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Abstract

The advancements of high-performance computing (HPC) systems in the last de-
cades lead to more and more complex systems containing thousands or tens-of-
thousands computing systems that are working together. While the computational
performance of these systems increased dramatically in the last years the input/out-
put (I/O) subsystems have not gained such a significant improvement. With increas-
ing numbers of hardware components in the next generation HPC systems main-
taining the reliability of such systems becomes more and more difficult since the
probability of hardware failures is increasing with the number of components. The
capacities of traditional reactive fault tolerance technologies are exceeded by the de-
velopment of next generation systems and alternatives have to be found. This paper
discusses a monitoring system that is using data reduction techniques to decrease
the amount of the collected data. The system is part of a proactive fault tolerance

system that may solve the reliability problems of exascale HPC systems.
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1 Introduction

The microchip is one of the inventions of the last century that has changed many
aspects of the modern world. Microchips are used in nearly every electronic device
and are present in nearly every household of the modern world. They are found in
entertainment and control systems, cell phones and hand held devices, in engines,
and of course in systems that are called computer.

The use and appearance of a computer has dramatically changed over the last
decades. In the early beginnings, they were large-room-sized machines, used by
the military and the scientific community. With the rapid development they soon
reached the economy as well. The invention of the micro circuit has increased the
performance of the computer and decreased the size in the same way. Additionally
the power consumption and their price decreased and therefore the computer entered
the homes. Today computers are the foundation for many companies that either
produce hard- or software or provide services to a vast amount of customers.

While the average user benefited from these inventions and most of todays com-
puters provide more power than actually is needed, advanced users are always in
need for more performance. If the advanced user is a gamer, who is in need of a fast
graphic card and central processing unit (CPU), or an employee who is using the
computer in commercial applications, such as computer aided design or computer
aided engineering. But the most performant computers of their time were always
used by the scientific community or the military for research. Many improvements
to the computer were driven by these communities.

The need for performance is the nature of the applications running in most of
these research or development projects. The most time consuming applications that
are running on the fastest computers of the world are either some kind of simulation
or are used to evaluate huge amounts of data.

During the last decades improving the performance of computers was mainly
achieved by increasing the clock rate, shrinking structures and improvements of
the architecture of the CPU. From scalar over super scalar and vector to today’s
many core processors. Although the performance gain of the CPU is remarkable,
it was not sufficient to satisfy the needs of the operators of such HPC systems.
So the development in the HPC community started to find other ways to improve

performance. In the 1980’s, the systems with the highest performance were vector
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computers which could issue one instruction to a sequence of data. And in the
1990’s, parallel computers were taking the place of the vector machines. These
systems are constellations of many single computers working together to solve a
problem and the current approach to satisfy the performance needed for today’s
computational problems.

Actual petascale HPC systems consists of thousands or tens-of-thousands of
compute nodes and upcoming exascale HPC systems are expected to scale to hun-
dreds of thousand nodes which will use multicore processors and additional general-
purpose computing on graphics processing units (GPGPU). The overall amount of
hardware components in current systems exceeds a million of components and the
next generation systems are expected to have ten to hundred times more.

With the increasing amount of components in HPC their reliability is decreas-
ing. The vast amount of hardware components, whose reliability has not changed
significantly in the last years, leads to an increasing failure rate.

The current way to deal with the reliability problems and to achieve fault toler-
ance (FT) in HPC applications is to create checkpoints and restart the applications
from the last checkpoint if a failure occurs. An application a creates checkpoint
of its current state, either using application specific approaches or mechanisms of
the underlying application programming interfaces (APIs) or the operating system
(OS), and writes it to a file system. Failures in the application or hardware that
causes the application to hang on one node or a node to crash, can cause the entire
application to fail. If this happens an administrator or a job submission system has
to restart the job beginning from the last checkpoint.

To meet the challenges of future HPC systems a new approach to increase FT
has to be found.

1.1 State of the Art
1.1.1 Reactive Fault Tolerance

Todays FT mechanisms for HPC applications rely on checkpointing and restart. A
checkpoint can be a copy of the processes memory and registers that is stored to
a storage device. In the case of an error the last checkpoint is used to recover the
process and to continue its execution from this point.

The checkpointing functions have either to be implemented by the application
developer or can rely on mechanisms provided by the job submission system or the
underlying OS. For an application level implementation of an checkpointing mech-

anism the application developers can implement it by themselves or by utilizing

2
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mechanisms provided by an API for parallel applications.

Today’s most common checkpointing mechanisms take coordinated checkpoints.
All processes on all nodes create a checkpoint to the same time.

Checkpointing of petascale applications produces an enormous I/O load on the
network and a huge amount of data on the storage. A HPC system with 10,000
nodes and an average memory usage of 2GB would produce an amount of 20,000
GB that has to be stored. Most HPC systems use a networked file system and the
transport of this vast amount of data can exceed the capabilities of the I/O subsystem
[6, 24], whose performance has not increased significantly during the last years.
With exascale HPC systems on the horizon that are going to be composed of much
more nodes, it is inevitable that this mechanisms have to be improved dramatically
or replaced by other mechanisms.

There are currently many research projects with the goal to improve check-
point/restart mechanisms used. Improvements to checkpointing can be done by
taking asynchronous or coordinated [4] checkpoints, by optimizing checkpointing
intervals [5] or with incremental checkpoints [9]. Asynchronous intervals will re-
duce the current bandwidth needed to save a checkpoint. The different nodes take
their checkpoints at different times and the file system utilization is distributed over
time. Asynchronous checkpointing however will not reduce the amount of the data
that has to be stored. Reducing the interval of the checkpoints on the other hand

will produce a smaller amount of transported and stored data.
1.1.2 System Health Monitoring

To monitor the health of computational systems many software solutions are avail-
able. There are many popular open source monitoring systems available, and many
hardware vendors offer monitoring solutions for their systems. In this section, two
open source systems will be described in detail and their advantages and disadvan-

tages will be discussed.
Ganglia

Ganglia [16, 19, 20] is a set of system daemon processes and tools dedicated to
monitor HPC systems, such as clusters and Grids. The Ganglia monitoring system
was started as the Millennium Project at the University of California, Berkeley. The
system is based on a hierarchical design to scale to large installations. Ganglia is a
set of daemons and tools that work together as a monitoring system. The monitoring

data is captured by the (gmond) daemon. It collects system metrics, like CPU,



Introduction Swen Bohm

memory, disk, network, and process data. Additional metrics can be added using
the gmet ric tool, which adds a metric value to a local or remote gmond service.
The monitoring daemons can be aggregated to groups which exchange their data
using the external data representation (XDR) protocol. The gmond service can be
queried on port 8679 (if not configured otherwise) and sends the data back in an
extensible markup language (XML) format (see Listing D.1 for an example).

To get a hierarchical structure, a second daemon gmetad collects the data from
the aggregated gmond groups. To achieve fault tolerance gmetad can query every
gmond in a group. A gmetad daemon itself can again be queried by another
gmetad daemon and form a tree structure to monitor big installations.

The representation of the monitoring data as XML dataset makes it easy to write
software to post process and validate the monitoring data. Another benefit is that
the data format is human readable as it is. The disadvantage of the XML output is
that it produces much more overhead. The XML data needs more bandwidth for
the transportation through a network and more space on the storage than a binary

format for example.
Nagios

Nagios uses a Web front end to represent the states of the monitored hardware but
the monitoring data can be dumped into a structured query language (SQL) database
which produces much less overhead than the XML format Ganglia uses. Nagios
uses a monitoring daemon that queries the nodes that have to be monitored. It
differentiates between public and private services that have to be monitored with
different methods. Public services are daemons that can be monitored through
a network connection, like Web, database and print servers for example. Private
services (in the Nagios notation CPU usage, loads and most other types of health
monitoring relevant metrics) can be gathered using different methods. On one side
there is the possibility to query Nagios remote plugin executor (NRPE) (a separate
daemon that runs on the monitored host(s)) or a Simple Network Management Pro-
tocol (SNMP) daemon. On the other side, Nagios can use passive checks, were the
monitored node can announce data using Nagios service check acceptor (NSCA).
Using passive checks the monitored host can run scripts periodically (using cron
or at on UNIX machines) and announce the results to the monitoring host with
the nsca_send tool. NRPE enables the monitor host to execute Nagios plug-ins
remotely. Both, NSCA and NRPE are Nagios add-ons that have to be installed

separately.
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1.2 Related Work

1.2.1 Proactive Fault Tolerance

A new approach to increase the reliability of HPC systems is proactive fault tol-
erance (PFT) [7,21,30]. It is an emerging technology that prevents the impact of
compute node failures to a parallel application. A proactive reliability, availability
and serviceability (RAS) framework [30,32] (see Figure 1.1) increases the applica-
tion mean-time to failure (AMTTF) of HPC systems by migrating application parts
away from nodes that are "about to fail".

To predict [8, 31] failures that can cause a compute node or an application to
fail, a proactive RAS system has to know the health state of all hosts. The health
of all compute nodes is constantly monitored and the data is analyzed in a constant
feedback loop (see Figure 1.2). If it is likely that a host is about to fail preventative
action is taken to migrate application parts away from nodes that are going to fail.
To move application parts a preemptive RAS system has to incorporate the resource

manager [15] or the runtime environment [33].

Virtualization Scope:
Application, Run Time Environment and Micro OS

Customization Detection Recovery and
and Guidance : | Prevention

Individua} | IPMI Monitor

Compute Nodes l

e— L Local Policy- VM-Level . ' -
Application — Based Analysis | Migration* Migration of Virtualized Nodes
Communication Policy Configuration, | | Fault, Error and Fault Tolerance
System Decision Guidance Trend Notification Mechanism Invocation
Coordinated Global Policy-Based i Event \| Users, Administrator,
. u Analysis and Decision Making Distribution V| System Services
Multiple, Fully
Redundant |— TT
Service Nodes -

‘ Local Policy-Based Analysis K:‘ Round Robin Heart Beat ‘

Highly Available RAS Engine

Figure 1.1: Previously proposed Proactive RAS framework ( [30])

The feedback loop can be classified in 4 types (see figure 1.2.1) with different
capabilities. Type I (see figure 1.3(a)) is the most basic form and provides coverage
for the most basic failures. The migration is triggered by the events generated by
the monitoring software on the compute nodes when a threshold is exceeded. It is
prone to false negatives and positives due to the lack of data correlation abilities.

Type II (see figure 1.3(b)) is an enhanced form of Type I. A filter on each node is
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Application )

Reallocation

Resource Manager/

Application

Runtime Environment

- - - Application
4| Monitor/Filter/Analysis Health

Allocation

Figure 1.2: Control mechanism of proactive FT with preemptive migration using a
feedback loop [7].

able to analyze the monitoring data over a short period of time. Type III enhances

Types I & II by incorporating a reliability analysis. In Type IV a history database

is used by the reliability analysis to record the monitoring data and to use it for the

analysis.

To decrease AMTTF the RAS Framework is moving application parts away from

a node that is going to fail. The application part is moved to another healthy node,

which can either be a spare node or another node that is already running another part

of the application. While the node itself fails, the distributed application sustains its

work and is not interrupted.

(a) RAS Framework Type I
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Figure 1.3: The different types of the RAS Framework (source [7])

It is obvious that it takes time to migrate an application part from one compute

node to another. The time window to migrate the application varies [32, 33] and

6
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depends on the used methods and technologies and the memory used by the appli-
cation. Therefore the failure has to be predicted in advance to the failure, such there
is enough time to successfully migrate the application part away from the failing
node.

To predict failures, it is necessary to know the health state of the system. Con-
stant monitoring of the system can provide the necessary information. The constant
observation of the health state of a hundred of thousands of compute nodes is a
challenge, since the monitoring produces a vast amount of data that needs to be
processed. To achieve an accurate reaction time for the prediction, the monitoring
data has to be processed nearly in real time.

Since current HPC systems have 1,000 to 20,000 nodes and up to than 200,000
cores, and are continuing to increase in scale, system monitoring and logging pro-
duces an increasing amount of data. The XTORC cluster (a small 64 node sys-
tem in the Computer Science and Mathematics Division at the Oak Ridge National
Laboratory (ORNL)) produces approximately 33 MB/h with a sampling interval of
30s [15]. The Jaguar [22,23] system at ORNL with 18,772 compute nodes would
produce a monitoring stream of almost 10 GB/h with a sampling interval of 30s and
30 GB/h with a sampling interval of 10s assuming that the monitored metrics are
the same. To achieve the necessary reaction time, a smaller capture interval will be
necessary and will increase the amount of data even further.

Since it is not feasible to process these vast amount of data in a proactive FT
system and to store it in a history database [7] for a reliability analysis, the amount

of data must be reduced while it is generated.
1.2.2 Monitoring and Analysis

Open Intelligent Platform Management Interface (OpenIPMI) [25] and Im-sensors
[17] are libraries to access hardware monitoring data, such as processor tempera-
tures and fan speeds. Ganglia [16, 19,20] (see Section 1.1.2) is a distributed mon-
itoring system that scales well in large installations. Ganglia and OpenIPMI were
used in Type 1 RAS solutions [21,33]. Another RAS framework solution is OVIS
2 [3]. OVIS 2 monitors nodes either directly or collects information from other
monitoring solutions. It provides tools for statistical analysis of metric data. OVIS
2 provides Type 3/4 online analysis and Type 4 analysis using a history database
is provided for offline data. OVIS 2 has not been used in a proactive FT solution
until now. HPC vendors provide their own monitoring solutions (e.g. HP Cluster
Management Utility [11], IBM Cluster Systems Management [12]).
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1.2.3 Data Reduction

Data reduction is used to transform acquired information into an ordered and simpli-
fied form. The data can be sorted, rounded or classified by a set of criteria. Usually
data reduction algorithms have to compute large amounts of data that is stored on
the file system. Today many forms of data reduction techniques are used for dif-
ferent purposes. Compression algorithms, either lossy or lossless ones, filter and
correlation tools to find the relevant data in a dataset, and tools to classify datasets.
The performance monitoring system TAUoverMRNet (ToM) introduced by Nataraj
et al. [18] uses data reduction techniques to classify performance data of parallel ap-
plications on the fly. ToM utilizes multicast/reduction network (MRNet) [27,29] to
distribute the computation to a number of nodes. MRNet uses a tree based overlay
network (TBON) [2], a tree based structure of processes, to communicate between
a front-end (the root of the tree) and the back-ends (the leaves of the tree). Fig-
ure 1.4 depicts the layout of a TBON. A set of processes, the nodes of the tree,
are used to run computations on the data that is transported through the TBON.
A TBON is a powerful programming model that has proven to scale well in large
distributed infrastructures. TBONSs provide extensible data reduction and synchro-
nization techniques, high throughput and low latency data flow, and a flexible data

communication model.

[
Front-End Process / \

@ [
7N 7N\
Intermediate Process . ‘ . .

Back-End Process . . . . . . . .

Figure 1.4: A tree-based overlay network. Packets in the TBON flow up and down
the logical network through the communication processes (intermediate children).

MRNet is a software library that implements an overlay network. A tree of inter-
nal processes between the front-end (FE) and the back-ends (BEs) (see figure 1.4) is

used to improve the communication performance. The internal processes (interme-
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diate children (IC)) are also used to distribute control commands. The intermediate
child (IC) can process the data to keep the FE load manageable. MRNet-based soft-
ware uses logical channels, called streams, for communication. Filters can be bound
to these streams by loading application specific filter functions in the IC. The filters
are used to synchronize and aggregate the data that flows through the TBON. To
reduce the cost of control requests and achieve high-bandwidth communications,
MRNet uses multicast messages and a binary and compressed data representation

for the communication.

1.3 Objectives

To face the challenges of monitoring large scale computing systems, the goal of
the presented work is to develop and implement a prototype of a data reduction
monitoring system as part of a proactive RAS framework. The monitoring system
addresses the needs of Type III and Type IV of the RAS framework described in
Section 1.2.1.

To reduce the data produced by the monitoring system, it will sort the actual met-
ric values into given classes. The classification has to be configurable by defining
the intervals for the different classes. Every metric has to have its own configura-
tion. A global configuration has to be used to configure the monitoring system.

To increase flexibility and to address different hard and software architectures,
the monitoring system has to provide the possibility to extend the system to capture
metric values from new sources.

The monitoring system needs to be portable. It has to be able to run on different
system architectures and OSs. As part of a RAS system it is important that the
monitoring system will not cause any reliability issues for the RAS system itself.
It needs to have a small footprint (low memory and processor utilization) and an

effective way to communicate.



2 Preliminary System Design
2.1 Analysis

To gather the health metrics of computer systems, monitoring software systems
(like Ganglia, Nagios or vendor software from Cray or IBM) can be used. These
monitoring solutions usually provide a set of system daemon processes to capture
and distribute monitoring data. They are either complex systems with a huge feature
set or solutions for specific systems. Another way to gather system health data,
is to use software libraries (libsensors, OpenIPMI) that can query the monitoring
capabilities that are integrated into the hardware. These libraries can be used to
develop a specialized software that fits the special needs of HPC environments.

Both monitoring solution (Nagios, Ganglia) (see Section 1.1.2) are freely avail-
able as open source software and deployed in many facilities. Both systems are
using a top down approach where the monitoring node queries the monitored sys-
tems in periodical intervals. In both systems, monitoring data is transported without
any data reduction and is not stored by default. Nagios has a database support and
the gmet ad daemons store the data in a round robin database (RRD) . To perma-
nently store Ganglia data, it has to be fetched out of the RRD and to be stored with a
separate solution. But this exceeds the capabilities of current systems, where huge
installations have to be monitored. Therefore there is a need to reduce the data
before it is stored.

While system monitoring data, e.g. temperature, fan speeds, core voltages, and
so on are numerical, values which can be classified, system log data is passed as text
messages from applications to a system logging daemon. Monitoring data values
can be classified and transformed into histograms by sorting the value into a given
number of bins inside one of the specified classes.

Since there is currently no experience about the metrics that are necessary for
a fault prediction system and how accurate they have to be, there is a need for a
configurable system. The intervals in which the metrics will be gathered and the
different metric values (such as temperature, fan speeds, power supply) have to be
configurable, as well as the ranges of the different bins for a metric have to be
adjustable. To provide a system as flexible as possible it has to provide non uniform

sizes for the different bins.
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The overall impact of the monitoring system to the running applications has to
be as low as possible. Therefore the monitoring system has to use as less processor
time and memory as possible, and the network utilization has to be kept low as well.
To work with different HPC systems, the monitoring system has to be flexible and
portable.

Additional features like a RRD to store the accurate metrics for analysis and the
reduction of system log data can be implemented. Another additional feature that
would be useful to test failure prediction is an interface to inject failure patterns into

the system.

2.2 Design

The monitoring system will use a TBON to transport and process the monitoring
data. As implementation of the TBON the monitoring system will utilize the MRNet
library [27]. Given the hierarchical structure of a TBON and prerequirements of the
MRNet library, the monitoring system will consist of three elementary components.

Since the data reduction system is part of a proactive FT system, the most im-
portant requirement is that it has to be fault tolerant as well. Failing nodes must not
affect the functionality of the FT system. Whereas the MRNet library has support
for recovering form IC failures, FE and BE failures have to be handled by the FT
system. Although a BE-node failure is critical for the HPC system, it is not critical
for the FT system itself. However, it can lead to problems with filter plug-ins, be-
cause the filter functions are awaiting packets from all their children. Therefore a
mechanism is needed, to remove dead nodes from the TBON and reintegrate them
when they are up again.

The structure of the TBON has to be configurable to meet the requirements of
the underlying architecture. To gather system health metrics a system-independent
wrapper is needed, so that the software can be ported to different architectures.

First there is the FE daemon. The FE will receive and store the collected and
classified monitoring data from the compute nodes. It is also responsible to manage
the TBON and to configure the monitoring system.

The second part of the system is the BE process. It runs on all compute nodes that
are the leaves of the TBON. The BE process has the task to gather the monitoring
data and to send the data to the FE process. Instead of gathering the monitoring
data from a third party software, the BE will capture the monitoring data itself. The

advantages of capturing the data directly are, that only one process is involved in the
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monitoring and there is no need to parse the output format of a third party software.

Part three is the MRNet filter plug-in. It will be loaded by the ICs of the TBON.
The filter plug-in collects the data from all its child processes and repacks the mon-
itoring data to send it up to its parent until the FE is reached.

Figure 2.1 depicts the layout of the monitoring system and how the different
components correspond to the RAS framework proposed in [7]. The FE, the BE
and the ICs are the root, nodes, and leafs of the tree. The FE is part of a redundant
RAS system and is executed on the system management node [7]. The BE processes
are connected to the front-end process trough the ICs. While the BE and FE are part
of the monitoring system, the IC is a program provided by the MRNet library [27].
To execute application specific code the IC can load filter plug-ins. The plug-ins are
shared libraries and provide filter functions that can be applied to the data flowing
through the TBON.

To reduce the produced amount of monitoring data, the actual metric values of a
certain capture time will be classified by the back-end. Only the class of the value
will be transmitted to the FE and stored into a history database [7]. The transmitted
and stored data can be reduced even further by just transferring a class value when
it has changed since the last capture interval.

RAS Framework

Back d
Back-End

iy Metric Data - ’ﬁ
Front-End :| Back-End Metric Module }
@ Metric Module

Data RAS }
Analysis Database Metric Module

Figure 2.1: The monitoring system as part of a RAS Framework. The Back-End is
executed on the compute nodes. It is constantly monitoring the nodes health state
and classifying the monitoring data. The data aggregation is performed on the (IC).
On the (FE) the data is written into the database.

To achieve the necessary fault tolerance, the front-end has to be highly available.
This can be done by having a redundant installation for the FE. The BE is the actual
monitor and is executed on all nodes that have to be monitored. In the case that a
node is going down (due to a failure or to a scheduled event) it has to be removed

from the TBON. To discover unscheduled downtimes the front-end needs to heart
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beat the BEs. The MRNet library has an build in mechanism to recover from an IC
failure, which requires the filter plug-ins to have a separate function to extract filter

states.

2.2.1 Front-End Damon

The FE is the head node of the monitoring system. It is responsible for the setup
of the TBON and to configure and start up the back-end processes. As all monitor-
ing data is send to the front-end, it is responsible to store the monitoring data for
the reliability analysis. The font-end will use a MySQL [26] database to store the
classified metric data.

To instantiate the TBON the FE has to pass a topology file to the network con-
structor of the MRNet library. The topology file contains a description of layout
and the participating hosts in the overlay network. The MRNet project provides a
tool to create the configuration file. The tool creates the topology file based on an
input file which contains the hostnames of the nodes that are part of the TBON.

The MRNet library has two different modes to set up a network. In the first mode
the MRNet library creates all internal and back-end processes using a remote shell.
If the target system uses a process management system and the back-end processes
can not be started directly, the second mode starts only the internal processes and
creates a file that contains a list of startup parameters for the back end processes.
Then it waits for the BEs to connect autonomously.

After the network is set up, the FE has to establish a configuration stream to send
the configuration to the BEs. The configuration of the monitoring system is stored
in a second configuration file. It is structured in sections for different aspects of the
configuration (e.g. database, metric). To provide the back-end processes with the
metric configuration (capture interval, the intervals for the classification) the front-
end has to read the metric section of the configuration. After the configuration is
passed to the back-end processes, the front-end waits for the back-ends to acknowl-
edge. If the configuration is acknowledged by the back-ends, the front-end sends a
message to start the monitoring process.

The monitoring data is received by a thread that listens for incoming packets.
The listener thread receives the incoming monitoring data. The data is stored into

the history database.
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2.2.2 Back-End Damon

BE processes are the most essential part of the monitoring system. A back-end
process captures the system and system health metrics of its particular node.

There are different sources available to gather system related or hardware health
metrics. System related metrics can be found in the /proc directory on the most
Unix-type systems. The /proc directory is a virtual file system that is dynamically
created by the OS kernel during runtime. It provides information to the running pro-
cesses, the system hardware, and the kernel. Hardware health metrics can be read
from integrated sensor chips or special monitoring hardware by using the different
available open source libraries (libsensors, OpenIPMI) or vendor specific libraries.

After the startup, either directly by the frond-end, a process management system
or an administrator, the back-end connects to the TBON provided by the MRNet
library. After the network is set up, the back-end waits to receive a configuration
message from the front-end. The configuration message includes all the necessary
information for the different metrics to collect.

The back-end will use modules to access different kinds of metrics. To reduce
the overhead as much as possible, the back-end will only load the modules that are
needed. While processing the different sections in the configuration received from
the FE, the back-end will load the necessary modules. For each module the BE will
register the metrics that have to be captured and assign an identifier (ID) to each
metric. The ID is used to refer a transmitted metric class value to the according
metric.

When the configuration is finished, the process will send a message to the front-
end to either communicate failures or to acknowledge the configuration. If the con-
figuration was loaded without failures, the message contains the metric configura-
tion with the associated IDs. Otherwise, it is used to transfer an error message.
After sending the acknowledgment message, the BE suspends its execution until
the FE sends a message to start the monitoring process.

To capture the monitoring data the back-end starts a separate thread. The capture
thread executes an infinite loop until the thread is stopped. Inside the loop, the
values for the registered configurations are read and stored in an internal structure.

To reduce the amount of data that has to be transported the BE will classify the
metric value. Therefore the BE determines the class of each metric value according
to the configuration of the intervals for the particular metric. To reduce the mes-

sage size even further, the BE will only store the class of a metric into the internal
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structure if its class value has changed since the last capture interval.

After all metrics for a certain interval have been captured the thread sends the
metrics stored in the internal structure to the FE. To send the captured and classified
data to the FE, the system will use a dedicated stream to transport the metric values.

After the metric class values are transfered to the FE, the capture thread will
suspend its execution until the next capture interval. To keep the capture intervals
as accurate as possible the pselect (...) function will be used, since it uses
the most accurate time structure and timer available. To determine the timeout, the
program will take a time stamp when the loop is started and a second time stamp
before it suspends. The difference of these two timestamps is the time that the
capturing process took, and that has to be subtracted from the timeout to the next

interval.

2.2.3 MRNet Filter Plug-in(s)

The filter plug-in is loaded by the intermediate children during runtime and asso-
ciated to the stream that is used to transport the metric class values. To load the
plug-in into the IC it has to be built as dynamically loadable library (a shared object
file on UNIX systems).

The intermediate children receive all packages from their particular children (ei-
ther a BE or another IC), and apply a filter function to the data associated with a
particular stream. The filter function for the metric stream aggregates the metric
class values of the received packages and arranges the data into a new packet. The
new packet is sent up the TBON, either to another IC or the front-end.

The MRNet library provides the possibility to store the current state of a filter.

The state data is used to recover the packet states if an IC fails.
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3 Implementation Strategy
3.1 Prerequirements

The monitoring system relies on some third party libraries that have to be installed

on the system and will be described in the following sections.
3.1.1 MRNet - A Multicast/Reduction Network

The MRNet software distribution is the foundation for the presented monitoring
system. It provides a library, 1 ibmrnet . a, and the mrnet__commnode program
that runs on the intermediate children and provide the communication between the
frond-end and the back-end processes.

The library provides an API to access the functions of the TBON. MRNet is an
implementation of a TBON provided by the Paradyn Project [27] from the Com-
puter Sciences Department of the University of Wisconsin.

The MRNet library implements an efficient way to communicate with a large
amount of nodes and to distribute processing functionality across multiple nodes.
The front-end application is the root of the logical tree and the back-end processes
are the leaves of the tree. The nodes between the root and the leaves are the ICs.
They are used to process the data flowing up or down the tree. MRNet provides
functions to assign filter functions to the data by loading plug-ins on the IC.

Since there is currently no binary distribution available, it is necessary to build
and install the MRNet library and the executables, before it is possible to compile
the monitoring system. The sources for the MRNet library and the documentation
are available at the MRNet project page (http://www.paradyn.org/mrnet/).

The library has to be installed on all nodes that are part of the TBON (FE, ICs
and BEs). Furthermore it has to be ensured that the library and executables can be
found on the nodes by setting the according environment variables.

The following subsections will explain the major parts of the API in more detail.
End-Points

An MRNet end-point is an application process (back-end) running on the leaf nodes
of the overlay network. The communication between front-end and back-end works
through streams. While the front-end can communicate to all back-ends or groups

of back-ends (by using communicators) in a unicast or multicast fashion, back-end
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processes can only send messages to the front-end, but not directly to each other.
Communicators

A communicator is the MRNet way to represent a group of back-ends similar to a
communicator in Message Passing Interface (MPI). Communicators provide a han-
dle that identifies the end-points for point-to-point, multicast, or broadcast commu-
nication. Where MPI applications typically have a non-hierarchical layout, MRNet
enforces a tree layout for all processes with the front-end as its root. Therefore the

front-end is responsible to create and manage the network and communicators.
Streams

The streams are the logical channels for the communication from front-end to the
back-end processes. All communication uses a stream either as downstream, be-
tween the front-end and the back-end processes or as upstream in the opposite di-
rection. Streams transport the data in a specific type that can be specified with

format strings (see Appendix B) similar to the C style formatted I/O.
Filter

Filter are functions that are contained in the filter plug-ins. To process the data,
while it is flowing through the network, a filter function can be associated to a
stream. A filter function is associated to a stream at the streams creation. MR-
Net uses two different filter types, synchronization and transformation filter. The
synchronization filter organizes the flow of the data through the network and the
transformation filter works on a packet of a specific type.

A synchronization filter is only working on the upstream. The MRNet library

currently supports two types of synchronization filters:

SFILTER_WAITFORALL The filter plug-in waits to receive the packets from all

its children before the packets can be processed.

SFILTER_DONTWAIT A received packet will be processed as soon as it arrives
at the filter.

The transformation filter can be used in both directions. They are used to com-
bine multiple packets and perform computational operations on them. Therefore, a
specific format string has to be specified for the filter. The format string of a partic-
ular packet and the stream filter function format have to be the same that the packet

is processed.

17



Implementation Strategy Swen Bohm

Startup modes
The library supports two modes to initialize the TBON.

Mode 1 In the first mode MRNet creates all intermediate and back-end processes
for the TBON using the specified topology. The topology is defined in a con-
figuration file (see Appendix A.1.3) that contains the nodes and their position
in the TBON. The front-end starts the first level of the tree processes using a
remote shell. The newly created processes will establish a network connec-
tion to the process that created them. After the network connection is created
the newly created processes will receive the configuration of the subset of the
TBON. The configuration is used to instantiate the sub-tree of the according

processes. This is done, until the TBON is completely instantiated.

Mode 2 The second mode is used, when the system is instantiated with a process
management system. In this mode the library instantiates only the internal
nodes as in the first mode. The back-end processes are not created. The pro-

gram that uses MRNet has to wait for the back-ends to connect autonomously.
3.1.2 Boost C++ Libraries

Boost is a collection of free, widely useful and usable software libraries that are
working well with the C++ standard library. The monitoring system is using the
program options and the serialization library and some data types defined by Boost.

Boost is available as binary distribution for many architectures.
3.1.3 Im-sensors

Libsensors is part of the Im-sensors project [17] that is available for most avail-
able Linux distributions. The Im-sensors project provides access to many hardware
monitoring capabilities in today’s computer systems. The project continues to be in
development and provides access to the monitoring capabilities by using OS kernel
drivers, a user-space library, and tools.

The monitoring system accesses hardware monitoring capabilities by utilizing
the functions provided in libsensors. To use the library Im-sensors has to be installed
and properly configured. The functions provided by the library are defined in the

sensors/sensors.h header file.

3.1.4 MySql++

To store the captured monitoring data the monitoring system is using a MySQL

database. To access the MySQL database the monitoring system utilizes MySql++
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[1]. MySql++ is a C++ wrapper for MySQL’s C APL. It provides functions to open

a connection, handle queries and results, and to deal with exceptions.
3.1.5 pthreads

To use threads inside the programs, both, the front-end and the back-end, utilize
the pthreads library. It provides a Linux implementation for the IEEE POSIX
1003.1c standard. The pthreads library provides functions to manage threads, mu-
texes to lock critical sections, condition variables to communicate between threads

that share a mutex and routines for thread synchronization.
3.1.6 libltdl

The libltdl library is part of the libtool package [14]. Libltdl provides an interface
that hides the complexity of the usual dynamic object loading mechanisms using
the dynamic loader provided with libdl. Modules are loaded with a simple call to
1t_dlopen which returns a handle to the loaded module. Each module provides
a getInstance () function that is called to instantiate the module. To find the
function in the module and to instantiate it, the address to the get Instance ()
function is looked up with a call to 1t_d1 sym. Due to the different naming scheme
of C and C++, the get Instance () function in the modules has to be marked as
C code using the "extern "C"" declaration.

To avoid problems with different library versions, the library itself is contained
in the project and will be compiled during the build process. Libtool needs to be
provided with the -module switch to build libltdl compatible modules, which is
done in the corresponding Makefile . am in the modules subdirectory of the back-

end source tree.
3.1.7 libconfig
Libconfig [13] is a library to process structured configuration files. It is used in the

FE to read the configuration. The library uses a compact file format. Additionally

it is type aware, SO no string parsing is necessary.

3.2 Development Environment

The software is implemented in a Linux environment because most HPC environ-
ments are running on it. As database management system MySQL is used. To build
the project the GNU autotools [10] are used. Since the MRNet API is written in

C++ it is also the programming language for this project.
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The source and header files are structured inside the project directory. All header
files are located inside the include directory, the source files are to be found in
the src directory. The sources again are structured in directories. Every part of the
system has its own directory (be, fe, filter...).

All directories contain a Makefile.am file to configure the make system for

the corresponding directory.

3.3 Implementation

The monitoring system consists of three parts, front-end, back-end and filter plug-
in (see Section 2.2). The implementation of the monitoring system will start with
the very basic implementations of front-end and back-end. The goal for the first
implementation phase is to have a working network communication between front-
end and back-end. The next step is to implement the module loading mechanisms,
the modules for the back-end and the classes needed to load, serialize and transmit
the back-end configuration. In the last step the filter plug-in and possible add-ons
will be implemented.

The following sections will give a brief description of the parts of the monitoring
system and how they have to work together to capture and reduce the monitoring

data, and to store the health state of a HPC system into a history database.
3.3.1 Front-end

The front-end is the root process of the monitoring system. It has to evaluate the
command line, read the configuration and is responsible to start up the TBON and
all belonging processes. After instantiating the TBON the metric configuration has
to be transmitted to the BE processes. The BE processes will acknowledge the con-
figuration with a message, that has to be verified by the FE. After the initialization
and configuration, the FE will start the monitoring process. The monitoring data
has to be received by the FE and stored into the database.

To read and validate the command line parameters, the front-end will utilize the
boost_program_options library, which provides an easy to use interface to
an extendable command line parser. The command line is used to pass the path
to the topology file, the configuration file and to the back-end executable (see Ap-
pendix A.1.1) for the command line parameters). If the BE processes can not be
started by the FE the number of back-ends has to be defined instead of the back-end
executable. This will cause the FE to use the second startup mode of the MRNet
library (see Section 3.1.1).
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To read the configuration file the front-end uses libconfig [13] that provides a
C++ interface to a configuration file parser. Since the objects provided by libconfig
provide only access to a static data structure that is hidden in the library there is
a need for an own data structure to send the configuration to the back-ends. The
configuration structure therefore needs to be serializable. To have a serializable
data structure a set of classes will be implemented that can be serialized using the
boost_serialization library and represent the structure of the metric con-
figuration.

The front-end builds the data structures according to the configuration. To pass
the configuration objects to the back-ends they have to be serialized. To serialize
the objects the boost serialization library will be used. Therefore all serializable ob-
jects have to implement an accessor method that is called by the Boost serialization
library.

To pass the configuration to the back-end processes the front-end uses TBON
that is provided through the MRNet library. Both, the front- and the back-end have
to be linked against libmrnet to utilize the library. To use the TBON provided by
MRNet the front-end has to create a network object and to associate a topology to
it. The topology has to be configured in a separate configuration file. The file’s
location is passed to the front-end by command line and used to create the network
object.

The MRNet library supports two different kinds of network creation. The first
method starts all processes needed by the software (intermediate and back-end pro-
cesses) and the second method only starts the intermediate processes. In the second
mode the back-end processes have to be started separately either by a job submis-
sion system or an administrator. The front-end will support both start up mecha-
nisms. If the second mechanism is used, the front-end has to create a file, that stores
the connection parameters for the different back-end processes.

If the network object is created successfully, the front-end can create a commu-
nicator that contains all back-ends (broadcast communicator) and create a stream
object with all back-ends in the communicator subsequently. The created stream
(configuration stream) is used to pass the metric configuration to the back-end pro-
cesses by sending the message that contains the configuration. After the configu-
ration is send, the front-end waits for the back-end processes to acknowledge the
configuration and to start the monitoring process. To start the monitoring process,

the front-end will create a second stream for the monitoring data and assign a filter
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function to it. To receive the incoming packets a listener thread that receives all
messages from the TBON is started and the the monitoring process is started by

sending a message to the back-ends.
3.3.2 Back-end

The back-end is responsible to capture the metric values from the different sources.
To be as portable and flexible as possible the reader for different metrics are im-
plemented as modules that can be loaded dynamically by the back-end. As part of
this work the program will support two different kind of metric modules: one that
uses the information provided by the kernel in the /proc file system and a sec-
ond that uses Im-sensors [17] to read metric values from hardware sensors. To load
the modules the back-end will utilize libltdl (see Section 3.1.6) that is part of the
libtools [14] package.

Through the modular design the software can easily be extended to capture mon-
itoring data from other sources by adding a new modules to the monitoring system.
Therefore all modules have to use the same interface to access the metric reader. To
to achieve the required portability and modularity the modules will all use the same
base class that defines all methods to instantiate the reader in the module.

A metric reader is implemented for each metric covered in a certain module. It
implements the methods to capture and return the currrent metric value.

To load the modules during run time, the back-end needs to know what metrics
will be captured and which module is needed. Therefore it has to be configured.
Although the back-ends could load the configuration for their own it is more con-
venient to have a centralized configuration. Separate configurations for front-end
and back-end would make it necessary that all compute nodes either share a net-
work file system or the configuration for every node has to be maintained. So the
configuration will be provided by the front-end.

To receive the metric configuration, the back-end has to instantiate the TBON.
In the case of the back-end the connection parameters will be provided by the com-
mand line. The parameters for the start up of the back-ends are either provided by
the front-end if the automatic start up is used or they can be read out of the file
written by the front-end for the separate back-end start up.

After the network is set up, the back-end processes wait for the configuration to
be transmitted by the front-end. When the configuration message is received, the
content is deserialized and the configuration is accessible in the back-ends. The con-

figuration is structured. A configuration object contains an object for each module
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that has to be loaded. The module objects again are a container for the configura-
tion of the different metrics that have to be captured by the module. The back-end
iterates through the configuration and loads all modules and registers the readers for
the configured metrics. After setting up all reader the back-end acknowledges the
received configuration and waits for a message to start the monitoring process.

The monitoring is done by a separate thread. The monitoring thread iterates
over the registered reader and sends the different metric values in to the front-end
using the TBON. The thread is stopped, when an quit message is received from the

front-end and the back-end process exits.
3.3.3 Filter Plug-in

The filter plug-in is executed on the intermediate processes of the TBON. A filter is a
shared object, that can dynamically loaded by the intermediate processes. It defines
filter functions which can be associated to a data stream. To aggregate the data
send by the back-end (actually by the child processes of the intermediate process)
the filter plug-in will implement a function to merge the different incoming packets
into a new packet and send it to its parent. To load the filter plug-in the front -end
uses a dedicated MRNet method to load the filter on all intermediate processes. All
processes that need to load the plug-in must know where to find the plug-in (by
providing the path in the environment).

The filter plug-in can implement different filter functions. MRNet defines a nam-
ing scheme for all parts of a filter function. The function name itself has to end with

13

a‘“_ func” suffix.

As a filter function is assigned to a stream and it can be possible to use a stream
with different packet types (by defining different format strings, section 3.1.1) a
filter function needs to know the format of the packet it can work on. The format
string has to be defined by a symbol that is named with the filter function name and
the “_format_string” suffix (e.g. Merge_func_format_string). All

packets using the specified format are processed by the filter function.
3.3.4 Communication

The MRNet library uses streams to send data through the TBON. To send data to
a stream, the data has to be packed into a packet. The format of the packet has to
be specified to match the containing data. To specify the data format MRNet uses
format strings (see Section B) similar to the standard c library. To classify the data

in a packet a tag has to be assigned to the packet. The tag is an unsigned integer and
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can be chosen by the developer. Since it is used for MRNet internal communications
as well, it has to be higher than the value defined in FirstApplicationTag
(mrnet/Types.h).

To send simple messages like “start monitoring”, “stop monitoring” and so on
it is sufficient to send a packet and determine the message on the tag. In this case
an empty format string can be provided. If the packet contains data it is necessary
to provide a data format and can be added to the packet in the same fashion as in
the standard libraries printf (.. .) function. The format that will be used in the
monitoring system is “%auc” which specifies the data as an array of unsigned chars
(bytearray).

The monitoring system will use two different streams. One stream for the config-
uration and command data and one stream for the metric values. The metric stream

will have a filter function assigned to it to merge the packets flowing up the TBON.

3.4 Testing

To test and debug the software and to collect data for the evaluation the system will
be tested on the development workstation (preferably for testing and debugging)
and on the XTORC cluster (a small 64 node system in the Computer Science and
Mathematics Division at the ORNL).

There are different tests to conduct to either measure the amount of data produced
by the monitoring system over a defined period of time or how it handles faults in
the underlying tree (e.g. back-end or communication node failures).

To collect the monitoring data over a period of time the system has to run with
a reasonable configuration either on one machine with multiple instances or on a
cluster system. A reasonable configuration would be a similar or same configuration
to the tests in [15]. To gather accurate data that show a usual usage pattern, the
machine should have some work load system during this time. Additionally it may
be usable to cover up fan intakes to artificially increase the systems temperature and

therefore a change of the gathered data.
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4 Detailed Software Design

This section describes the design of the implemented monitoring solution. All pro-
grams deployed with the monitoring system and their components will be discussed
in detail and the interaction of all components will be explained. (see Figure 4.1)
shows the basic process of starting the monitoring system and capturing the moni-
toring data.

The Front-End is started on the monitoring host. After its start up it loads the
configuration and initializes the TBON. The MRNet library starts the Back-End
processes while the TBON is created. After the TBON is set up and the Back-End
are running the Back-End configuration is read by the Front-End and transmitted
to the Back-Ends. All Back-End processes load the Modules according to the con-
figuration and send a validation message back to the Front-End. The messages are
validated by the Front-End and if no errors are reported the monitoring process is
started.

Front-End Back-End
Initialize TBON Create Back-Ends Connect to TBON
load Configuration ‘ transmit Configuration load Modules
validate Configuration ‘ acknowledge Configuration register Reader
create listener thread ‘ start Monitoring ‘ ‘ Create monitoring thread
store metrics ‘ transmit metrics ‘ capture metrics
wait to next interval

Figure 4.1: The basic procedure of the monitoring process. The Front-End ini-
tializes the TBON, loads and transmits the configuration. The configuration is ac-
knowledged by the Back-End and validated on the Front-End. If the configuration is
valid the actual monitoring process is started. The Back-End captures and transmits
the metrics and the Front-End receives and stores the metrics into the database.

4.1 Front-end Daemon

The font-end daemon is the main application of the monitoring system. It should

run on a monitoring node and is responsible to control the monitoring system, for
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it’s start up and the configuration of the system. All captured monitoring data will
be send to the front-end daemon which will store the metric data into a MySQL
database.

The front-end program main source code file is rasmonfed. cc which contains
the main function and some functions to start the front-end application as a system
daemon. After the program start an Application object (see Section 4.7.1) is
instantiated. The Application class is implemented using the singleton design
pattern what makes it possible to access the Application object from every rou-
tine of the program by calling the static get Instance () method. Inside the
Application class all the functions to initialize and set up the monitoring sys-
tem, as well as the main loop to handle incoming packets are implemented.

The basic program flow of the front-end is divided into tree parts, initialization
and configuration of the TBON, receiving and processing of the monitoring data
and the shutdown of the monitoring system. The following sections will describe

these parts.
4.1.1 System Initialization & Configuration

To initialize the front-end the first step for the program is to create the programs
main object, the Application (see Section 4.7.1) instance and to parse and val-
idate the command line parameters. To parse the command line parameters the
main arguments are passed to the initialize (...) method of the Appli-
cation object (see Section 4.7.1). If all required parameters are provided, the
program continues otherwise a error message is written to the Log and the program
exits.

After parsing the command line parameters the program determines either if it
has to run as daemon or as interactive program. The default is to run as a daemon
and call the daemonize () function.

To run the program as a daemon, the first step is to fork a new process. While the
original process will exit, the new created process will call setsid () to detach
the process from its parent. To ensure that just one daemon is running the process
opens a lock file and tries to lock the file with the 1ockf (. ..) system call. If the
lock file can not be opened or locked the program exits.

The next step that is required for running as a daemon is to register the signals
that it wants to receive. When the system is quitting a program it sends a SIGTERM
to the program. If the configuration has to be reloaded a SIGHUP can be send.

To receive the signals and to handle them, the program has to register a callback
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function to handle the signal. For simplicity there is only one signal handler in
the font-end signal_handler ( int sig) function that handles all registered
signals.

When the front-end is set up the configuration files are parsed. The locations
of the two configuration files for the monitoring system are provided by command
line parameter and stored in variables in the Application object. One file will
describe all the necessary settings for the monitoring system itself and a second file
will describe the topology of the TBON and is needed by the MRNet library.

A call to the 1loadConfiguration (...) method loads and parses the sys-
tem configuration file utilizing the libconfig library [13] (see Section 3.1.7). The
file contains two main sections, one section for the front-end configuration and on
section for the metric configuration. The file format is described in the program
documentation (see appendix A).

If libconfig returns no errors, the next step for the Application class is to
setup the TBON. To set up the network MRNet requires a configuration file that
contains the description of the of the networks tree structure. The location to the
configuration file is passed to the network constructor. To set up the network the
Application class calls the setupNetwork () method.

After the network is set up, the metric configuration will be parsed and passed
to the back-ends. To represent the configuration and to send it to the back-ends the
front end builds a serializeable structure of the configuration. The following classes

are needed to represent the configuration:

e MetricSectionConfiguration
e MetricModuleConfiguration
e MetricConfiguration

e MetricSetting

The configuration is explained in detail in section 4.6.

If the configuration is parsed without error the object tree will be serialized and
send to all back-ends. The details of the communication through the TBON are
explained in section 4.3. After the configuration was sent, the front-end has to
wait for the back-ends to acknowledge the configuration and to return the ids of the
metrics. The ids are used to associate the package containing the class value to the

according metric.
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4.1.2 Processing Monitoring Data

Before the monitoring process is started, the front-end waits for the back-ends to
acknowledge the transferred configuration. The Acknowledgment is necessary to
verify that all back-ends have initialized the metric modules successfully and no
error has occurred during the initialization. Additionally the back-ends assign an id
to the metrics that have to be the same for all of them. If the verification shows any
differences or errors, the front-end writes an error message end will shut down.

If the verification succeeds the front-end initializes a new stream to transport
the metric data. The metric stream has a filter assigned to it, that is responsible to
merge the packets from its children to one single packet (for details see 4.5). Af-
ter the filter is loaded and the stream is created without errors, a PacketQueue
(see Section 4.7.22) and a PacketListener (see Section 4.7.21) are instanti-
ated. The PacketListener is started and the back-ends are notified to start the
monitoring. The notification is send through the metric stream. This is necessary
that the back-end can store and utilize the instance of the metric stream to send the
metric values.

As soon as the listener is started it monitors the network event provided by the
MRNet library. If a packet is send the event is triggered and the listener returns
from the pselect call, takes a time stamp and reads the available packet. The
time stamp and the packet are stored into a structure and the structure is added to a
queue.

The second thread is responsible to process the received messages.
Processing Packages

The processing is done by the main thread. After all initialization is done the
run () method of the Application object is called. The run method instan-
tiates the PacketListener and the PacketQueue objects, creates the metric
stream and sends the message to start the monitoring. After starting the Pack-—
etListener thread, the application enters a infinite loop that determines if pack-
ets form the back-ends are available in the PacketQueue by calling the queues
getPacket () method. If a packet is available, the method returns the first packet
in the queue, otherwise it blocks the call until a new packet is available. This imple-
mentation ensures that it is not necessary to poll the queue for available packages.
The MRNet library requires to associate a packet with a tag, which are used to

determine the type of the packet. There are several types for different purposes,
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including the current packet to transfer the metric values from the back-ends to
the front end. Inside the loop the tag is used to determine the action by a switch
statement.

All packets have a tag, based on which the different packets can be distinguished.
The packet tags are defined in mrn—communicator.h and are used through all

programs.
4.1.3 System Shutdown

To trigger the shutdown of the system, the program has to receive either the STGKILL,
if it is running as daemon, or the STGINT signal if it is running in interactive mode.
The shutdown is handled in the signal handler that is registered for the according
signals.

To shutdown the system properly the front-end informs the back-end processes
by sending a quit message, to inform the BE that the system is going to shut down.
The back-ends stop the execution of the capture threads and exit. The front-end
stops the listener thread, empties the buffers and closes all open handles.

After all threads are stopped, allocated memory is cleaned up and the front-end

exits.

4.2 Back-end Daemon

The back-end daemons are going to run on all hosts that have to be monitored. In
the current implementation of the monitoring system they have to be started through
the frond-end process.

As well as the front-end, the back-end has to initialize the TBON using the MR-
Net library. Instead of passing a topology file to the network constructor, the back-
end needs a server address and a port number to initialize the network. These pa-
rameters are passed to the back-end during the start up. The connection parameters
are set with command line parameters, either by the MRNet internal mechanisms
for the network instantiation or by an administrator or resource manager if the sec-
ond startup mode is used.

After the network is set up, the back-end enters a infinite loop and listens on the
network for incoming packets. The incoming packets are categorized by their tag.
Inside the loop a switch statement controls the process flow. The current implemen-
tation differentiate three tags: RASMON_CONF, RASMON_START_MONITOR and
RASMON_EXTT.

The detailed actions to the packages with these tags are described in the follow-
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ing sections.
4.2.1 Configuration

After the back-end process joins the TBON it listens for incoming packets. If a
packet with the tag RASMON_CONF arrives the pointer to the stream associated
with the packet is stored in the mp_ControlStream variable and the setUp—
BackEnd (...) function is called and the packet containing the configuration
provided by the front-end is passed to it. The configuration message is described in
section 4.6.

The setUpBackEnd (...) function unpacks the packet and deserializes the
containing message using boost: :archive: :binary_iarchive. Asare-
sult the Met ricSection (see Section 4.7.16) object is available in the back-end.
The metric section is passed to the 1loadModules (.. .) function.

To load the metric modules (see Section 4.4) the back-end processes utilizes
libltdl which is part of the GNU libtool project [14]. Before 1ibltdl can be used,
acallto 1t_dlinit () isrequired.

To load the modules the 1oadModules (...) function iterates through the
content of the MetricSection object. The MetricSection object contains
aMetricModuleConfiguration (see Section 4.6.2) object for each config-
ured module. The module filename scheme is mod<name>.la and the has to be
assembled by attaching the module name, that is included in the Met ricModule—
Configuration object, to the “mod” prefix and appending the “.1a” postfix (e.g.
modmemory . 1la).

A call to 1t_dlopen(...) loads the module and returns a handle to the
module. With thatacallto 1t_dlsym( 1lt_dlhandle, “getInstance”)
can be used to receive a pointer to the function with the provided symbol, in this
case “getlnstance”. A call to the function pointer initializes the module and returns
a pointer to the module object, that is stored in a st d: : map with the module name
as key. The function returns an integer value after all modules are loaded that is
indicating if an error has occurred.

After all modules are loaded successfully the metric readers for the according
metrics are instantiated by calling the registerReader (...) function and
passes the pointer to the MetricConfigurationSection toit.

The registerReader (...) function processes all configuration objects in
the MetricConifurationSection in an outer loop. The MetricModule—

Configuration object contains a set of MetricConfiguration that are
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processed in an inner loop. For each metric configured inside a particular module
configuration the getMetricReader (...) function of the according module

is called and the corresponding configuration is passed to it. As result a Metric-—
ReaderCollection object containing the pointer to a MetricReaderInfo
(see Section 4.7.14) object (in case of the network module, the pointer to the Met ric—
ReaderInfo objects for each configured network device) is returned.

The pointer to the MetricReaderInfo objects contained in the Metric-—
ReaderCollection are stored into a multimap using the interval as the key.
When all MetricModuleConfiguration objects are processed, the function
returns, the configuration is send to the front-end for validation and the back-end

waits for a new message from the front-end.
4.2.2 Capturing Metric Values

When the back-end has initialized all metric reader objects and the metric config-
uration is send to the front-end, the back-end suspends its execution until a packet
is received. To start the monitoring, the BE waits for a packet that contains the
RASMON_START_MONITOR tag. The packet containing this tag is send by the FE
through the metric stream.

As soon as a back-end receives this packet the pointer to the stream is stored
to a dedicated variable and all metrics are send to the front-end using this stream.
To capture the metrics the back-end instantiates aMetricController (see Sec-
tion 4.7.5) object and assigns the network and the metric stream to the object.

The MetricController class is derived from Thread (see Section 4.7.23)
class and runs in a separate thread. After instantiating the MetricController
the start () method is called and the capturing of the metric values begins.

The MetricController executes an infinite loop that is capturing the met-
ric values. A detailed description of the MetricController can be found in
section 4.7.5. After the Met ricController is started the main thread enters the

listening loop again and waits for new instructions.
4.2.3 Back-end Shutdown

To shut down the back-ends, the front-end will send a message that is tagged with
the RASMON_QUTIT flag. If the quit message is received by the back-end it stops
the MetricController thread and waits until it joins the main thread. Subse-

quently the back-end frees all allocated resources and exits the receive loop.
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4.3 Communication

The MRNet library is implementing a TBON that connects all back-ends with the
front-end. To instantiate a network the library needs a configuration file, that con-
tains the layout of the network. After the network is set up, a communicator has to
be instantiated. A communicator is network specific and the creation methods are
are functions of a instantiated network. There are two ways to instantiate a com-
municator, either using new_Communicator to create an empty communicator
or the get_BroadcastCommunicator () function to create a communicator
containing all back-ends available in the network to the time of its call.

To send messages, the MRNet library uses streams. Streams are also network
specific and created by calling the new__St ream method of the network instance.
A stream is associated with a number of endpoints, that are expressed by a commu-
nicator passed to the new_St ream call. The filters are also associated to a stream
object and there are three more parameters to pass to the call, to set up the filters
that have to be used in the according stream.

MRNet defines three types of filter, the upstream filter that is applied to all data
flowing from the back-ends to the font end, the synchronization filter which deter-
mines whether a intermediate node of the network waits for all child nodes to send
their data or not and the downstream filter that is applied to all packets from the
front-end to the back-ends. The filter can either be associated by their filter id or
by using a string. Using the filter id applies the filter to all nodes in the described
by the communicator associated with the stream. Applying the filter with a string

offers the possibility to assign a filter to a subset of nodes in the stream.
4.3.1 Send Data

Data packets are send through a specific stream, so the MRNet library provides a
send method for a stream object. To send a packet a tag and a format string are
required. The tag is used to classify the data in the packet. It can be freely chosen
by the developer with the restriction that it is greater than or equal to the constant
FirstApplicationTag defined by MRNet (mrnet/Types.h). The format
string describes the containing packet data (see appendix B).

To ensure the that the packets are send immediately after the send method returns
without error a call to Stream: : flush () commits a flush of all packets in the
buffer of the stream.

The monitoring system uses a wrapper to call the send operation. It is imple-

32



Detailed Software Design Swen Bohm

mented as a static function in the MRNCommunicator class (see Section 4.7.19).
4.3.2 Receive Data

The MRNet library provides a network and a stream specific method to receive data
packets. Both methods return an integer value to indicate the return status of the
call and have to be provided with pointers to the variables that store the tag and the
packet and a flag to indicate if the call has to block or not. The network specific
read method additionally requires to pass a pointer to a variable to store the stream
where the packets have been read from.

The variable to store the tag is an integer value and has to be passed as a pointer.
To store the packet, the MRNet library provides a PacketPtr class to store the

content of a packet and has to be passed as reference.

4.4 Metric Modules

The metric modules are the part of the software solution that is actually responsible
to capture the monitoring data. Each module is a dynamic loadable module and
has designated capabilities. The modules are responsible to capture the monitoring
data from a specialized data source. Picture 4.4 depicts the basic layout of a metric
module.

The systems currently has 4 different metric modules (Network, Memory, Load-
Avg and Sensors). Each of this modules implements a set of metric reader specific
to the modules domain. The actual implementation of a single module varies with
the data source but the methods to access the module have to be consistent for all

modules.

Metric Module

‘ Metric Reader ‘

‘ Metric. Reader ‘

Figure 4.2: A metric module is a dynamic loadable object. Each module contains
the methods to initialize the module and to return the metric reader that are con-
tained in the module.

To achieve this all modules provide a similar interface to access the internal

functionality by extending the Module class. The functionality of a module is
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hidden from the back-end process through a class hierarchy.

Each module implements a class that is derived from the Module class (see
Section 4.7.18). All modules are implemented by using a singleton design pattern
to ensure that only one instance of a certain module will exist during run time. The
abstract Module class defines a virtual function (getMetricReader (...)) to
instantiate the reader objects responsible to access the metric data provided by the
certain module.

The (getMetricReader (...))needsaMetricConfiguration object
as parameter and returns a pointer to a MetricReaderInfoCollection ob-
ject. The information provided inside the MetricConfiguration is used to
determine which reader has to be instantiated. The MetricReaderInfoCol-
lection object is a container that allows to return more than one reader. This is
used by the network module. All reader objects returned are of the type Metric—
ReaderInfo, what allows the system to capture the metric values without know-
ing the actual implementation of the reader. The MetricReaderInfo object
contains the pointer to the actual metric reader, a pointer to the configuration of the
metric associated with this reader and some variables needed by the capture process
(see Section 4.7.5).

The class for a particular reader object derives from the abstract Metric-—
Reader class which defines the interface for all metric reader. The reader classes
will be discussed in the following sections that are covering the 4 modules.

To instantiate the a module, the back-end has to call the get Instance () func-
tion that has to be implemented by every module. Since the modules are loaded
through 1ib1tdl the getInstance () function has to be enclosed by a ex—
tern "C" { ... } definition. The getInstance () function creates the

according module object and returns the object pointer.
4.4.1 Network Module

The network module is responsible to capture the metric values of the network
devices. It is defined in the module-sensor.h file. The implementation can be
found in the module-sensor.cc file. It contains the metric reader that return
the information provided by the kernel in the /proc/net /dev file.

Since there is a metric for each of the activated network devices it is necessary
to differentiate between the devices. This goal is achieved by adding another class
into the hierarchy, that has a method to set and store the according device for the

corresponding reader. The MetricNetReader class is derived from Metri-
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cReader but does not implement the methods defined in Met ricReader.

For each of the metrics the module provides a class that is derived from the
MetricNetReader class. Each metric reader class in the module implements
the getMetricValue (...) method that is defined in Met ricReader class
to return the current metric value to its caller.

To read the metric values from the proc file system the module provides a
NetProcFileReader class which does the actual work of gathering the met-
ric values. The NetProcFileReader is implemented using a singleton pattern.
This is done to avoid unnecessary overhead since the reader itself will query the
/proc/net/dev file only once in an certain interval and return the values valid

in this interval to each of the reader.

Metric Readers

The different network metric readers derive from the MetricNetReader (see
Section 4.7.10) class. They implement the getMetricValue (...) metho that

returns the current metric value.

The network module currently supports 6 metrics.
1. BytesTransmit

2. BytesReceive

3. PacketsTransmit

4. PacketsReceive

5. ErrorsTransmit

6. ErrorsReveive

4.4.2 Memory Module

The statistics for the system memory are gathered by the memory module. It is de-
fined in the module-sensor.h and implemented in the module-sensor.cc
file. It is a very basic module, that reads its data from the /proc/meminfo file
which contains very accurate statistics for the usage of the memory.

For each of these metrics a Reader is implemented deriving directly from the
MetricReader class. Again the data is read from the file and processed by a class
derived from FileReader, the MemoryProcFileReader which is using the

singleton pattern as well. To get the current metric values the reader searches the
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content of the file, this time for the keywords associated with the according metric.

The keywords are defined in the header file module-memory . h.
MetricMemoryProcFileReader

To capture the memory metrics, the MetricMemoryProcFileReader reads
the information contained in the /proc/meminfo. The metric values are ordered
in lines. They start with the metric name followed by a colon and the value in kB. To
read the values the file content is read into a buffer (a std::string). The string is split
up on the line ending and each substring is again split up on the colon. The metric
name is used as a key to store the metric values for the current capture interval into

a std::map and the value is stored as a integer value.
Metric Readers

The current implementation for the memory modules supports the following 10

metrics:

MemFree The amount of physical RAM, in kilobytes, left unused by the system.
Buffers The amount of physical RAM, in kilobytes, used for file buffers.
Cached The amount of physical RAM, in kilobytes, used as cache memory.
SwapCached The amount of swap, in kilobytes, used as cache memory.

Active The total amount of buffer or page cache memory, in kilobytes, that is in
active use. This is memory that has been recently used and is usually not

reclaimed for other purposes.

Inactive The total amount of buffer or page cache memory, in kilobytes, that are
free and available. This is memory that has not been recently used and can be

reclaimed for other purposes.
SwapFree The total amount of swap free, in kilobytes.

Dirty The total amount of memory, in kilobytes, waiting to be written back to the
disk.

Writeback The total amount of memory, in kilobytes, actively being written back
to the disk.

Mapped The total amount of memory, in kilobytes, which have been used to map

devices, files, or libraries using the mmap command.
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4.4.3 LoadAvg Module

The LoadAvg module is implemented the same way as the two modules above. It
definition can be found in the module-loadavg.h and the implementation in
the module—-loadavg. cc file. The LoadAvgModule class is derived from the
Module class. The module implements the module instantiation as well as the
getMetricReader (...) method to return the MetricReader objects for
the metrics provided by this module.

The module contains a LoadAvgProcFileReader class that is derived from
FileReader and implements the necessary functions to read the load average
values that are provided by the kernel in the /proc/loadavg file.

The getMetricValue (...) method, implemented in each of the reader
classes, calls the readMetricValues (...) method in the LoadAvgProc—

FileReader class and returns the current metric value.

MetricLoadAvgProcFileReader

The MetricLoadAvgProcFileReader class implements all the functionality
to extract the information to the load average out of the /proc/loadavg file in
the readMetricValues method. If it is called, the values for the three different
load average values are read from the file and stored in a float variable for each of
them using the sscanf function.

To receive the values a method for each of the three values is implemented
(getLoadAvgOne, getLoadAvgFive, getLoadAvgFifteen). The func-
tions compares the provided time stamp (value of type timepec) with the last
capture time value and if they are the same it simply return the value stored in the
corresponding variable. If the values are different the get function calls the read—
MetricValues method and returns the value after the new values where read

from the /proc/loadavg file.

Metric Readers

Again there is a reader class that derives from MetricReader for each metric

provided by the module:

e MetricLoadAvgOneReader
e MetricLoadAvgFiveReader

e MetricLoadAvgFifteenReader
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4.4.4 Sensors Module

The sensors module is different to the 3 modules above. The class definition can be
found in the module-sensor.hfile, module-sensor. cc contains the imple-
mentation. The Sensors module can query the growing amount of hardware sensors
provided by libsensorslibsensors [17] a Linux hardware monitoring solution. Lib-
sensors provides an interface to query the different hardware sensors provided by
the system and configured in the according configuration file. It requires a working
installation of Im_sensors and is configured in the sensors section of the metric
configuration.

The sensors module initializes the interface to libsensors during its instanti-
ation. While the module is initialized it searches the system for available sen-

sors and the metrics provided by these. To find all available sensors, the mod-

ule calls the initSensors (...) method inside its own constructor. In the
initSensors (...) method the libsensors library is initialized by calling the
init_sensors (...) function. The function needs the path to the sensors con-

figuration file, that is currently hardcoded into the function. If the library is initial-
ized properly the module continues its work, otherwise the method returns.

To load the metrics the module has to find the available sensor chips. Therefore
the sensors_get_detected_chips (...) functionis called in a while loop
as long as the function returns a sensor chip.

To detect the available "features", the libsensors equivalent to metric, of the cur-
rent sensor chip, the sensors_get_features (...) function has to be called
in another while loop. As long as a feature is returned it is stored in the sensor-
feature map. The different metrics are identified by a label that is defined in the
Im-sensors configuration.

The sensors module implements the class SensorMetricReader thatis de-
rived from MetricReader. Again the different reader objects are instantiated
by a call to the getReader (...) method of the module. To instantiate a Sen-
sorMetricReader it is necessary to pass a sensorfeature structure to the con-
structor. The structure contains all necessary information to read the metric of the
according sensor. It can be received from the sensorfeature map by the label pro-

vided in the configuration.
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SensorMetricReader

The SensorMetricReader class is a generic class. All possible metrics pro-
vided by Im-sensores are covered by it. To instantiate an SensorMetricReader
object the sensorfeature structure has to be passed to the constructor. The
sensorfeature structure contains all information to query the current metric
value with a call to getMetricValue. The getMetricValue itself calls the
sensor_get_feature function, provided by the libsensors library. A call to
sensor_get_feature returns the current metric value. The value is of type
double. Since the current implementation of the monitoring system uses only inte-
ger and float data types, the value is casted to a float. It is not likely that a loss of

accuracy occurs with the cast.

4.5 Filter Plug-in

The filter plug-in is associated with the network stream that transports the moni-
toring data from the back-end daemons to the front-end. It is provided as a shared
object file and will be loaded by the intermediate children of the TBON. To load the
filter plug-in the frond-end has to call a method of the network object which returns
a filter id that afterwards can be associated with a network stream.

Since MRNet uses d1open the all C++ symbols must be exported as C symbols
by surrounding the functions with extern "C" { and }.

The structure of a MRNet filter is explained in the MRNet documentation. A

filter function has to use the following signature:

void filter_name (
std :: vector< PacketPtr > & packets_in,
std :: vector< PacketPtr > & packets_out,
std :: vector< PacketPtr > & packets_out_reverse ,
void *x filter_state ,

PacketPtr & params)

To recover from failures of IC the filter has to implement another function to set
the state of the children moved to its sub tree of the TBON. The signature of this

function has t be the following.

PacketPtr filter_name_get_state (
void *x filter_state ,

int stream_id);
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The current task of the filter plug-in is to repack the metric data in the incoming
packets into a single new outgoing packet. this is done in a loop, that iterates over
all packets and extracts the metric data and adds it into a new packed that after the

processing is done is send to its parent in the TBON

4.6 Configuration of Metrics

All parts of the software that are used by more than one program of the solution (for
example by the Back- and Front-end daemon) are part of convenience libraries that

are linked to the corresponding program during the compilation process.
4.6.1 MetricConfigurationSection

This class is a container class that stores the configuration objects for all modules
that are configured in the configuration file. Internally it is using a std: : vector
to store the module configuration objects. To serialize the object the class utilizes
the serialization provided by the boost c++ library.

The serialization library requires the implementation of a serialize function,
that is called by the boost serializer. The boost serializer itself uses a access class
to access the serialize (...) function of the configuration. To allow access
to the internal data of the class the boost::serialization: :access class
needs to be declared as a friend class.

To add MetricModuleConfiguratio objects to the container class it im-

plements a add (.. .) function.
4.6.2 MetricModuleConfiguration

The MetricModuleConfiguration class is responsible to collect all configurations
for the metrics defined in a specific metric module. Again the class is a wrapper for
a vector that contains the objects with the configuration for the metrics associated
with this specific module.

4.6.3 MetricConfiguration

In this class all necessary informations to configure the according metric are stored.
It is a wrapper for a map container of the Standard Template Library (STL) which
contains the MetricSetting object with the according value and the associated key
for the setting defined in the configuration file.

It implements a function to set a value which requires the key and the MetricSet-

ting object and a function to receive the MetricSetting for the according key. Again
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a serialize function is implemented to meet the requirements of the serializer.
4.6.4 MetricSetting

This class contains the value of a setting, which can be an Integer, a Float, a String
or an array of the associated types. The class implements functions to set and to get
the corresponding value(s) to query the value type, the amount of the stored value(s)
and if the MetricSetting object is an array. The values itself are stored in a vector of
the STL.

4.7 Classes

This sections discusses all classes in detail that are part of the software and are not

discussed in a different section.

4.7.1 Application

The Application class is the main object of the front-end. It uses a singleton
pattern to enable the access to the object from every other class of the program
without passing the pointer to it. A reference to the instance can be received by
calling the get Instance () method, that returns the instance to the object. If
no instance is created the get Instance () method will call the class constructor
and create an instance. The pointer is stored in a static variable.

The application class implements the following methods:
void Error (string message)
bool daemonize ()
void initialize (int argc, char **argv)
void run ()
bool setupNetwork ()
bool setupBackEnds ()
void shutdown ()
static Application * getInstance ()

static void Log (string message)
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setupNetwork()

The network initialization is implemented in the setupNetwork () method. It
instantiates the network object provided by the MRNet library. Since the network
has two different ways to be set up, the function has to determine which instantiation
method has to be used. For the automatic instantiation of the network with back-end
start up the back-end executable file has to be specified as command line parameter
otherwise the back-ends will be started manually and the front-end process has to

wait for all back-ends to connect.

Automatic Back-end instantiation

If the parameter for the back-end executable is specified, the containing variable
stores the path to the executable file and the network has to be set up with back-end
instantiation. To do so the setupNetwork () method calls the network construc-
tor with the path to the topology file and the path to the back-end executable as
parameter. The MRNet library starts the back-ends and the intermediate children

automatically and returns the network instance on success.
Manual Back-end instantiation

If the parameter is not specified, the constructor is only called with the path to the
topology file and the front-end has to wait until all back-ends have connected to
the TBON. To provide the administrator or a automated system with the necessary
information for the start up of the back-end processes, the front-end writes all in-
formation to a file that contains the hostnames of the intermediate children and the
ports for the back-ends to connect. After the file is written the function determines
the number of nodes that have to connect to the TBON and enters a loop that only

stops if all back-ends have joined the network.
setupBackEnds()

To configure the back-ends, the front-end calls the method setupBackEnds ().
It first serializes the Met ricSect ion (see Section 4.7.16) object. To serialize the
object the method uses a binary archive provided by the boost serialization library.
The binary archive is stored in a std: : st ring which is subsequently send to the
back-ends using the MRNCommunicator (see Section 4.7.19). After the serial-
ized configuration is send to the back-ends the method waits for a message from
each back-end, that have to acknowledge the configuration. After all back-ends

have acknowledged the configuration and the messages have no differences in the

42



Detailed Software Design Swen Bohm

acknowledged configurations, the method returns with a true otherwise with a false.
Error()

The Error method is used to terminate the application due to an error. It logs the
message that is passed as parameter to the log file and adds a “Error: ” prefix to the
message. After logging the message, all objects currently in use are deleted and the

application terminates using the exit (.. .) function.
run()

This methods is the actual implementation of the message handling. After some
initializations, the method enters an infinite loop. The brake condition for the loop is
a bool value indicating if the application is still running or not. After the method has
entered the loop, it reads a packet out of the PacketQueue (see Section 4.7.22)
by calling the queues getPacket () method. This method suspends the thread
as long as no packet is available otherwise it returns the MRNPacketInfo structure
containing the packet.

After the getPacket () methods return, the returned pointer is checked for
validity, since in case the PacketListener (see Section 4.7.21) gets stopped it
has to return a last packet to release the getPacket () method. If the pointer is
valid, the packet can be processed. The tag of the packet is used to determine the
further actions in a switch statement, even though there currently are only packets
with metric values expected there it might be needed to process additional pack-
ets in the function. The metric packet is then stored into the database using the
insertPacket (...) method of the DBCommunicator (see Section 4.7.2)
object and the loop will start over again.

If the application has to be stopped, the running flag will be set to false and the
loop will stop its execution. After the loop is stopped, the run () method waits for
the PacketListener thread to stop its execution and calls the join () method.
The execution of the main thread is suspended until the called thread has joined.
When the PacketListener has joined, the application resume its execution and

exits the program.
4.7.2 DBCommunicator

The DBCommunicator is used to write the incoming metric packets to the database.
This is done with the insertPacket (...) method. To store the metric values,
the method is using a prepared SQL statement, that contains the SQL query and

placeholders for the actual values. The table format to store the metrics is rather
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simple. It stores a unique id, a time stamp, the rank of the host and the metric value
pairs for the current sample. The first three values are stored into integer fields
whereas the last one is stored into a binary large object (BLOB) field.

Before the metric values can be stored into the database, the metric packet has
to be read and the values have to be extracted. The data inside the metric packet
is structured. It contains a chunk for every host. These chunks again have a small
header, containing the rank of the host and a length value that contains the number
of metric values following the header. Subsequently to the header there is a pair of
two bytes for each metric value in the packet. The first byte represents the id of the
metric and the second byte the current metric class.

The rank and the number of values are stored into separate variables and the bytes
are stored as an unsigned char into a st ringstream for each node in the mes-
sage. If all metric values for a node are read from the packet, the values are stored
into the database using the execute (. ..) method of the mysglpp: :Querry
object provided by libMySQL++. The execute method expects the parameters in

the order of the prepared statement.
4.7.3 FileReader

The FileReader call provides the functionality to read the contents of the pro-
vided files. It is the base class for the MetricNetProcFileReader (see Sec-
tion 4.7.9), the MetricMemoryProcFileReader (see Section 4.7.7) and the
MetricLoadAvgProcFileReader (see Section 4.7.6) classes.

It implements the read function that is used by all the reader mentioned above to
read the content of the according file in the proc file system. The file name has to be
provided and the function returns the file content as a C++ std: : string. Addi-

tionally it implements a function to remove the leading spacesina std: : string.
4.7.4 MetricConfiguration

This class contains the actual configuration for a dedicated metric. It stores a set of
key value pairs that contain the configuration setting. There are three settings that
have to be set for each metric, the class count, the intervals for the different classes
and the capture interval. For the network and the sensor module an additional setting
is required (device for the network and label for the sensor module). Additionally
the metric name and the metric id are stored directly. (see Section 4.7.17) object that
can store one or more values of the different possible value types (Integer, floating

point and string values).
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It implements a set of methods to access the setting values. A setter and a getter
for the metric id and the metric name, that return the value stored in the object itself.
Methods that return the capture interval and the class count directly as integer value.

And methods to set and to get the stored setting objects.
4.7.5 MetricController

The MetricController class is derived from the Thread class (see Sec-
tion 4.7.23) and is implemented using a singleton pattern so that only one instance
of the metric controller is instantiated at any time. To create an instance of the
MetricController acall to the static function get Instance () is required.

To ensure that only one instance is available, the MetricController has an
instance variable holding the pointer to the instance and an instance flag of type
bool to indicate if an instance was created or not. A call to the getInstance ()
function tests if the instance flag is set or not and returns either the pointer to the
object instance or calls the constructor to create an instance. If the object has to be
created, the instance flag is set to true and the pointer to the object is stored in the
instance variable and returned.

The setReaderMap (. ..) method stores the pointer toa std: :multimap
that contains the pointers to the different metric reader objects (see Section 4.2.1)

in the mp_readerMap variable.
Run() method

If the start function of the MetricController is called, the Run () method is
executed in a separate thread. The Run function has to be implemented and is used
to capture the metric values based on a timer. After the declaration of the necessary
variables the function enters a loop that is only exited when the thread gets stopped.

To have a proper timing value all times used in the class are based on a t ime—
spec value that is defined in the t ime . h header file and stores the time in seconds
and nano seconds. The current time can be set using the clock_gettime func-
tion which also is defined in t ime . h.

After entering the loop the first operation is to receiving the current time and
store it in the starttime variable. Then the metric controller iterates over the
reader map, that stores the MetricReaderInfo (see Section 4.7.14) objects.
The MetricController decides whether to capture a metric or not based on
the next Read value stored in the Met ricReaderInfo class. The nextRead

is an integer value and acts as a counter that will be decreased by the last interval
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timeout value each time the metric controller is active. If the counter value in the
MetricReaderInfo objectis 0, the metric has to be captured.

The capturing of the metric is done with a call to the getClass (. ..) method
that requires a pointer to a ReaderInfo object to capture the metric from. It
returns an unsigned char value that represents the current class of the metric
value. The current class is stored into a MetricPair structure, containing the
metric id and the class. If the class value is different to the value of the last capture
interval, the MetricPair is added to the MetricPacket

After capturing the current metric value, the nextRead field in the accord-
ing MetricReaderInfo object is decreased by the last capture interval and the
lastCaptureClass variable is set to the current class value.

To determine the capture timeout , the current value of the nextRead variable
is compared to an integer value that stores the time to the next capture interval in the
variable next interval. If the next Read value is smaller then the current value
stored in next interval the value is updated to the new value. After the iteration
is finished, the interval in seconds to the next timeout is stored in nextinterval.

The MetricPacket is send to the front-end and the timeout is determined.

As timer function the thread uses the pselect (...) function, which is actu-
ally used to determine if a file descriptor is ready for usage. Without passing a file
descriptor to observe and based on the fact that pselect (.. .) isablocking call,

it works as a timeout. After pselect (.. .) returns, the loop starts over again.
getClass(...) method

The getClass (...) method returns the current metric value class. It calls the
getMetricValue (...) method of the Met ricReader object that is stored
in the MetricReaderInfo object that has to be passed to the method. The
MetricReaderInfo also contains the class value of the last capture interval.

The value returned by the getMetricValue (...) method is of the type
value_t. The current class is an unsigned char. The values are stored
in local variables. Then the interval configuration for the metric classes are re-
ceived from the configuration and stored in a MetricSetting object (see Sec-
tion 4.7.17). At this point all necessary information is available to classify the
current metric value.

To classify the current metric value the type of the MetricSetting is deter-
mined with a switch statement. This is necessary to receive the value either as an

integer value by calling the get IntValue method or as an float value by calling
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the getFloatValue.

The method to classify is the same for all possibilities of value pairs (integer
setting, integer value; integer setting, f1oat value; float setting, in-
teger value; float setting, f1loat value) but the implementations are a little
different since the values are received differently.

Assuming that a metric class is not changing frequently, the current metric value
is tested against the upper bounding of the class interval. Depending on the result
the metric value is then either tested against the lower bounding of the class if the
metric value is smaller then the upper interval bounding or the upper bounding of
the next higher class.

If the correct class is found the loop is stopped with a break and the class value

is returned.

4.7.6 MetricLoadAvgProcFileReader

This class implements all functions needed by the the readers of the LoadAvgMod-

ule to access the metrics. For a more detailed description see Section 4.4.3.
4.7.7 MetricMemoryProcFileReader

This class implements all functions needed by the the readers of the MemoryModule

to access the metrics. For a more detailed description see Section 4.4.2.
4.7.8 MetricModuleConfiguration

This class is used to store the necessary information regarding the configuration of a
metric module. The class is defined in metric—-module-configuration.h
and implemented in the metric-module-configuration.cc file. Itis a
container class that stores the module name and the MetricConfiguration
objects that corresponds to the respective module. The module name is stored in a
std: :string and the objects for the metric configuration in a std: :vector.

To serialize the object with the boost serialization library it implements a private
serialize method and declares the boost::serialization: :access
class as a friend class. In the serialize method the required fields are added
to the archive, that is passed to the method. Similar to the MetricSection
class it implements a add (...) a begin() and a end () method to either
add a new object to the container or receive an iterator of the MetricModule—
ConfigurationIterator type. The iterator is defined in the classes header
file.
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4.7.9 MetricNetProcFileReader

The MetricNetProcFileReader is used by all metric readers of the network
module. It is responsible to read the content of the /proc/net/dev file that
contains detailed information for each network device installed in the system. It
implements a function for each supported metric that returns the current metric
value. These functions have two parameters, a string to specify the device for which
the value has to be returned and the time stamp of the current interval. The time

stamp is used to read the file content only once in an interval.
4.7.10 MetricNetReader

The MetricNetReader derives from the Met ricReader class and is needed
in the network modules. It is used to bind the reader of the network module to a
network device. All reader in the network module derive from this class instead of

the MetricReader class.

4.7.11 MetricPacket

The MetricPacket class is a container class which stores all MetricInfo
structures generated during a capture interval and the rank of the back-end. A
MetricInfo structure contains two unsigned char fields to store the id associated
to a particular metric and the class for the value of the according capture interval.
Internally the metric packet uses a std: :vector to hold the MetricInfo

structures. The rank of the back end is stored into an unsigned integer value.
4.7.12 MetricPair

MetricPair is a structure to associate a metric id and the corresponding class
value. The structure is used to insert the classified metric value and the correspond-

ing metric id into a Met ricPacket.

4.7.13 MetricReader

MetricReader

value_t getMetricValue( timespec & currentTime)

Figure 4.3: The Met ricReader defines the interface for all metric reader.

The MetricReader class is an abstract class that defines the interface for the
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back-end to read the metric value from a specific reader. All classes that return a

metric value have to derive from this class.

4.7.14 MetricReaderInfo

This class is used by the MetricController to determine the necessary infor-
mation to decide whether a metric value has to be captured or not and to access the
according Met ricReader. Therefore it stores a pointer to the MetricReader
and the Met ric class as well as a t imespec structure with the last capture time

of the metric in public variables.
4.7.15 MetricReaderInfoCollection

This is a container class, that contains the met ricReaderInfo objects that are

returned by the getReader (. ..) method of the metric modules.
4.7.16 MetricSection

This class is the root object for the metric configuration. The implementation can
be found in the metric-section. cc file and the definitions are stored in the
metric—-section.h file. It represents the metric section of the configuration file
and stores a MetricModuleConfiguration object for each configured mod-
ule in a std: :vector. It implements the serialize method that is required
by the boost serialization library. The method is a private method and therefore it is
necessary to declare the bosst: :serialization: :access class as a friend
class. The serialize (...) method is called by the access object, that passes
archive and the archive version to the serialization method. Inside the method all
required field are added to the archive.

Additionally there are implementations for abegin () and end () method that
return an iterator of the type MetricSectionIterator that is defined in the
metric-section.h header file and can be used to iterate over all Metric—

ModuleConfiguration objects stored in the object.
4.7.17 MetricSetting

The MetricSetting class is designed to store one or more integer, float or string
values. It uses a boost::variant class which stores the vector with the values. The
boost::variant class is a template class provided by the boost library. Once a value
is set, the data type is fixed to this value and can not be changed.

The class implements a get Type (.. .) methods to determine what data type

of the stored value. To return the amount of values hold in the classa size () func-
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tion is implemented. To get and add values to the object methods for the supported

data types are implemented as well.
4.7.18 Module

Module is an abstract class to define the method that is used to define a interface
for the back-end to access the metric reader contained in the module. To instantiate
aMetricReader from an instantiated module, the getMetricReader (...)
method has to be called. The getMetricReader (...) has to be implemented

inside the specific module.
4.7.19 MRNCommunicator

The MRNCommunicator is defined in the mrn-communicator.h file. It im-
plements static methods to send the different packet types using a specified stream.
The Stream, Packet Tag and the data are provided by method parameter.

To send the data through the TBON the data structure is interpreted as a con-
tinuous stream of unsigned char values. This ensures, that any data type can be
transferred. Therefore the data that has to be transferred has to be accessible either
as array or a string.

The MRNCommunicator needs to determine the length of the data packet as a
multiple of 1 Byte. The length of the data stream as well as the pointer to the in
memory data structure is then passed to the wrapped MRN: St ream: : send (. . .)
method. The return parameters are checked and in case of an error a message is writ-
ten to the log. The function itself returns a bool value to either indicate a success or
a failure.

There are three different implementations of the Send (. . .) method. In some
cases the monitoring system sends empty packets as trigger for a certain action. In
this cases it is not necessary to process any data. Therefor the MRNCommunicator
just needs to know the tag and the steam.

The first implemented send function simply sends a tag through the stream and
is used to send plain commands that do not contain any data.

The second command can be used to send generic packages. The use of the
std::string makes it possible to either send real strings but also to send binary in-
formation due to the fact that it is not null terminated. This ability is used to send
the serialized configuration object to the back-ends. The message interpreted as an
array of unsigned char values.

The third method is used to send the metrics for a certain capture interval to the
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front-end. It serializes the content of the Met ricPacket (see Section 4.7.11) and
sends it as an array of unsigned char values. To serialize the Met ricPacket the

method determines the size of the packet.

rank length metric id | value class | --- | metric id | value class

Figure 4.4: The format of the transfered metric packet. The header contains the
rank of the back-end and the amount of metrics. The metrics are submitted as value
pair, the metric id identifies the metric, and the value class field contains the class
of the metric value.

The actual format of the packet send through the network has a header and a
body (picture 4.4 depicts the format of the transmitted packet). The header contains
two fields, the rank of the back-end and the amount of metric values send in this
package. The body contains the serialized Met ricInfo structures.

After the length is known, the method allocates memory to store the data. Two
pointers are used to store the values to the allocated memory area. The first points
to the start of the memory area and is used to free it after the packet is send. The
second pointer is incremented after writing the corresponding value into the mem-
ory about the value size. The rank and the size of the body are stored directly and
the Met ricInfo structures are stored in a loop.

After the content is written into the memory area, the data is send through the
stream as an array of unsigned integer values and the memory block for the packet

data is freed.

4.7.20 MRNPacketInfo

This structure is a container that contains a MRNet packet and the time when the
packet was received. It is used by the front-end receiver thread. The MRNPacket -
Info object is inserted into the PackedQueue. The times stamp is the time that is

inserted into the database.

4.7.21 PacketListener

The packet listener is implemented in the PacketListener class and is derived
from Thread (see Section 4.7.23). It listens to a MRNet stream for incoming

packets and stores the packets into a queue. To initialize the PacketListener

the pointer to the MRNet network object and to the stream has to be passed to the

51



Detailed Software Design Swen Bohm

constructor. A call to the start () method starts the thread and calls its Run ()
method, where the actual work is done.

To determine if a packet is available the class uses the event notification provided
by MRNet and the pselect () system call. The MRNet library returns a file de-
scriptor of a specified type with a call to the get_EventNotificationFd(...)

method. As the PacketListener is interested in data events the event type

1s DATA_EVENT. The returned file descriptor is used with the pselect (...)
function to determine if packet is available.

The pselect (...) function is called inside a loop. The function is used
in a blocking mod and only if a packet is available. After the pselect (...)

returns the file descriptor that caused the return is determined and the according
action is taken. There are two possible events that can cause pselect (...) to
return. Either a packet is available in the network or the listener has to be stopped.
If the listener has to be stopped the program is either terminating or reloading the
configuration. If a packet is available in the network stream, it is read and sored into

aPacketInfo object which is then added to the packet queue.
4.7.22 PacketQueue

The PacketQueue is a thread safe wrapper to the std: : queue container class.
It implements a function to add content and a function to remove a MetricInfo.
The class constructor instantiates a mutex that is used to lock the critical section of
adding and removing data and a condition variable that is used to.

The add function is secured by a mutex and returns after the packed was added
and the condition is signalized to the consuming thread. The get function removes
the first packet from the internal queue and returns unless the internal queue is
empty. If the internal queue is empty the calling thread is suspended by a call to
pthread_cond_wait until the condition for an available packet is signalized.
If a packet gets available, the consuming thread resumes the execution by returning

from the pthread_cond_wait call.
4.7.23 Thread

The thread class is an abstract wrapper class to the pt hread library. It implements
a start, stop and a join method and defines a virtual Run() method that has to be
implemented in the child classes.

The Thread class stores three variables to manage the thread. The bool flag

running indicates if the tread is currently running or not, the thread ID stored in
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a pthread_t variable to hold the thread identifier and a mutex variable to lock the
access to the running flag.

The start method creates a pthread by calling the pthread_create func-
tion which requires four arguments. A pointer to the a variable of the type pthread_t
(defined in sys/types.h), apointer to a pthread_attr_t variable, that can
be NULL, the pointer to the start routine of the thread and pointer to the thread
argument. As start routine a pointer to the ThreadEnt ry function is passed and
a pointer to the object instance as argument.

The i sRunning method can be called to determine whether the thread is run-
ning or not. The method uses a mutex to ensure that the access to the running flag
1s thread safe.

A call to the st op method sets the running flag to false to indicate that the thread
has to be stopped.

The ThreadEnt ry casts the pointer to the thread and calls the threads Run ()
method.
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5 Conclusion

5.1 Evaluation

The implemented system shows that it is possible to significantly decrease the
amount of data produced by the monitoring system. The classification of the mon-
itoring data reduces the produced and stored amount of the monitoring data. A run
on the XTORC cluster (a 64 node system in the Computer Science and Mathematics
Division at the ORNL) produced a database file of 919,680 bytes and an index file
of 159,744 bytes for a 4 hour test run. This corresponds to an accumulation rate of
~ 300 kB/h or ~ 2.5 kB/interval. For the test run 32 compute nodes and the head
node of the cluster where used. The front-end application was executed on the head
node and the automatic startup was used. The test run was done considering the
worst case scenario (The classes are changing steadily). It included 18 metrics that
where sampled at an interval of of 30s. The configuration and topology file used for
the test can be found in the appendix (C and C).

To test the ability to recover from IC failures a IC was stopped using the ki1l
command. The ability to capture and store monitoring data was not affected by the
loss of a IC. As long as there is an adequate number of IC available to handle the
connections to all BEs the loss of IC does not disturb the monitoring. On the other
hand, loosing an IC leads to a higher load on the remaining ICs since they have to
process more packets and handle more client connections.

Killing BE processes did not affect the system either. The processes where re-
moved from the underlaying TBON and where simply not delivering data anymore.

The use of a TBON also prevents the monitoring system to reach a single systems
socket limits by the distribution of the communication layer to the different children

in the tree structure of the overlay network.

5.2 Future Work

There are several improvements for the programs that can be implemented in the
future. The first thing to improve is the error handling of the back-end and the
modules. Currently some failures do not produce an error message and in some rare
cases the back-end will have a segmentation fault due to an error.

Since there is currently no way to reintegrate leaf or intermediate nodes when
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they where removed from the TBON due to errors. To get all nodes back into the
monitoring system it has to be restarted. To implement the reintegration it would be
necessary to listen on a dedicated port where a back-end process can query the status
of the monitoring system and communicate its availability. Normally the topology
of the TBON is defined in the configuration file and setup during the network cre-
ation. But there are several ways to access the topology and add or remove nodes
“manually”. After the node is added to the network, the communicators and the
streams have to be reinitialized. Unfortunately the methods needed for this are not
documented in the MRNet documentation. The reintegration of intermediate nodes
seems to be more difficult. Since they are usually started by the front-end daemon
with the network creation and there is no official way to move child nodes to another
parent. The methods to add and remove sub-graphs are all private and an extension
of the MRNet library itself seems to be necessary to achieve the designated goal.

Another improvement is to deal with the different time drifts on different leaf
nodes. It is inevitable that the local timers on the leaf nodes that are used to de-
termine the timeouts for the capture intervals will drift over the monitoring time.
Since the filter wait for all their child nodes to send a metric packet, the node with
the biggest time drift will rule the time drift for the entire sub tree and the time drift
will accumulate when the packages flow up through the network. To correct this,
the intervals have to be monitored in the front-end and when they exceed a thresh-
old an action to adjust the drift will be taken. This can be done by sending a signal
to the back-end processes and they will subtract the threshold value from the next
timeout.

To be able to manage clusters that are using different host types it would be an
improvement to define metric configurations for different host groups. Therefore
the configuration would need a separate section to define the different groups and
the hosts of the groups. The Metric configuration will need another property to
define on which host group(s) the metric configuration should be applied.

If the fault prediction is examined in detail and the important metrics and the
according correlations to other metrics are known, it might be possible to move parts
of the prediction process to the filter plug-ins and therefore improve the reaction
time of a possible predictor even further since the prediction can be calculated closer
to the source of the metric values and avoid the latencies that are inevitable during
the transport through the TBON.
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A Software Documentation

A.1 Front-end
A.1.1 Command Line Parameters

The front-end is started by running the rasmonfed program. The least two necessary
options are the location of the configuration file and the location to the topologie file.
Usually it starts the back-end processes autonomously and the back-end executable
has to be specified for this mode. If no back-end executable is specified, the front-
end assumes that it has to run in the second mode and therefore waits for the number
of back-ends to connect that are specified per command line parameter (see below).

The front-end has several command line parameters:
-t this parameter is used to specify the location of the topology file
-c this parameter is used to specify the location of the configuration file
-b this parameter is used to specify the location of the back-end executable file
-C defines the number of back-ends that have to connect

-i this switch is used to start the front-end in interactive mode

A.1.2 Configuration File Format

The configuration currently consists of two sections. One section for the database
configuration and another section to configure the metrics. The sections are defined
by a section name followed by a colon and are enclosed into curly brackets. The

following example shows a section definition:

db: {}

ne no

The section name may consist only of alphanumeric characters, dashes ( ), un-

ne no Hé*"?

derscores ( ), and asterisks ( ), and must begin with a letter or asterisk. A
section can contain additional sections or key, value pairs of configuration parame-

ters. The configuration distinguishes different value types:

ne

Strings are enclosed in quotes ("‘a string"”)
Integer Values are just digits (1, 2, 3, ...)

Float Values have to have o point in the number (0.1, 11.0, ...)
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Arrays are enclosed in box brackets and can contain every of the values above. But
the values have to be strict. ( ["‘a"’, "‘valid"’, "‘array"’], [ 1, "‘this"’, "‘is"’,

" 6n0tll7 , n ‘Valid"’])
A detailed example can be found in Appendix C
Database Configuration

To configure the database is called "‘db"’, the following parameters have to be pro-
vided:

server hostname to connect to
db = the database
user = the user

password = the password
Metric Configuration

The metrics are configured in the "‘metrics"’ section. The metric section contains a
sub section for each module. Currently the following 4 modules are supported by
the monitoring system: memory, loadavg, network, sensors.

All module sections have to contain the following keys: interval, classes, classIn-

nes

tervals. The "‘interval"’ value is used to specify the capture interval of the according

ne ne "o

metric. "‘classes"’ contains the number of classes and "‘classIntervals™ the values
of the borders of the different classes. The lower bound of the first and the upper
bound of the last class have not to be specified.

The network module requires to specify the network device for the metric as a
string. This can either be a single device or an array of different devices. As third
option an "“*"” defines all available devices (including the loopback device)

The sensor module requires a label field to specify the metric that has to be read.
The label is the same, that is used by Imsensors. To receive a list of the available
sensor metrics a call to the sensors program, that is part of Imsensors, shows all

configured sensors.
A.1.3 Topology File Format

The topology file describes the network layout of the TBON. It contains all hosts
that are participating in the monitoring system for the normal startup (with back-
end instantiation). If the back-ends should not be started by the front-end, it only

contains the root node and the intermediate nodes.
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The structure of the topology file is very simple. Beginning with the root of the
tree (the head node) the connections to the nodes in the first level of the tree are

described. A configuration line has always the following form:

hostnamel :0 => hostnamel :1 hostnamel :2 ;
meaning a process on hostnamel with MRNet id 0 has two children, with MRNet
ids 1 and 2, running on the same host. A specification line may span one or more

physical lines in the topology file:

hostnamel :0 =>
hostnamel : 1

hostnamel :2

Listing A.1 shows a more complex example with .

Listing A.1: Topology file example with 4 intermediate and 16 back-end nodes.

root—node:0 =>
intermediate —nodel : 1
intermediate —node2:2
intermediate —node3:3
intermediate —node4 : 4
intermediate —nodel =>
cluster —nodel :5
cluster —node2:6
cluster —node3:7
cluster —node4 :8;
intermediate —node2 =>
cluster —node5:9
cluster —node6:10
cluster —node7:11
cluster —node8:12;
intermediate —node3 =>
cluster —nodel:13
cluster —node2:14
cluster —node3:15
cluster —node4 :16;
intermediate —node4 =>
cluster —node5:17

cluster —node6:18
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cluster —node7:19

cluster —node8:20;

A.1.4 Topology File Generator

The MRNet library comes with a topology file generator that can create the topology
file. The following description is taken from the MRNet documentation [28]:

When the MRNet test programs are built, a topology generator
program, SMRNET_ROOT/bin/$SMRNET_ARCH/mrnet_topgen,
will also be created. The usage of this program is:

mrnet_topgen [OPTIONS] TOPOLOGY_SPEC [INFILE]
[OUTFILE]

Create a MRNet topology from the machines listed in [ INFILE],
or standard input, and writes output to [OUTFILE], or standard out-
put.

The format of the input machine list is one machine specification
per line, where each specification is of the form "host[:num-processors]".
Note that the first machine listed should be the host where the front-end
should be run.

OPTIONS:

-m max-host-procs, —maxprocs=max-host-procs

Specify the maximum number of processes to place on any ma-
chine, in which case the number of processes allocated to a machine
will be the minimum of its processor count and "max-host-procs".
TOPOLOGIES:

-b topology, —balanced=topology

Create a balanced tree using "topology" specification. The specifi-
cation is in the format FD, where F is the fan-out (or out-degree) and D
is the tree depth. The number of tree leaves (or back-ends) will be FD.
An alternative specification is FxXFxF, where the fan-out at each level is
specified explicitly and can differ between levels.

Example: "163" is a tree of depth 3 with fan-out 16, with 4096
leaves. Example: "2x4x8" is a tree of depth 3 with 64 leaves.

-k topology, —knomial=topology

Create a k-nomial tree using "topology" specification. The specifi-
cation is in the format K@N, where K is the k-factor (>2) and N is the
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total number of tree nodes. The number of tree leaves (or back-ends)
will be (N/K)*(K-1).

Example: "2@128" is a binomial tree of 128 nodes, with 64 leaves.
Example: "3@27" is a trinomial tree of 27 nodes, with 18 leaves.

-0 topology, —other=topology

Create a generic tree using "topology" specification. The specifica-
tion for this option is (the agreeably complicated) N:N,N,N:... where N
is the number of children, ’,” distinguishes nodes on the same level, and
’:” separates the tree into levels.

Example: "2:8,4" is a tree where the root has 2 children, the Ist
child has 8 children, and the 2nd child has 4 children.

A.2 Back-end

A.2.1 Command Line Parameters

The back-end is usually started by the front-end and does not need to be started
directly. For the second startup mode however it is necessary to start the back-end
either by hand or by utilizing a job submission system.

The back-end expects 5 parameters in the correct order to start and connect to the

monitoring system. The following command line is used for the back-end startup:
rasmonbed <parent_hostname> <parent_port> <parent_rank> <my_hostname>

The parent_hostname, parent_port and parent_rank are needed to
tell the back-end where to find its parent process in the TBON. The front-end creates
a file that contains these informations, when it is executed in the second startup
mode. The my_hostname is the hostname of the host the back-end is executed on

and the my_ rank is used internally by the to identify the back-end.
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After the % character that introduces a conversion, there may be a number of flag
characters. u, h, 1, and a are special modifiers meaning unsigned, short, long and

array, respectivley. The full set of conversions are:

c signed 8-bit character
uc unsigned 8-bit character
ac array of signed 8-bit characters

auc  array of unsigned 8-bit characters

hd signed 16-bit decimal integer

uhd  unsigned 16-bit decimal integer

ahd array of signed 16-bit decimal integers
auhd array of unsigned 16-bit decimal integers
d signed 32-bit decimal integer

ud unsigned 32-bit decimal integer

ad array of signed 32-bit decimal integers
aud  array of unsigned 32-bit decimal integers
1d signed 64-bit decimal integer

uld  unsigned 64-bit decimal integer

ald  array of signed 64-bit decimal integers
auld array of unsigned 64-bit decimal integers
f 32-bit floating-point number

af array of 32-bit floating-point numbers

If 64-bit floating-point number

alf array of 64-bit floating-point numbers

S null-terminated character string.

as array of null-terminated character strings.
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# Example ras monitor configuration file

# All names are case—sensitive. They may consist only of

alphanumeric

# characters , dashes (’—’), underscores (’_’), and asterisks

(’+’), and must

# begin with a letter or asterisk. No other characters

allowed .
# example:
# name = value ;
# or:
# name : value ;

# database configuration

db:
server = "localhost";
db = "Rasmon";
user = "monitor";
password = "";

s

# Definitions for the metrics to gather
metrics :
{
# system metrics
# this part of the configuration is devided into a
configuration section for

# each module ( memory, loadavg, net, sensors, ...)

# memory related metrics

memory :

{

MemFree :

{

arc
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interval = 30;
classes = 4;
classIntervals = [ 1024, 2048, 3192 ];
}s
}s

# load related metrics
loadavg:
{
LoadAvgl:
{
interval = 30;
classes = 4;
0.5, 1.0, 2.0 ];

Il
—

classIntervals

1
LoadAvg5:
{
interval = 30;
classes = 4;
classIntervals = [ 0.5, 1.0, 2.0 ];
1
LoadAvgl5:
{
interval = 30;
classes = 4;
classIntervals = [ 0.5, 1.0, 2.0 ];
1

1

# network related metrics

network :
{
BytesTransmit:
{
interval = 30;
classes = 4;

classIntervals = [ 1024, 2048, 3072 ];
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# specifies a submetric for the devices

metric will be gathered

# % for all devices, a device name or comma seperated

list of names

devices = [ "ethO0" ];

BytesReceive:
interval = 30;
classes = 4;

classIntervalss = [ 1024, 2048,
devices = [ "ethO0" ];

PacketsTransmit:
interval = 30;
classes = 4;

classIntervals = [ 1024, 2048,
devices = [ "eth0" ];

PacketsReceive:
interval = 30;
classes = 4;

classIntervals = [ 1024, 2048,
devices = [ "ethO0" ];

ErrorsTransmit :
interval = 30;
classes = 4;

classIntervals = [ 10, 50, 100
devices = [ "eth0" ];

ErrorsReceive:
interval = 30;
classes = 4;

3072 1;

3072 1;

3072 1;

13

for

wich a

68



Test Configurations

Swen Bohm

classIntervals = [ 10,

"eth0" ];

50, 100 ];
devices = [
1
1

# sensor metrics

# a working libsensors installation is

nesassary for these

metrics
# the metric name can be anny value, the sensors will be
identified by
# the label field.
Sensors :
{
fan: {
interval = 30;
classes = §;
classIntervals = [ 100, 250, 500, 1000,
1500, 2000, 2500 TJ;
label = "fan2";
}s
V2_5: { # +2.5V: (min = +2.25 V, max = +2.75 V)
interval = 30;
classes = §;
classIntervals = [ 100, 250, 500, 1000,
1500, 2000, 2500 1J;
label = "+2.5V";
1
VCore: { # VCore: (min = +1.66 V, max = +1.84 V)
interval = 30;
classes = §;
classIntervals = [ 100, 250, 500, 1000,
1500, 2000, 2500 1;
label = "VCore";
}s
V3_3: { # +3.3V: (min = +2.97 V, max = +3.63 V)
interval = 30;
classes = §;
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classIntervals = [ 100, 250, 500, 1000,
1500, 2000, 2500 1];
label = "+3.3V";

}s
V5: { # +5V: (min = +4.50 V, max = +5.50 V)
interval = 30;
classes = §;
classIntervals = [ 100, 250, 500, 1000,
1500, 2000, 2500 1;
label = "+5V";
}s
VCC: { # VCC: (min = +2.97 V, max = +3.63 V)
interval = 30;
classes = §;
classIntervals = [ 100, 250, 500, 1000,
1500, 2000, 2500 1;
label = "VCC";
}s
CoreTemp: {
interval = 30;
classes = §;
classIntervals = [ 10.0, 20.0, 30.0, 40.0,
50.0, 60.0, 70.0 1;
label = "CPU Temp";
}s
MBTemp: {
interval = 30;
classes = §;
classIntervals = [ 10.0, 20.0, 30.0, 40.0,
50.0, 60.0, 70.0 1;
label = "M/B Temp";
}s
1
1
[caption=Metric Configuration File for the evaluation tests on xtorc]
node0:0 =>
nodel :0
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node9:0

node20:0
node28:0;

nodel :0 =>

nodel :
node2:
node3:
node4 :
node5:
node6:

node7:

o O O O O O O =

node8 :
node9:0 =>
node9:1
nodelO:
nodell:
nodel?2:
nodel4:
nodel7:
nodel8:
nodel9:
node20:0 =>
node20:
node21:
node22:
node23:
node24 :
node?25:
node26:
node27 :
node28:0 =>
node28:
node29:
node32:
node36:
node40:
node41 :
node4?2:

o O O O O o o = o O O O o o O

S O O O O o =
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noded44:0;

[caption=Topology File for the evaluation tests on xtorc]
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D Listings

Listing D.1: Ganglia Monitor Output for localhost with Ganglias standard metrics.
Additional metrics can be added trough configuration and will generate a new line
in the HOST section in the XML output.

<?xml version="1.0" encoding="I50-8859-1" standalone="yes"?>
<!DOCTYPE GANGLIA_XML [
<!ELEMENT GANGLIA_XML (GRID) %>
<!ATTLIST GANGLIA_XML VERSION CDATA #REQUIRED>
<!ATTLIST GANGLIA_XML SOURCE #REQUIRED>
<!ELEMENT GRID (CLUSTER | GRID | HOSTS | METRICS)*>
<!ATTLIST GRID NAME CDATA #REQUIRED>
<!ATTLIST GRID AUTHORITY CDATA #REQUIRED>
<!ATTLIST GRID LOCALTIME CDATA #IMPLIED>
<!ELEMENT CLUSTER (HOST | HOSTS | METRICS) %>
<!ATTLIST CLUSTER NAME CDATA #REQUIRED>
<!ATTLIST CLUSTER OWNER CDATA #IMPLIED>
<!ATTLIST CLUSTER LATLONG CDATA #IMPLIED>
<!ATTLIST CLUSTER URL CDATA #IMPLIED>
<!ATTLIST CLUSTER LOCALTIME CDATA #REQUIRED>
<!ELEMENT HOST (METRIC) %>
<!ATTLIST HOST NAME CDATA #REQUIRED>
<!ATTLIST HOST IP CDATA #REQUIRED>
<!ATTLIST HOST LOCATION CDATA #IMPLIED>
<!ATTLIST HOST REPORTED CDATA #REQUIRED>
<!ATTLIST HOST TN CDATA #IMPLIED>
<!ATTLIST HOST TMAX CDATA #IMPLIED>
<!ATTLIST HOST DMAX CDATA #IMPLIED>
<!ATTLIST HOST GMOND_STARTED CDATA #IMPLIED>
<!ELEMENT METRIC EMPTY>
<!ATTLIST METRIC NAME CDATA #REQUIRED>
<!ATTLIST METRIC VAL CDATA #REQUIRED>
<!ATTLIST METRIC TYPE (string | int8 | uint8 | intl6 | uwintl6 | int32 | wint32 | float | double |
timestamp ) #REQUIRED>
<!ATTLIST METRIC UNITS CDATA #IMPLIED>
<!ATTLIST METRIC TN CDATA #IMPLIED>
<!ATTLIST METRIC TMAX CDATA #IMPLIED>
<!ATTLIST METRIC DMAX CDATA #IMPLIED>
<!ATTLIST METRIC SLOPE (zero | positive | negative | both | unspecified) #IMPLIED>
<!ATTLIST METRIC SOURCE (gmond | gmetric) #REQUIRED>
<!ELEMENT HOSTS EMPTY>
<!ATTLIST HOSTS UP CDATA #REQUIRED>
<!ATTLIST HOSTS DOWN CDATA #REQUIRED>
<!ATTLIST HOSTS SOURCE (gmond | gmetric | gmetad) #REQUIRED>
<!ELEMENT METRICS EMPTY>
<!ATTLIST METRICS NAME CDATA #REQUIRED>
<!ATTLIST METRICS SUM CDATA #REQUIRED>
<!ATTLIST METRICS NUM CDATA #REQUIRED>
<!ATTLIST METRICS TYPE (string | int8 | uint8 | intl6 | uintl6 | int32 | uint32 | float | double |
timestamp ) #REQUIRED>
<!ATTLIST METRICS UNITS CDATA #IMPLIED>
<!ATTLIST METRICS SLOPE (zero | positive | negative | both | unspecified) #IMPLIED>
<!ATTLIST METRICS SOURCE (gmond | gmetric) #REQUIRED>

1>

<GANGLIA_XML VERSION="2.5.7" SOURCE="gmond">

<CLUSTER NAME="my cluster" LOCALTIME="1254766201" OWNER="unspecified" LATLONG="unspecified" URL="unspecified">

<HOST NAME="1localhost" IP="127.0.0.1" REPORTED="1254766188" TN="13" TMAX="20" DMAX="0" LOCATION="unspecified"
GMOND_STARTED="1254766188">

<METRIC NAME="cpu_nice" VAL="0.0" TYPE="float" UNITS="%" TN="13" TMAX="90" DMAX="0" SLOPE="both" SOURCE="gmond

">

<METRIC NAME="cpu_user" VAL="0.7" TYPE="float" UNITS="%" TN="13" TMAX="90" ="0" SLOPE="both" SOURCE="gmond
">

<METRIC NAME="proc_total"™ VAL="237" TYPE="uint32" UNITS="" TN="13" TMAX="950" DMAX="0" SLOPE="both" SOURCE="
gmond" />
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<METRIC NAME="proc_run" VAL="2" TYPE="uint32" UNITS="" TN="13" TMAX="950" DMAX="0" SLOPE="both" SOURCE="gmond"

/>

<METRIC NAME="1oad_fifteen" VAL="0.04" TYPE="float" UNITS="" TN="13" TMAX="950" DMAX="0" SLOPE="both" SOURCE="
gmond" />

<METRIC NAME="pkts_in" VAL="0.00" TYPE="float" UNITS="packets/sec" TN="13" TMAX="300" ="0" SLOPE="both"
SOURCE="gmond" />

<METRIC NAME="swap_total" VAL="9936160" TYPE="uint32" UNITS="KB" TN="13" TMAX="1200" DMAX="0" SLOPE="zero"
SOURCE="gmond" />

<METRIC NAME="1load_five" VAL="0.11" TYPE="float" UNITS="" TN="13" TMAX="325" ="0" SLOPE="both" SOURCE="
gmond" />

<METRIC NAME="machine_type" VAL="x86_64" TYPE="string" UNITS="" TN="13" TMAX="1200" DMAX="0" SLOPE="zero"
SOURCE="gmond" />

<METRIC NAME="disk_total" VAL="236.061" TYPE="double" UNITS="GB" ="13" ="1200" DMAX="0" SLOPE="both"
SOURCE="gmond" />

<METRIC NAME="mem_buffers" VAL="206532" TYPE="uint32" UNITS="KB" TN="13" TMAX="180" DMAX="0" SLOPE="both"
SOURCE="gmond" />

<METRIC NAME="mem_total" VAL="3556980" TYPE="uint32" UNITS="KB" TN="13" ="1200" DMAX="0" SLOPE="zero"
SOURCE="gmond" />

<METRIC NAME="bytes_in" VAL="0.24" TYPE="float" UNITS="bytes/sec" TN="13" TMAX="300" DMAX="0" SLOPE="both"
SOURCE="gmond" />

<METRIC NAME="1oad_one" VAL="0.05" TYPE="float" UNITS="" TN="13" TMAX="70" DMAX="0" SLOPE="both" SOURCE="gmond
">

<METRIC NAME="sys_clock" VAL="1254766188" TYPE="timestamp" UNITS="s" TN="13" TMAX="1200" DMAX="0" SLOPE="zero"
SOURCE="gmond" />

<METRIC NAME="mem_free" VAL="1225576" TYPE="uint32" UNITS="KB" TN="13" TMAX="180" DMAX="0" SLOPE="both" SOURCE

="gmond" />

<METRIC NAME="mtu" VAL="1500" TYPE="uint32" UNITS="B" TN="13" TMAX="1200" DMAX="0" SLOPE="zero" SOURCE="gmond"
/>

<METRIC NAME="mem_shared" VAL="0" TYPE="uint32" UNITS="KB" TN="13" TMAX="180" DMAX="0" SLOPE="both" SOURCE="
gmond" />

<METRIC NAME="cpu_aidle" VAL="99.0" TYPE="float" UNITS="%" TN="13" TMAX="3800" ="0" SLOPE="both" SOURCE="
gmond" />

<METRIC NAME="cpu_idle" VAL="99.0" TYPE="float" UNITS="%" TN="13" TMAX="90" DMAX="0" SLOPE="both" SOURCE="
gmond" />

<METRIC NAME="cpu_speed" VAL="3391" TYPE="uint32" UNITS="MHz" ="13" ="1200" DMAX="0" SLOPE="zero" SOURCE
="gmond" />

<METRIC NAME="mem_cached" VAL="1181740" TYPE="uint32" UNITS="KB" TN="13" TMAX="180" DMAX="0" SLOPE="both"
SOURCE="gmond" />

<METRIC NAME="cpu_num" VAL="2" TYPE="uint16" UNITS="" TN="13" TMAX="1200" DMAX="0" SLOPE="zero" SOURCE="gmond"
/>

<METRIC NAME="part_max_used" VAL="7.1" TYPE="float" UNITS="%" TN="13" TMAX="180" DMAX="0" SLOPE="both" SOURCE=
"gmond" />

<METRIC NAME="bytes_out" VAL="0.03" TYPE="float" UNITS="bytes/sec" TN="13" TMAX="300" DMAX="0" SLOPE="both"
SOURCE="gmond" />

<METRIC NAME="os_release" VAL="2.6.28-15-generic" TYPE="string" UNITS="" TN="13" TMAX="1200" DMAX="0" SLOPE="
zero" SOURCE="gmond"/>

<METRIC NAME="gexec" VAL="OFF" TYPE="string" UNITS="" TN="13" TMAX="300" ="0" SLOPE="zero" SOURCE="gmond"/
>

<METRIC NAME="disk_free" VAL="219.277" TYPE="double" UNITS="GB" TN="13" TMAX="180" DMAX="0" SLOPE="both"
SOURCE="gmond" />

<METRIC NAME="cpu_system" VAL="0.3" TYPE="float" UNITS="%" TN="13" TMAX="90" DMAX="0" SLOPE="both" SOURCE="
gmond" />

<METRIC NAME="boottime" VAL="1254230677" TYPE="timestamp" UNITS="s" TN="13" ="1200" ="0" SLOPE="zero"
SOURCE="gmond" />

<METRIC NAME="swap_free" VAL="9936160" TYPE="uint32" UNITS="KB" TN="13" TMAX="180" DMAX="0" SLOPE="both"
SOURCE="gmond" />

<METRIC NAME="os_name" VAL="Linux" TYPE="string" UNITS="" TN="13" TMAX="1200" DMAX="0" SLOPE="zero" SOURCE="
gmond" />

<METRIC NAME="pkts_out" VAL="0.00" TYPE="float" UNITS="packets/sec" TN="13" TMAX="300" DMAX="0" SLOPE="both"
SOURCE="gmond" />

</HOST>

</CLUSTER>

</GANGLIA_XML>
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