
Dynamic Reconfiguration and Virtual Machine
Management in the Harness Metacomputing System

Mauro Migliardi1, Jack Dongarra2,3, Al Geist2, Vaidy Sunderam1

Emory University1, Dept. Of Math & Computer Science
Atlanta, GA, 30322, USA
om@mathcs.emory.edu

Oak Ridge Natonal Laboratory2,
University of Tennessee at Knoxvill e3

Abstract. Metacomputing frameworks have received renewed attention of late,
fueled both by advances in hardware and networking, and by novel concepts
such as computational grids. However these frameworks are often inflexible,
and force the application into a fixed environment rather than trying to adapt to
the application’s needs. Harness is an experimental metacomputing system
based upon the principle of dynamic reconfigurabilit y not only in terms of the
computers and networks that comprise the virtual machine, but also in the
capabiliti es of the VM itself. These characteristics may be modified under user
control via a "plug-in" mechanism that is the central feature of the system. In
this paper we describe how the design of the Harness system allows the
dynamic configuration and reconfiguration of virtual machines, including
naming and addressing methods, as well as plug-in location, loading,
validation, and synchronization methods.

1 Introduction

Harness is an experimental metacomputing system based upon the principle of
dynamically reconfigurable networked computing frameworks. Harness supports
reconfiguration not only in terms of the computers and networks that comprise the
virtual machine, but also in the capabiliti es of the VM itself. These characteristics
may be modified under user control via a "plug-in" mechanism that is the central
feature of the system. The motivation for a plugin-based approach to reconfigurable
virtual machines is derived from two observations. First, distributed and cluster
computing technologies change often in response to new machine capabiliti es,
interconnection network types, protocols, and application requirements. For example,
the availabilit y of Myrinet [1] interfaces and Illi nois Fast Messages has recently led to
new models for closely coupled Network Of Workstations (NOW) computing
systems. Similarly, multicast protocols and better algorithms for video and audio
codecs have led to a number of projects that focus on tele-presence over distributed
systems. In these instances, the underlying middleware either needs to be changed or

re-constructed, thereby increasing the effort level involved and hampering
interoperabilit y. A virtual machine model intrinsically incorporating reconfiguration
capabiliti es will address these issues in an effective manner. The second reason for
investigating the plug-in model is to attempt to provide a virtual machine
environment that can dynamically adapt to meet an application's needs, rather than
forcing the application to fit into a fixed environment. Long-lived simulations evolve
through several phases: data input, problem setup, calculation, and analysis or
visualization of results. In traditional, statically configured metacomputers, resources
needed during one phase are often underutili zed in other phases. By allowing
applications to dynamically reconfigure the system, the overall utili zation of the
computing infrastructure can be enhanced.

The overall goals of the Harness project are to investigate and develop three key
capabiliti es within the framework of a heterogeneous computing environment:
• Techniques and methods for creating an environment where multiple distributed

virtual machines can collaborate, merge or split . This will extend the current
network and cluster computing model to include multiple distributed virtual
machines with multiple users, thereby enabling standalone as well as collaborative
metacomputing.

• Specification and design of plug-in interfaces to allow dynamic extensions to a
distributed virtual machine. This aspect involves the development of a generalized
plug-in paradigm for distributed virtual machines that allows users or applications
to dynamically customize, adapt, and extend the distributed computing
environment's features to match their needs.

• Methodologies for distinct parallel applications to discover each other,
dynamically attach, collaborate, and cleanly detach. We envision that this
capabilit y will be enabled by the creation of a framework that will i ntegrate
discovery services with an API that defines attachment and detachment protocols
between heterogeneous, distributed applications.
In the preliminary stage of the Harness project, we have focused upon the dynamic

configuration and reconfiguration of virtual machines, including naming and
addressing schemes, as well as plugin location, loading, validation, and
synchronization methods. Our design choices, as well as the analysis and
justifications thereof, and preliminary experiences, are reported in this paper.

2 Architectural Overview of Harness

The architecture of the Harness system is designed to maximize expandabilit y and
openness. In order to accommodate these requirements, the system design focuses on
two major aspects:
• the management of the status of a Virtual Machine that is composed of a

dynamically changeable set of hosts;
• the capabilit y of expanding the set of services delivered to users by means of

plugging into the system new, possibly user defined, modules on-demand without
compromising the consistency of the programming environment.

2.1 Virtual Machine Startup and Harness System Requirements

The Harness system allows the definition and establishment of one or more Virtual
Machines (VMs). A Harness VM (see figure 1) is a distributed system composed of a
VM status server and a set of kernels running on hosts and delivering services to
users.

The current prototype of the Harness system implements both the kernel and the
VM status server as pure Java programs. We have used the multithreading capability
of the Java Virtual Machine to exploit the intrinsic parallelism of the different tasks
the programs have to perform, and we have built the system as a package of several
Java classes. Thus, in order to be able to use the Harness system a host should be
capable of running Java programs (i.e. must be JVM equipped). The different
components of the Harness system communicates through reliable unicast channels
and unreliable multicast channels. In the current prototype these communication
commodities are implemented using the java.net package.

In order to use the Harness system, applications should link to the Harness core
library. The basic Harness distribution will include core library versions for C, C++
and Java programs but in the following description we show only Java prototypes.

This library provides access to the only hardcoded service access point of the

A
A

B

B

A

B A

C

C

B A

C

C

C

C

C

A B

B

User B

Applications
���������
���������
�������
�������

Plugins
Plugins

Kernels

Hosts

Plugin

��������
������

������

	�	
�
 ��������

�
�
�����

������

��������

����������

������
������

Local Environment 1

User A

Local Environment 2

Local Environment 3

User C

Fig. 1. A Harness Virtual Machine

Harness system, namely the core function

Object H_command(String VMSymbolicName, String[] theCommand).

The first argument to this function is a string specifying the symbolic name of the
virtual machine the application wants to interact with. The second argument is the
actual command and its parameters. The command might be one of the User Kernel
Interface commands as defined later in the paper or the registerUser command. The
return value of the core function depends on the command issued.

In the following we will use the term user to mean a user that runs one or more
Harness applications on a host, and we will use the term application to mean a
program willi ng to request and use services provided by the Harness system.

Any application must register via registerUser before issuing any command to a
Harness VM. Parameters to this command are userName and userPassword; this call
will set a security context object that will be used by the system to check user
privileges. When the registration procedure is completed the application can start
issuing commands to the Harness system interacting with a local Harness kernel.

A Harness kernel is the interface between any application running on a host and
the Harness system. Each host willi ng to participate in a Harness VM runs one kernel
for each VM. The kernel is bootstrapped by the core library during the user
registration procedure. A Harness kernel delivers services to user programs and
cooperates with other kernels and the VM status server to manage the VM. The status
server acts as a repository of a centralized copy of the VM status and as a dispatcher
of the events that the kernel entities want to publish to the system (see figure 2 in next
page). Each VM has only one status server entity in the sense that all the other entities
(kernels) see it as a single monolithic entity with a single access point. Harness VM’s
use a built -in communication subsystem to distribute system events to the
participating active entities. Applications based on message passing may use this
substrate or may provide their own communications fabric in the form of a Harness
plug-in. In the prototype, native communications use TCP and UDP/IP-multicast.

2.2 Virtual Machine Management: Dynamic Evolution of a Harness VM

In our early prototype of Harness, the scheme we have developed for maintaining the
status of a Harness VM is described below. The status of each VM is composed of the
following information:
• membership, i.e. the set of participating kernels;
• services, i.e. the set of services that, based on the plug-in modules currently

loaded, the VM is able to perform both as a whole and on a per-kernel basis;
• baseline, i.e. the services that new kernels needs to be able to deliver to join the

VM and the semantics of these services;
It is important to notice that the VM status is kept completely separated from the
internal status of any user application in order to prevent its consistency protocol
from constraining users’ applications requirements.

To prevent the status server from being a single point of failure, each VM in the
Harness system keeps two copies of its status: one is centralized in the status server
and the second collectively maintained among the kernels. This mechanism allows
reconstruction of the status of each crashed kernel from the central copy and, in case
of status server crash, reconstructing the central copy from the distributed status
information held among the kernels.

Each Harness VM is identified by a VM symbolic name. Each VM symbolic name
is mapped onto a multicast address by a hashing function. A kernel trying to join a
VM multicasts a "join" message on the multicast address obtained by applying the
hashing function to the VM symbolic name. The VM server responds by connecting
to the inquiring kernel via a reliable unicast channel, checking the kernel baseline and
sending back either an acceptance message or a rejection message. All further
exchanges take place on the reliable unicast channel. To leave a VM a kernel sends a
"leave" message to the VM server. The VM server publishes the event to all the
remaining kernels and updates the VM status. Every service that each kernel supports
is published by the VM status server to every other kernel in the VM. This
mechanism allows each kernel in a Harness VM to define the set of services it is
interested in and to keep a selective up-to-date picture of the status of the whole VM.
Periodic “I’ m alive” messages are used to maintain VM status information; when the
server detects a crash, it publishes the event to every other kernel. If and when the
kernel rejoins, the VM server gives it the old copy of the status and wait for a new,
potentially different, status structure from the rejoined kernel. The new status is

A

VM SERVER

C

������

C

������

2B
VM Server

Forwards Request
To Kernels

C

A

Applications
�������
�������
�������
�������

Plugins
Plugins

Kernels

������

Host s

Plugin
Events

Kernels Try toComply
2C

	�	
�

������

User A

User (Application)
Requires Loading
of a plugin

Kernel Send
Request to
VM Server

2A

1

2A

2B

2B

2B2D

2D

2D

Kernels Send Back
To VM Server
Ack or Nack

2D

VM Forwards
Acks/Nacks
To Requestor
Kernel

2E2E
3

1

Kernels Gives
Positive/Negative
Confirmation to
User (Application)

3

Fig. 2. Event sequence for a distributed plug-in loading

checked for compatibilit y with current VM requirements. A similar procedure is used
to detect failure of the VM server and to regenerate a replacement server.

2.3 Services: the User Interface of Harness Kernels

The fundamental service delivered by a Harness kernel is the capabilit y to
manipulate the set of services the system is able to perform. The user interface of
Harness kernels accepts commands with the following general syntax:

<command> <locator> <targets> <Quality of Service> [additional parameters]

The command field can contain one of the following values:
• load to install a plug-in into the system;
• run to run a thread to execute plug-in code;
• unload to remove an unused plug-in from the system;
• stop to terminate the execution of a thread
Services delivered by plug-ins may be shared according to permission attributes set
on a per plug-in basis. Users may remove only services not in the core category. A
core service is one that is mandatory for a kernel to interact with the rest of the VM.
With the stop and unload commands a user can reclaim resources from a service that
is no longer needed, but the nature of core services prevents any user from
downgrading a kernel to an inoperable state. However, although it is not possible to
change core services at run time, they do not represent points of obsolescence in the
Harness system. In fact they are implemented as hidden plug-in modules that are
loaded into the kernel at bootstrap time and thus easily upgraded. The core services of
the Harness system form the baseline and must be provided by each kernel that
wishes to join a VM. They are:
• the VM server crash recovery procedure;
• the plug-in loader/linker module;
• the core communication subsystem.

Commands must contain the unique locator of the plug-in to be manipulated. The
lowest level Harness locator, the one actually accepted by the kernel, is a Uniform
Resource Locator (URL). However any user may load at registration time a plug-in
module that enhances the resource management capabiliti es of the kernel by allowing
users to adopt Uniform Resource Names (URNs), instead of URLs, as locators. The
version of this plugin provided with the basic Harness distribution allows:
• checking for the availabilit y of the plug-in module on multiple local and remote

repositories (e.g. a user may simply wish to load the “SparseMatrixSolver” plug-in
without specifying the implementation code or its location);

• the resolution of any architecture requirement for impure-Java plug-ins.
However, the level of abstraction at which service negotiation and URN to URL

translation will t ake place, and the actual protocol implementing this procedure, can
be enhanced/changed by providing a new resource manager plug-in to kernels.

The target field of a command defines the set of kernels that are required to
execute the command. Every non local command is executed using a two phase

commit protocol. Each command can be issued with one of the following Quality of
Service(QoS): all -or-none and best-effort. A command submitted with a all -or-none
QoS succeeds if and only if all of the kernels specified in the target field are able (and
willi ng) to execute it. A command submitted with a best-effort QoS fails if and only if
all the kernels specified in the target field are unable (unwilli ng) to execute it. Both
the failure and the success return values include the list of kernel able (willi ng) to
execute the command and the list of the unable (unwilli ng) ones.

3 Related Works

Metacomputing frameworks have been popular for nearly a decade, when the advent
of high end workstations and ubiquitous networking in the late 80's enabled high
performance concurrent computing in networked environments. PVM [2] was one of
the earliest systems to formulate the metacomputing concept in concrete terms, and
explore heterogeneous network computing. PVM however, is inflexible in many
respects. For example, multiple DVM merging and splitti ng is not supported. Two
different users cannot interact, cooperate, and share resources and programs within a
live PVM machine. PVM uses internet protocols which may preclude the use of
specialized network hardware. A “plug-in” paradigm would alleviate all these
drawbacks while providing greatly expanded scope and substantial protection against
both rigidity and obsolescence.

Legion [3] is a metacomputing system that began as an extension of the Mentat
project. Legion can accommodate a heterogeneous mix of geographically distributed
high-performance machines and workstations. Legion is an object oriented system
where the focus is on providing transparent acess to an enterprise-wide distributed
computing framework. As such, it does not attempt to cater to changing needs and it
is relatively static in the types of computing models it supports as well as in
implementation.

The model of the Mill ennium system [4] being developed by Microsoft Research
is similar to that of Legion's global virtual machine. Logically there is only one global
Mill ennium system composed of distributed objects. However, at any given instance
it may be partitioned into many pieces. Partitions may be caused by disconnected or
weakly-connected operations. This could be considered similar to the Harness
concept of dynamic joining and splitti ng of DVMs.

Globus [5] is a metacomputing infrastructure which is built upon the “Nexus” [6]
communication framework. The Globus system is designed around the concept of a
toolkit that consists of the pre-defined modules pertaining to communication,
resource allocation, data, etc. Globus even aspires to eventually incorporate Legion as
an optional module. This modularity of Globus remains at the metacomputing system
level in the sense that modules affect the global composition of the metacomputing
substrate.

The above projects envision a much wider-scale view of distributed resources and
programming paradigms than Harness. Harness is not being proposed as a world-wide
infrastructure, but more in the spirit of PVM, it is a small heterogeneous distributed

computing environment that groups of collaborating scientists can use to get their
science done. Harness is also seen as a research tool for exploring pluggability and
dynamic adaptability within DVMs.

4 Conclusions and Future Work

In this paper we have described our early work on the plug-in mechanism and the
dynamic Virtual Machine (VM) management mechanism of the Harness system, an
experimental metacomputing system. These mechanisms allow the Harness system to
achieve reconfigurability not only in terms of the computers and networks that
comprise the VM, but also in the capabilities and the services provided by the VM
itself, without compromising the coherency of the programming environment.
Early experience with small example programs show that the system is able:
• to adapt to changing user needs by adding new services via the plug-in

mechanism;
• to safely add or remove services to a distributed VM;
• to locate, validate and load locally or remotely stored plug-in modules;
• to cope with network and host failure with a limited overhead;
• to dynamically add and remove hosts to the VM via the dynamic VM management

mechanism.
In a future stage of the Harness project we will test these feature on real world

applications.

References

1 N. Boden et al., MYRINET: a Gigabit per Second Local Area Network, IEEE-Micro, Vol,
15, No. 1, February 1995.

2 A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Mancheck and V. Sunderam, PVM:
Parallel Virtual Machine a User’s Guide and Tutorial for Networked Parallel Computing,
MIT Press, Cambridge, MA, 1994.

3 A. Grimshaw, W. Wulf, J. French, A. Weaver and P. Reynolds. Legion: the next logical
step toward a nationwide virtual computer, Technical Report CS-94-21, University of
Virginia, 1994.

4 Microsoft Corporation, Operating Systems Directions for the Next Mill enium, position
paper available at http://www.research.microsoft.com/research/os/Millennium/mgoals.html

5 I. Foster and C. Kesselman, Globus: a Metacomputing Infrastructure Toolkit, International
Journal of Supercomputing Application, May 1997.

6 I. Foster, C. Kesselman and S. Tuecke, The Nexus Approach to Integrating Multithreading
and Communication, Journal of Parallel and Distributed Computing, 37:70-82, 1996

