scale better.

# They are not considered here.
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How to checkpoint DFFT?
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€ Individual checkpoints

with local sync. due to
light message load.

€ Coordinated checkpoints

only after transpose.

» More efficient than DFFT.

How to checkpoint TFFT?

with no synchronization.
@ Coordinated checkpoints
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Observations

@ Diskless peer-to-peer checkpointing on super-
scale architectures is possible.

@ Synchronization methods have different
strengths and weaknesses.

& Timing, latency and bandwidth data
impossible to obtain from simulator.

# Real-time tests with different applications are
needed for further discussion.

® Final real-world implementation requires
super-scalable FT-MPI or PVM.




N

Conclusions

& Super-scale systems with 100,000 and more
processors become reality very soon.

@ Diskless peer-to-peer checkpointing provides

an alternative to natural fault-tolerance.
@ A |ot of research still needs to be done.
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