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What is Harness
A pluggable, reconfigurable, adaptive framework for 
heterogeneous distributed computing.
Allows aggregation of resources into high-capacity 
distributed virtual machines.
Provides runtime customization of computing 
environment to suit applications needs.
Enables dynamic assembly of scientific applications 
from (third party) plug-ins.
Offers highly available distributed virtual machines 
through distributed control.
Various experiments and prototypes (C/Java).
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Harness Architecture
Light-weight kernels 
share their resources.
Plug-ins offer services.
Support for diverse 
programming models.
Distributed Virtual 
Machine (DVM) layer.
Highly available DVM 
using distributed control.
Highly available plug-in 
services via DVM.
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Harness DVM Architecture
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Original Harness Kernel Design
DVM inside kernel (HCtl) 
with ring-based peer-to-
peer distributed control.
Databases inside kernel 
for local and global info.
Peer-to-peer messaging 
plug-in (HCom).
Basic plug-in & external 
process management.
Forced/Hidden DVM Forced/Hidden DVM 
programming model.programming model.
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Improved Lightweight Kernel
Optional Distributed 
Control plug-in (DVM).
Only local information 
stored inside kernel.
Enhanced process and 
plug-in management.
Thread management.
RMI/RPC messaging 
through RMIX plug-in.

User is able to choose programming model based on User is able to choose programming model based on 
actual needs: DVM, PVM, FTactual needs: DVM, PVM, FT--MPI, clientMPI, client--server, etc.server, etc.
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Optional Distributed Control Plug-in

Not all plug-ins need to 
be part of the DVM.
User chooses if high 
availability is needed.
Avoids unnecessary 
DVM use and associated 
performance impact.
Allows loosely coupled 
peer-to-peer paradigms.
Improves adaptability, 
versatility and usability.

� Plug-in access via DVM

� Direct plug-in access
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Improved Process Manager
Capable of controlling child processes via a separate 
kernel child process (forker) spawned at startup.
Allows creation and destruction of child processes.
Relays input to stdin of child processes.
Optionally captures and buffers child process stdout.
Supports sending of signals to child processes.
Harness kernel threads may wait for child process exit.
Typically used for remote kernel startup using ssh and 
for external application runs.
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Enhanced Plug-in Loader
Loads and unloads shared libraries (dlopen/dlclose).
Initializes after loading. Finalizes before unloading.
Allows multiple loading using unique handles.
Offers recursive dependent plug-in (un)loading.
Provides global symbol export or lookup (dlsym) of table 
with global data and function pointers.
Supports optional plug-in versioning scheme: 
<version>.<age>.<revision>
Capable of managing different plug-in versions loaded 
into the same kernel (without global export).
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Added Thread Pool

Allows to change minimum/maximum thread count.
Supports variable timeouts for idle threads.
Offers configurable kernel shutdown thread timeout.
Capable of adjusting the maximum job queue length.
All maximums, minimums and timeouts are 
reconfigurable before kernel startup and at runtime.
Simplifies task execution in the multi-threaded kernel.
Increasing the maximum thread count is typically used 
for persistent threads, like servers. 
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RMIX Framework
Originally developed in 
Java at Emory University.
Dynamic, heterogeneous, 
RMI/RPC framework.
Pluggable providers: Sun 
RPC, Java RMI and SOAP.
Support for asynchronous 
and one-way invocations.
Stand-alone C variant and 
Harness plug-in currently 
in development at ORNL.
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RMIX Harness Plug-in
Reuse of Harness plug-in and 
thread management.
RMIX Harness plug-in wraps 
RMIX base library.
Harness plug-ins provide client 
and server stubs.
Kernel stub plug-in.
Harness plug-ins are able to 
communicate via RMIX.
Further improves flexibility and 
heterogeneity.
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Conclusions
Improved adaptability, versatility and usability by 
changing to a lightweight Harness kernel design.
Moved previously integrated distributed control service 
(DVM) into an optional Harness DVM plug-in.
DVM is only used when high availability is needed.
Improved performance by bypassing the DVM.
Enhanced process manager to provide remote kernel 
startup using ssh and external application runs.
Introduced an optional plug-in versioning scheme.
Added thread pool to simplify task execution in the 
multi-threaded kernel environment.
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Future Work
Finishing the development of RMIX stand-alone 
C variant and RMIX Harness plug-in to further 
improve flexibility and heterogeneity.
Service-level high availability features for 
applications, as well as for typical operating 
system components, such as schedulers.
Virtualization of different underlying platforms 
to present a uniform programming and 
deployment interface.
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