
April 2005

Christian Engelmann and Al Geist
Oak Ridge National Laboratory

14th Heterogeneous Computing Workshop 2005

A Lightweight Kernel for the 
Harness Metacomputing Framework



April 2005 A Lightweight Kernel for the Harness Metacomputing Framework Slide 2

What is Harness
A pluggable, reconfigurable, adaptive framework for 
heterogeneous distributed computing.
Allows aggregation of resources into high-capacity 
distributed virtual machines.
Provides runtime customization of computing 
environment to suit applications needs.
Enables dynamic assembly of scientific applications 
from (third party) plug-ins.
Offers highly available distributed virtual machines 
through distributed control.
Various experiments and prototypes (C/Java).



April 2005 A Lightweight Kernel for the Harness Metacomputing Framework Slide 3

Harness Architecture
Light-weight kernels 
share their resources.
Plug-ins offer services.
Support for diverse 
programming models.
Distributed Virtual 
Machine (DVM) layer.
Highly available DVM 
using distributed control.
Highly available plug-in 
services via DVM.



April 2005 A Lightweight Kernel for the Harness Metacomputing Framework Slide 4

Harness DVM Architecture



April 2005 A Lightweight Kernel for the Harness Metacomputing Framework Slide 5

Original Harness Kernel Design
DVM inside kernel (HCtl) 
with ring-based peer-to-
peer distributed control.
Databases inside kernel 
for local and global info.
Peer-to-peer messaging 
plug-in (HCom).
Basic plug-in & external 
process management.
Forced/Hidden DVM Forced/Hidden DVM 
programming model.programming model.

Communicator 
Plug-In 
(HCom)Plug-In A Plug-In B

User Application

Harness Proxy

GroupsPlug-Ins DatabaseInvocationIdentity Control

HCore API

Controller (HCtl)

Message 
Handler (HMsg)

HMsg API
Msg TypesSend/ReceiveMsg Creation

(Local HCore Functionality)
Identity Plug-Ins Invocation Database Groups

Other 
Harness 

Daemons



April 2005 A Lightweight Kernel for the Harness Metacomputing Framework Slide 6

Improved Lightweight Kernel
Optional Distributed 
Control plug-in (DVM).
Only local information 
stored inside kernel.
Enhanced process and 
plug-in management.
Thread management.
RMI/RPC messaging 
through RMIX plug-in.

User is able to choose programming model based on User is able to choose programming model based on 
actual needs: DVM, PVM, FTactual needs: DVM, PVM, FT--MPI, clientMPI, client--server, etc.server, etc.



April 2005 A Lightweight Kernel for the Harness Metacomputing Framework Slide 7

Optional Distributed Control Plug-in

Not all plug-ins need to 
be part of the DVM.
User chooses if high 
availability is needed.
Avoids unnecessary 
DVM use and associated 
performance impact.
Allows loosely coupled 
peer-to-peer paradigms.
Improves adaptability, 
versatility and usability.

� Plug-in access via DVM

� Direct plug-in access



April 2005 A Lightweight Kernel for the Harness Metacomputing Framework Slide 8

Improved Process Manager
Capable of controlling child processes via a separate 
kernel child process (forker) spawned at startup.
Allows creation and destruction of child processes.
Relays input to stdin of child processes.
Optionally captures and buffers child process stdout.
Supports sending of signals to child processes.
Harness kernel threads may wait for child process exit.
Typically used for remote kernel startup using ssh and 
for external application runs.



April 2005 A Lightweight Kernel for the Harness Metacomputing Framework Slide 9

Enhanced Plug-in Loader
Loads and unloads shared libraries (dlopen/dlclose).
Initializes after loading. Finalizes before unloading.
Allows multiple loading using unique handles.
Offers recursive dependent plug-in (un)loading.
Provides global symbol export or lookup (dlsym) of table 
with global data and function pointers.
Supports optional plug-in versioning scheme: 
<version>.<age>.<revision>
Capable of managing different plug-in versions loaded 
into the same kernel (without global export).



April 2005 A Lightweight Kernel for the Harness Metacomputing Framework Slide 10

Added Thread Pool

Allows to change minimum/maximum thread count.
Supports variable timeouts for idle threads.
Offers configurable kernel shutdown thread timeout.
Capable of adjusting the maximum job queue length.
All maximums, minimums and timeouts are 
reconfigurable before kernel startup and at runtime.
Simplifies task execution in the multi-threaded kernel.
Increasing the maximum thread count is typically used 
for persistent threads, like servers. 



April 2005 A Lightweight Kernel for the Harness Metacomputing Framework Slide 11

RMIX Framework
Originally developed in 
Java at Emory University.
Dynamic, heterogeneous, 
RMI/RPC framework.
Pluggable providers: Sun 
RPC, Java RMI and SOAP.
Support for asynchronous 
and one-way invocations.
Stand-alone C variant and 
Harness plug-in currently 
in development at ORNL.



April 2005 A Lightweight Kernel for the Harness Metacomputing Framework Slide 12

RMIX Harness Plug-in
Reuse of Harness plug-in and 
thread management.
RMIX Harness plug-in wraps 
RMIX base library.
Harness plug-ins provide client 
and server stubs.
Kernel stub plug-in.
Harness plug-ins are able to 
communicate via RMIX.
Further improves flexibility and 
heterogeneity.



April 2005 A Lightweight Kernel for the Harness Metacomputing Framework Slide 13

Conclusions
Improved adaptability, versatility and usability by 
changing to a lightweight Harness kernel design.
Moved previously integrated distributed control service 
(DVM) into an optional Harness DVM plug-in.
DVM is only used when high availability is needed.
Improved performance by bypassing the DVM.
Enhanced process manager to provide remote kernel 
startup using ssh and external application runs.
Introduced an optional plug-in versioning scheme.
Added thread pool to simplify task execution in the 
multi-threaded kernel environment.



April 2005 A Lightweight Kernel for the Harness Metacomputing Framework Slide 14

Future Work
Finishing the development of RMIX stand-alone 
C variant and RMIX Harness plug-in to further 
improve flexibility and heterogeneity.
Service-level high availability features for 
applications, as well as for typical operating 
system components, such as schedulers.
Virtualization of different underlying platforms 
to present a uniform programming and 
deployment interface.



April 2005

Christian Engelmann and Al Geist
Oak Ridge National Laboratory

14th Heterogeneous Computing Workshop 2005

A Lightweight Kernel for the 
Harness Metacomputing Framework

Questions or comments?


