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Abstract

At the present time, it can be a significant challenge
to build a large-scale distributed file system that simul-
taneously maintains both high availability and high per-
formance. Although many fault tolerance technologies
have been proposed and used in both commercial and
academic distributed file systems to achieve high avail-
ability, most of them typically sacrifice performance for
higher system availability. Additionally, recent studies
show that system availability and performance are re-
lated to the system workload. In this paper, we analyze
the correlations among availability, performance, and
workloads based on a replication strategy, and we dis-
cuss the trade off between availability and performance
with different workloads. Our analysis leads to the de-
sign of an online controller that can dynamically achieve
optimal performance and availability by tuning the sys-
tem replication policy.

1 Introduction

Current large-scale distributed file servers typically
consist of tens of thousands of nodes with petabytes

of storage capacity, running on file systems such as
the Lustre file system [1] and GFS [2]. One primary
and common challenge of these large scale systems
is how to provide high data availability and high
performance services to users. Although many fault
tolerance techniques have been proposed and used in
both commercial and academic distributed file systems
to achieve high availability, unfortunately, most of
them, including replication [3] and RAID [4], have
performance issues to some extent. For example,
replication technology may increase the number of
replicas for higher availability at the cost of occupying
more I/O and network resources [3, 5], and RAID
may sacrifice performance by increasing reconstruction
speed to achieve higher availability [6]. In summary,
high system availability typically sacrifices system
performance, causing a trade-off to exist between the
two. Thus, tuning systems for both optimal online
system availability and performance is an outstanding
problem for system designers and administrators.

With the increasing size and complexity of large-scale
storage systems, manually tuning a system to achieve
optimal online system availability and performance
is impractical, difficult, and most likely error-prone
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[7]. Furthermore, even if a fault tolerance approach
claims to tolerate runtime failures, such as disk failures
and unreliable network connectivity [8], it must take
system workloads and application characteristics into
account, or else the approach still may not achieve the
expected objective. The reasons are that: (1) there is
a high probability [7, 9, 10, 11] that software bugs and
hardware transient failures occur due to higher system
activities; (2) applications with different characteristics
benefit from different fault tolerance policy [12].

In this paper, we present an online controller for dis-
tributed file systems based on a replication technique.
The controller is able to dynamically tune the strategy
employed for the replication process to achieve an on-
line optimal availability and performance objective when
runtime failures occur. There are two components in this
design: system identification and controller implemen-
tation. For the task of system identification, two math-
ematical models are constructed to show the effects that
the number of replicas have on system performance and
availability, and we analyze the resulting model. For the
task of controller implementation, the basic algorithm of
the controller is presented and analyzed.

2 Replication strategy

Replication [13] is a widely used fault tolerance ap-
proach in distributed file systems. The replication strat-
egy in this paper is a form of the primary/backup ap-
proach [14]: one storage node is designated as a head
(primary) node; a given file or data object is replicated
among several different storage nodes; and a master dae-
mon exists, which is in charge of detecting the failures
of storage nodes. As depicted in Figure 1, when an up-
date to a file arrives, it is directed to the head node; after
atomically updating in the head node, the updates are
distributed to other nodes.

3 Mathematical Model

A key issue in the controller is how to dynamically
tune the replication strategy to achieve an optimal sys-
tem availability and performance objective. The focus
of the model is on the number of replicas, which plays
a key role in both system availability and performance
[3, 12]. We assume there exists an optimal number of
replicas for each file in the system ropt, which means the

Node1 Node2 Nodei Nodei+1

Figure 1. Replication strategy

expected system availability is guaranteed at the cost of
the tolerated performance loss. Let r denote the number
of replicas for each data object or file. When some fail-
ures occur and result in the degradation of system avail-
ability, r should be adjusted to adapt this change. There
are two cases shown in Figure 2:
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Figure 2. The analytical model

• r < ropt : the degradation of system availabil-
ity may not be compensated, or there is still some
space to improve system availability with the ac-
ceptable performance loss.

• r > ropt : the system may suffer more availability
degradation and performance loss. Since the over-
head of replication consists of the cost of repair and
consistency, too many replicas implies higher repli-
cation overhead, which results in the degradation of
performance. Meanwhile, studies in [9, 10] show
that a higher system workload has a strong corre-
lation to a higher failure rate, which has a negative
impact on the system availability.

Thus, to make a decision of the optimal number ropt,
two questions need to be answered: (1) How much per-
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formance will be sacrificed as a result of increasing the
number of replicas? (2) What’s the runtime system avail-
ability with a replica number r? Two models, perfor-
mance and availability models, are constructed to ex-
plore these two questions.

3.1 Assumptions

To narrow the scope of the discussion, several basic
assumptions will be applied to both performance and
availability models:

1. The probability of a node to be unavailable is
treated as an independent variable. The probabil-
ity of correlated failures of nodes is not discussed
here.

2. Since bursty access patterns and huge update op-
erations for a single file are typical characteristics
of a file system workload for large-scale scientific
computing applications [15], it is highly possible
that most of the nodes process large update inten-
sive workloads in some time interval. Thus, we as-
sume system workloads w only consist of update
operations in this model because they will be the
dominant factor for performance.

3. The system is fail-stop [14]. It implies that (1) a
node halts when it incurs the first failure; (2) a fail-
ure node can be detected by the system.

4. The resource of the system in terms of number of
nodes n is constant. New nodes join the system
immediately when failure nodes are detected.

3.2 Performance Model

In this model, we concentrate on the effect of the
number of replicas on the system performance with up-
date intensive system workloads, and conclude that the
system will suffer great performance degradation with
more replicas in some cases given the resource con-
straint. Here are several definitions used in the discus-
sion:

• Cr(i): denotes the cost of repair overhead when a
replica is unavailable during update operation i;

• Cs(i): denotes the cost of synchronization over-
head that is necessary to maintain the consistency

among the replicas for an update operation i, in
terms of time to finish all synchronizations;

• C(i): denotes the cost of an update operation i
without replication in a failure-free environment, in
terms of time to complete;

• Ctotal(i): denotes the total cost of an update opera-
tion i in the system, in terms of time to complete.

The Ctotal(i) is the sum of C(i), Cs(i), and Cr(i);
Cs(i) and Cr(i) are determined by the maximum values
in {t1, t2, ..., tn} and {t′1, t′2, ..., t′m}, respectively; tn de-
notes the cost of nth synchronization for operation i; t′m
denotes the cost of mth repair for operation i if there are
m replicas unavailable.

Ctotal(i) = C(i) + Cs(i) + Cr(i) (1)

Cs(i) = tmax ∈ {t1, t2, ..., tn}, (n ∈ {1, 2, ..., r})
Cr(i) = tmax ∈ {t′1, t′2, ..., t′m}, (m ∈ {1, 2, ..., r − 1})

Node1 Node2 Noden

replica

Node1 Node2Node3

replica

Data
Data

Figure 3. A process of an update operation

Figure 3 shows a case of an update operation. It
shows that if the workloads are unbalanced among the
nodes, Cs(i) and Cr(i) may be very large. Given by
Formula 1, Ctotal(i) is much higher than C(i). And it
also implies that an update operation may have a higher
cost with more replicas, as the possibility of one replica
node with a heavy workload increases.
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Intuitively, it seems that if the workloads were bal-
anced among all nodes, the overhead of an update oper-
ation with more replicas would be acceptable. We can
try to verify this with a thinking experiment as depicted
in Figure 4, given assumption 4 and that workloads are
balanced among the nodes. Eight update operations are
issued simultaneously; only eight nodes are in the sys-
tem; there are two replicas associated with each oper-
ation; operations are processed one by one; no failure
occurs during all updates in this experiment. To simplify
the calculation, we assume each update operation i has
same C(i) denoted by α. When there is no replication,
the total cost for completing all eight operations C, is
β + α obtained by Formula 2, as all operations can be
processed in parallel. Here, β denotes the processing
cost of the previous operations in each node. However,
if each update operation has two replicas, for the sake of
simplicity, there is no head node; the two nodes are up-
dated simultaneously. Thus, the total cost C ′, is β + 2α,
given by Formula 3.
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Figure 4. Eight nodes, two replicas and eight
concurrent update operations

C = β +max(C(1), C(2), ..., C(8)) (2)

= β + α

C ′ = β +max(C(1), ..., C(4)) +max(C(5), ..., C(8))
(3)

= β + α+ α = β + 2α

Let γ denote the relative execution time increase per-
centage in this experiment. In our example, γ = 100%,
using Formula 4 with (β = 0).

γ =
C ′ − C
C

× 100% (4)

=
α

β + α
× 100%

Let’s generalize the result. Assume there are w con-
current update operations, n nodes, and r replicas, given
that m ≤ n and r × m > n. The formula of the rel-
ative execution time increase percentage Γ(w, r) can be
obtained:

C = β + α

C ′ = β + dr × w
n
e × α

Γ(w, r) =
C ′ − C
C

× 100% =
d r×wn e × α− (β + α)

(β + α)
× 100%

= dr × w
n
e − 1, (β = 0) (5)
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Figure 5. Relative execution time increase per-
centage

Formula 5 suggests two cases that increasing replicas
would not incur too much performance loss (longer exe-
cution time) if: (1) the workload w is not too large; (2)
there are sufficient nodes n. Figure 5 shows that with
more concurrent update operations and more replicas,
the performance drops quickly.

3.3 Availability Model

Recent studies [9, 10, 11] on failures in petascale
file systems conclude that a higher system workload
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has a strong correlation to a higher failure rate, which
can imply lower system availability. In this model, the
correlation between workloads and system availability
is explored.

A widely used failure growth model, Goel-Okumoto
model [16] assumes that the failure arrival process is a
non-homogeneous Poisson process: the failures experi-
enced by time t follow a Poisson distribution [17]. In our
model, we let the failures experienced by workloads w
follow a Poisson distribution instead of time t, and that
the process has independent and stationary increments.
The probability of failures p(w), over workloads is given
by the formula:

p(w) = 1− e−λw (6)

where λ denotes the average rate of failures in work-
loads w of the process. λ must to be estimated from the
collected data.

In [8], the availability of a data object can be obtained
by 1− p(w)r, given r replicas. With Formula 6, we can
obtain a formula of a predicted availability over work-
load w:

A(w) = 1− (1− e−λw)r (7)
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Figure 6. Availability λ = 0.0001

Figure 6 shows that with a smaller λ = 0.0001, we
can get significant availability improvement by creat-
ing more replicas, especially when the workload is big,
given the tolerance of high performance loss. However,
Figure 7 shows that with a larger λ = 0.001, systems
with a higher workload will not benefit greatly, in terms
of availability, by increasing the amount of replicas.
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Figure 7. Availability λ = 0.001

4 Controller Design
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Figure 8. The work flow of the controller

Figure 8 shows the basic work flow of the controller:
the desired availability and performance objective is set
at the beginning, and then the controller takes the setting
value and the feedback information from a monitor into
account to tune the current replication strategy. The
process will repeat until the difference between the
pre-set values and measured values is tolerated.

The job of the monitor is to record the workloads n
in a period, record the number of failures wf in n, and
calculate the availability via Formula 8 [16].

Amonitor =
wmonitor − wf−monitor

wmonitor

= 1−
wf−monitor
wmonitor

(8)

The basic job of the controller is to make a decision
of a optimal number of replicas via the feedback infor-
mation from the monitor. Since it is very possible that
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the performance loss caused by more replicas cannot be
tolerated, Jiaying et al. [12] suggests that the system can
go back to the latest check point and restart to achieve
both availability and performance objectives. The basic
algorithm for our controller design is shown below:

Algorithm 1 : Controller Design
Input: wmonitor, wf−monitor, γmax−tolerance
Output: ropt

1: λ← wf−monitor/wmonitor;
2: Amonitor ← 1− λ;
3: if Amonitor < Asetting then
4: r ← ln (1−Asetting)/ ln (1− e−λwmonitor);
5: γ ← Γ(wmonitor, r);
6: if γ > γmax−tolerance then
7: Go to the latest check point, and restart;
8: else
9: ropt ← r;

10: return ropt;
11: end if
12: else
13: return the previous ropt;
14: end if

5 Related Work

Douceur and Wattenhofer [3], Xin et al. [6], and
Weatherspoon and Kubiatowicz [5] have previously
shown the existence of a trade off among different fault
tolerance strategies for system availability and perfor-
mance. The importance of self reconfiguration has been
demonstrated by the work of Ghandeharizadeh et al.
[18]. The trade off between availability and performance
and the importance of self reconfiguration form the ba-
sis and motivation behind this research. Ang and Tham
[7] discuss the issues of load-dependent node availabil-
ity, which provides a strong support for one of the basic
assumptions of our model. Parekh et al. [19] present a
software controller design used in performance manage-
ment; we adopt their method here to design an online
controller for maintaining an optimal system availability
and performance.

6 Conclusion and Future Work

In this paper, two mathematical models are con-
structed to explore the correlation among availability,

performance, and workload based on a replication strat-
egy. Based on our analysis, we conclude that (1) system
performance incurs significant degradation with more
replicas in a period of high updating activities; (2) avail-
ability can have an expected improvement with more
replicas when the failure rate is low. When failures are
more frequent, however, replication may not be able to
help the system to achieve the desired availability with-
out sacrificing too much performance. In this case, it is
better to go to the latest checkpoint and restart, instead
of increasing replication. Lastly, we proposed an online
controller which will help a system achieve an optimal
runtime performance and an optimal availability via dy-
namically tuning the system replication policy. We are
currently validating the proposed models via simulation
and failure traces analysis, and in the future, we will im-
plement such a controller in a parallel file system.
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